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Abstract In this paper, an integral variant of the Lupaş operators are investigated. The rate of

convergence of these operators with the help of K-functional is discussed. Asymptotic formula, rate of

convergence and weighted approximation results are established. At the end, we discussed better error

estimation of these operators.
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1. Introduction

In recent years, Patel and Mishra [36] generalized Jain operators as a variant of the
Lupaş operators [30] defined by

P [β]
n (f, x) =

∞∑
k=0

(nx+ kβ)k
2kk!

2−(nx+kβ)f

(
k

n

)
, x ≥ 0, f : [0,∞)→ R, (1.1)

where (nx+ kβ)0 = 1, (nx + kβ)1 = nx and (nx + kβ)k = nx(nx + kβ + 1)(nx + kβ +
2) . . . (nx+ kβ + k − 1), k ≥ 2.
By using analogous Abel and Jensen combinatorial formulas for factorial powers (see [40]).
In [8], the authors modified the operators (1.1) into following sense

L[β]
n (f, x) =

∞∑
k=0

nx(nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)f

(
k

n

)
, (1.2)

and L
[β]
n (f, 0) = f(0) for real valued bounded functions f on [0,∞), where 0 ≤ β < 1 and

β depending only on n. The authors called this operators as Lupaş-Jain operators.
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Consider the weight function ρλ : [0,∞) → [1,∞), ρλ(x) = 1 + x2+λ(λ ≥ 0) and
ρ(x) = ρ0(x) = 1 + x2, we define the space

Bρ ([0,∞)) = {f : [0,∞)→ R, |f(x)| ≤Mfρ(x), x ≥ 0},

where Mf is a constant depending on f .

Cρ([0,∞)) = {f ∈ Bρ ([0,∞)) : f is continous on [0,∞)} ,

Ckρ ([0,∞)) =

{
f ∈ Cρ ([0,∞)) : lim

x→∞

f(x)

ρ(x)
= kf

}
,

where kf is a constant depending on f . It is obvious that Ckρ ([0,∞)) ⊂ Cρ ([0,∞)) ⊂
Bρ ([0,∞)). The space Bρ ([0,∞)) is normed linear space with with the norm ‖f‖ρ =

supx≥0
|f(x)|
ρ(x)

.

In order to approximate Lebesgue integrable functions, Durrmeyer [19] proposed an
integral modification of Bernstein polynomials, which was later studied in different forms
by many authors [7, 27, 31, 32, 41]. The Durrmeyer modification of Jain operators and
their generalizations was studied in [4, 9, 26, 35, 42]. We now propose the Durrmeyer
type integral modification of the operators (1.2) as follows: x ≥ 0

D1/n
n (f, x) =

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

)

×
∫ ∞
0

f(t)

B(n+ 1, k)

tk−1

(1 + t)n+k+1
dt+ 2−nxf(0), (1.3)

where n > 1, f ∈ Cρλ([0,∞)). By using a bivariate kernel we can write (1.3) in a more
compact form, as follows

D1/n
n (f, x) =

∫ ∞
0

Hn(t, x)f(t)dt, n > 1, x ≥ 0, (1.4)

where

Hn(t, x) =

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

)
1

B(n+ 1, k)

tk−1

(1 + t)n+k+1
+ 2−nxδ(t).

In the above δ represents Dirac delta function for which∫ ∞
0

δ(t)f(t)dt = f(0).

The operators defined by (1.3) are the integral modification of the Jain variant of Lupaş

operators for the case β =
1

n
having weight function of some beta basis function.

In the present manuscript, we introduce the operators (1.3) and estimate their moments.
Also, studied local approximation results, rate of convergence, weighted approximation
theorem.
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2. Some Moments

The moment of the operators (1.2) are studied in [8]. For the particular case β =
1

n
,

n ∈ {2, 3, . . .}, we obtain

L
[ 1n ]
n (1, x) = 1; L

[ 1n ]
n (t, x) =

nx

n− 1
; L

[ 1n ]
n (t2, x) =

n2x2

(n− 1)2
+

2n2x

(n− 1)3
.

Using the process given in [8] and [36], we calculate the following 3rd and 4th moments
of the operators (1.2) as

L
[ 1n ]
n (t3, x) =

n3x3

(n− 1)3
+

6n3x2

(n− 1)4
+

6n2(1 + n)x

(n− 1)5

and

L
[ 1n ]
n (t4, x) =

n4x4

(n− 1)4
+

12n4x3

(n− 1)5
+

12n3(2 + 3n)x2

(n− 1)6
+

2n2
(
13 + 34n+ 13n2

)
x

(n− 1)7
.

Lemma 2.1. The following equalities hold.

(1) D
1/n
n (1, x) = 1,

(2) D1/n
n (t, x) =

nx

n− 1
,

(3) D1/n
n (t2, x) =

n3x2

(n− 1)3
+
n
(
3n2 − 2n+ 1

)
x

(n− 1)4
.

Proof. Using L
[ 1n ]
n (1, x) = 1, we have

D1/n
n (t, x) =

∫ ∞
0

Hn(t, x)tdt

=

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

)
B(n, k + 1)

B(n+ 1, k)

=

∞∑
k=0

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

)
k

n
= L

[ 1n ]
n (t, x) =

nx

n− 1
.

Lastly,

D1/n
n (t2, x) =

∫ ∞
0

Hn(t, x)t2dt

=

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

)

×
∫ ∞
0

1

B(n+ 1, k)

tk+1

(1 + t)n+k+1
dt

=

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

)
B(n− 1, k + 2)

B(n+ 1, k)

=
n

n− 1
L
[ 1n ]
n (t2, x) +

1

n− 1
L
[ 1n ]
n (t, x) =

n3x2

(n− 1)3
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+
n
(
3n2 − 2n+ 1

)
x

(n− 1)4
.

Further, the 3rd and 4th moments are obtained as follows

D1/n
n (t3, x) =

∫ ∞
0

Hn(t, x)t3dt

=

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

) ∫ ∞
0

1

B(n+ 1, k)

tk+2

(1 + t)n+k+1
dt

=
n2

(n− 1)(n− 2)
L
[ 1n ]
n (t3, x) +

3n

(n− 1)(n− 2)
L
[ 1n ]
n (t2, x)

+
2

(n− 1)(n− 2)
L
[ 1n ]
n (t, x)

=
n5x3

(n− 2)(n− 1)4
+

3n3
(
1− 2n+ 3n2

)
x2

(n− 2)(n− 1)5

+
2n
(
1− 4n+ 9n2 − 7n3 + 7n4

)
x

(n− 2)(n− 1)6
.

Similarly,

D1/n
n (t4, x) =

∫ ∞
0

Hn(t, x)t4dt

=

∞∑
k=1

nx

(
nx+ 1 + k

1

n

)
k−1

2kk!
2
−
(
nx+k

1

n

) ∫ ∞
0

1

B(n+ 1, k)

tk+3

(1 + t)n+k+1
dt

=
n3

(n− 1)(n− 2)(n− 3)
L
[ 1n ]
n (t4, x) +

6n2

(n− 1)(n− 2)(n− 3)
L
[ 1n ]
n (t3, x)

+
11n

(n− 1)(n− 2)(n− 3)
L
[ 1n ]
n (t2, x) +

6

(n− 1)(n− 2)(n− 3)
L
[ 1n ]
n (t, x)

=
n7x4

(n− 3)(n− 2)(n− 1)5
+

6n5
(
1− 2n+ 3n2

)
x3

(n− 3)(n− 2)(n− 1)6

+
n3
(
11− 44n+ 102n2 − 92n3 + 83n4

)
x2

(n− 3)(n− 2)(n− 1)7

+
2n2

(
3− 7n+ 19n2 + n3 + 17n4 + 24n5 + 3n6

)
x

(n− 3)(n− 2)(n− 1)8
.

In the following lemma, we obtain central moments of the operators D
1/n
n (·, x).

Lemma 2.2. The following equalities hold.

(1) D1/n
n (t− x, x) =

x

n− 1
,

(2) D1/n
n ((t− x)2, x) =

n
(
3n2 − 2n+ 1

)
x

(n− 1)4
+

(
n2 + n− 1

)
x2

(n− 1)3
,
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(3) D1/n
n ((t− x)4, x) =

(
3n5 + 40n4 − 77n3 + 30n2 + 11n− 6

)
x4

(n− 3)(n− 2)(n− 1)5

+
6x3

(
3n6 + 31n5 − 72n4 + 63n3 − 29n2 + 6n

)
(n− 3)(n− 2)(n− 1)6

+
nx2

(
27n6 + 188n5 − 362n4 + 444n3 − 341n2 + 128n− 24

)
(n− 3)(n− 2)(n− 1)7

+
2n2x

(
3− 7n+ 19n2 + n3 + 17n4 + 24n5 + 3n6

)
(n− 3)(n− 2)(n− 1)8

.

The proof follows from the linearity of D
1/n
n .

Remark 2.3. Let f be a continuous and bounded function on [0,∞). For n → ∞, the

sequence {D1/n
n (f, x)} converges uniformly to f(x) in [a, b] ⊂ [0,∞), which follows from

the well known Bohman-Korovkin theorem.

Theorem 2.4. For each f ∈ Ckρ ([0,∞)), we have

lim
n→∞

‖D1/n
n (f, ·)− f‖ρ = 0.

Proof. Using the theorem in [24], in order to prove the theorem, it is sufficient to show
that

lim
n→∞

‖D1/n
n (ti, ·)− xi‖ρ = 0, i = 0, 1, 2.

Since D
1/n
n (1, ·) = 1. The above conditions hold for i = 0, we can write

lim
n→∞

‖D1/n
n (t, ·)− x‖ρ ≤ lim

n→∞
sup
x≥0

1

1 + x2
x

n− 1
= 0.

Finally

‖D1/n
n (t2, ·)− x2‖ρ ≤ sup

x≥0

1

1 + x2

∣∣∣∣∣ n3x2

(n− 1)3
+
n
(
3n2 − 2n+ 1

)
x

(n− 1)4
− x2

∣∣∣∣∣
= sup

x≥0

1

1 + x2

∣∣∣∣ (n− 2n2 + 3n3)x

(n− 1)4
+

(1− 3n+ 3n2)x2

(n− 1)3

∣∣∣∣ ,
which gives

lim
n→∞

‖D1/n
n (t2, ·)− x2‖ρ = 0.

This completes the proof of the theorem.

3. Main Results

Theorem 3.1. Let f ∈ Cρ([0,∞)) and has second derivative at a point x ∈ (0,∞). Then

lim
n→∞

n
[
D1/n
n (f, x)− f(x)

]
= xf ′(x) +

x(x+ 3)

2
f ′′(x).

Proof. By Taylor’s expansion of f , we have

f(t) = f(x) + f ′(x)(t− x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2, (3.1)
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where r(t, x) is the Peano form of the remainder, continuous and bounded on [0,∞) and

limt→x r(t, x) = 0. Operating D
1/n
n to the equation (3.1), we obtain

D1/n
n (f, x)−f(x) = D1/n

n (t−x, x)f ′(x)+D1/n
n ((t−x)2, x)

f ′′(x)

2
+D1/n

n (r(t, x)(t−x)2, x).

Using the Cauchy-Schwarz inequality, we have

D1/n
n (r(t, x)(t− x)2, x) ≤

√
D

1/n
n (r2(t, x), x)

√
D

1/n
n ((t− x)4, x). (3.2)

We have r2(x, x) = 0 and r2(t, x) ∈ Ckρ [0,∞)

lim
n→∞

D1/n
n (r2(t, x), x) = r2(x, x) = 0. (3.3)

uniformly with respect to x ∈ [0, A]. Now from (3.2), (3.3) and from Lemma 2.2, we get

lim
n→∞

D1/n
n (r2(t, x)(t− x)2, x) = 0.

Thus

lim
n→∞

n
[
D1/n
n (f, x)− f(x)

]
= lim
n→∞

n
[
D1/n
n (t− x, x)f ′(x)

+
1

2
f ′′(x)D1/n

n ((t− x)2, x)

+D1/n
n (r2(t, x)(t− x)2, x)

]
= xf ′(x) +

x(x+ 3)

2
f ′′(x).

By CB ([0,∞)), we denote the class of real valued, continuous and bounded functions
f(x) for x ∈ [0,∞) with the norm ‖f‖ = supx∈[0,∞) |f(x)|. For f ∈ CB([0,∞)) and δ > 0

the mth order modulus of continuity is defined as

ωm(f, δ) = sup
0≤h≤δ

sup
x∈[0,∞)

|∆m
h f(x)|,

where ∆h is the forward difference. In case m = 1, we mean the usual modulus of
continuity denoted by ω(f, δ) and defined as

ω(f, δ) = sup
0<|x−y|<δ

|f(x)− f(y)|.

The Peetre’s K-functional is defined as

K2(f, δ) = inf
g∈C2

B([0,∞))
{‖f − g‖+ δ‖g′′‖},

where C2
B([0,∞)) = {g ∈ CB([0,∞)) : g′, g′′ ∈ CB([0,∞))}.

Theorem 3.2. Let f ∈ CB [0,∞). Then

|D1/n
n (f, x)− f(x)| ≤ Cω2

(
f,
√
δn

)
+ ω

(
f,

x

n− 1

)
,

where δn =
n
(
3n2 − 2n+ 1

)
x

(n− 1)4
+

(
n2 + 2n− 2

)
x2

(n− 1)3
, n ∈ {2, 3, . . .}.
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Proof. We introduce the auxiliary operators D̃
1/n
n : CB([0,∞))→ CB([0,∞)) as follows

D̃1/n
n (f, x) = D1/n

n (f, x)− f
(

nx

n− 1

)
+ f(x). (3.4)

These operators are linear and preserve the linear functions in view of Lemma 2.2. Let
g ∈ C2

B([0,∞)) and x, t ∈ [0,∞). By Taylor’s expansion

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du,

we have

|D̃1/n
n (g, x)− g(x)| ≤ D̃1/n

n

(∣∣∣∣∫ t

x

(t− u)g′′(u)du

∣∣∣∣ , x)
≤ D1/n

n

(∣∣∣∣∫ t

x

(t− u)g′′(u)du

∣∣∣∣ , x)

+

∣∣∣∣∣∣
∫ nx

n− 1

x

(
nx

n− 1
− u
)
g′′(u)du

∣∣∣∣∣∣
≤ D1/n

n

(
(t− x)2, x

)
‖g′′‖+

∣∣∣∣∣∣
∫ nx

n− 1

x

(
x

n− 1

)
du

∣∣∣∣∣∣ ‖g′′‖.
Next, using central moments of operators, we have

|D̃1/n
n (g, x)− g(x)| ≤

[
D1/n
n

(
(t− x)2, x

)
+

(
x

n− 1

)2
]
‖g′′‖

≤

[
n
(
3n2 − 2n+ 1

)
x

(n− 1)4
+

(
n2 + n− 1

)
x2

(n− 1)3
+

(
x

n− 1

)2
]
‖g′′‖

≤

[
n
(
3n2 − 2n+ 1

)
x

(n− 1)4
+

(
n2 + 2n− 2

)
x2

(n− 1)3

]
‖g′′‖

= δn‖g′′‖. (3.5)

Since

|D1/n
n (f, x)| ≤

∫ ∞
0

Hn(t, x)|f(t)|dt ≤ ‖f‖.

Now, for the operators D̃
1/n
n , we have

‖D̃1/n
n (·, x)‖ ≤ ‖D1/n

n (·, x)‖+ 2‖f‖ ≤ 3‖f‖, f ∈ CB ([0,∞)) . (3.6)

Using (3.5) and (3.6), we have

|D1/n
n (f, x)− f(x)| ≤ |D̃1/n

n (f − g, x)− (f − g)(x)|+ |D̃1/n
n (g, x)− g(x)|

+

∣∣∣∣f ( nx

n− 1

)
− f(x)

∣∣∣∣
≤ 4‖f − g‖+ δn‖g′′‖+

∣∣∣∣f(x)− f
(

nx

n− 1

)∣∣∣∣
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≤ 5C {‖f − g‖+ δn‖g′′‖}+ ω

(
f,

x

n− 1

)
.

Taking infimum over all g ∈ C2
B ([0,∞)], and using the inequality K2(f, δ) ≤ Cω2(f,

√
δ),

δ > 0 due to [14], we get the desired assertion.

4.A-Statistical Approximation

In this section, we present the A-statistical approximation properties of generalized
Lupaş-Jain-beta operators on the weighted spaces.
Let us recall the concept of A-statistical convergence. Let A = (ajn) be a summability ma-

trix and let x = (xn) be a sequence. We say that Ax :=
{

(Ax)j

}
is the A-transformation

of x, if the series

(Ax)j :=
∑
n

ajnxn

is convergent for each j. Further, we say that x is A-summable to L if the sequence Ax
converges to a number L. A summability matrix A is said to be regular if limj(Ax)j = L
whenever limn xn = L [10]. Let A = (ajn) be a non-negative regular summability matrix
and let K be a subset of positive integer. Then K is said to have A-density δA(K) if the
limit

δA(K) := lim
j

∑
n

ajn

exists [11, 12, 22]. The sequence x = (xn) is said to be A-statistically convergent to real
number α if for any ε > 0

lim
j

∑
n:|xn−α|≥ε

ajn = 0.

In this case, we write stA − limx = α [20, 21]. If A is the identity matrix I, then
I-statistical convergence reduces to ordinary convergence, and, if A = C1, the Cesàro
matrix of order one, then it coincides with statistical convergence. Many authors have
studied Korovkin type approximation properties of the statistical convergence for several
operators by following work of Gadjiev and Orhan [23]. ( see, for instance [1, 15, 29, 33,
34, 38, 39])

Now, we consider the following class of positive linear operators which includes the
operators given by (1.2);

Dβ
n(f, x) =

∞∑
k=1

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)

×
∫ ∞
0

f (t)

B (n+ 1, k)

tk−1

(1 + t)
n+k+1

dt+ 2−nxf (0) , (4.1)

where n > 1, 0 ≤ β < 1, f ∈ Ckρ ([0,∞)) . If we take β = 1
n , we obtain the operators

D
1/n
n . From Lemma 1, we can easily obtain that

Dβ
n (1;x) = 1, (4.2)

Dβ
n (t;x) =

x

1− β
, (4.3)
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Dβ
n

(
t2;x

)
=

x2

(1− β)
3 +

2x

n (1− β)
4 +

βx

(1− β)
2 . (4.4)

In order to get an approximation result, we consider β as a sequence of positive real
numbers such that 0 ≤ β < 1, β = βn and stA − lim

n→∞
βn = 0.

Here, we recall the weighted Korovkin type approximation theorem for the A-statistical
convergence given by Duman and Orhan in [16]

Theorem 4.1. [16] Let A be a non-negative regular summability matrix and let ρ̄1,ρ̄2 be
weight functions such that ρ1

lim
|x|→∞

ρ1 (x)

ρ2 (x)
= 0. (4.5)

Assume that (Tn)n≥1 is a sequence of positive linear operators from Cρ1 (R) into Bρ2 (R) .
One has

stA − lim
n
‖Tnf − f‖ρ2 = 0,

for all f ∈ Cρ1 (R) if and only if

stA − lim
n
‖TnFv − Fv‖ρ1 = 0, v = 0, 1, 2,

where

Fv (x) =
xvρ1 (x)

1 + x2
, v = 0, 1, 2.

By using this theorem, we present the following result for (Dβ
n) :

Theorem 4.2. Let A = (ajn) be a non-negative regular summability matrix and let (βn)
be sequence of positive numbers such that, 0 ≤ βn < 1, stA − lim

n→∞
βn = 0. Then for each

f ∈ Ckρ [0,∞) , we have

stA − lim
n→∞

∥∥Dβn
n f − f

∥∥
ρλ

= 0,

where ρλ (x) = 1 + x2+λ, λ ≥ 0.

Proof. Using Theorem 4.1, it is sufficient to prove that the operators
(
Dβn
n

)
verify the

conditions given in (4.5) . Indeed, from (4.2) , it is clear that

stA − lim
n

∥∥Dβn
n (F0)− F0

∥∥
ρ

= 0.

From (4.3), we get∥∥Dβn
n (F1)− F1

∥∥
ρ
≤ sup

x≥0

{∣∣∣∣ x

1 + x2

(
βn

1− βn

)∣∣∣∣} ≤ βn
1− βn

.

Since stA − lim
n→∞

βn = 0, we have

stA − lim
n

∥∥Dβn
n (F1)− F1

∥∥
ρ

= 0.

Now, using (4.4) , one can have∥∥Dβn
n (F2)− F2

∥∥
ρ0
≤ sup

x≥0

{∣∣∣∣∣ x2

1 + x2
(β3
n − 3β2

n + 3βn)

(1− βn)
3

∣∣∣∣∣ +

∣∣∣∣∣ 2x

1 + x2
1

n (1− βn)
4

∣∣∣∣∣
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+
x

1 + x2
βn

(1− βn)
2

}
,

which implies

∥∥Dβn
n (F2)− F2

∥∥
ρ0
≤ β3

n − 3β2
n + 3βn

(1− βn)
3 +

2

n (1− βn)
4 +

βn

(1− βn)
2

= Kn.

Now, for a given ε > 0, let us define the following sets:

M :=
{
n :
∥∥Dβn

n (F2)− F2

∥∥
ρ
≥ ε
}
,

M1 :=

{
n :

β3
n − 3β2

n + 3βn

(1− βn)
3 ≥ ε

3

}
,

M2 :=

{
n :

2

n (1− βn)
4 ≥

ε

3

}
,

M3 :=

{
n :

βn

(1− βn)
2 ≥

ε

3

}
.

Then, we see that M ⊆M1 ∪M2 ∪M3. Therefore, we get∑
n:‖Dβn(F2)−F2‖

ρ
≥ε

aj,n ≤
∑
n∈M1

aj,n +
∑
n∈M2

aj,n +
∑
n∈M3

aj,n (4.6)

and, taking the limit j →∞ in (4.6) , we have

stA − lim
n

∥∥Dβ
n (F2)− F2

∥∥
ρ

= 0.

This proves the theorem.

Remark 4.3. Theorem 4.2 may be useful when the Theorem 2.4 doesn’t work. Indeed,
if βn does not converge to zero as n→∞, then, we can consider Theorem 4.2.

The following example shows that there exists a sequence (βn) such that A-statistical
convergence holds but ordinary convergence does not hold for (βn) .

Example 4.4. Let (βn) be the sequence defined by

βn =

{
1
2 , if n is a perfect square
1
n , otherwise.

It is easy to see that (βn) is not convergent but statistically convergent, i.e., C1-statistically
convergent.
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5. King Type Operators

In recent years, the modification of King type which preserve the test functions has
been a significant subject of research. The early one is due to King [28] which consider
the modified Bernstein operators preserving the constant and the test function x2 on the
interval [0, 1] . Later some researches increased in this field and some classical operators
and several new sequences of operators which were constructed before were studied in
this direction.

In 2007, Duman and Özarslan [17], introduced Szász-Mirakjan type operators pre-
serving the test function constant and x2 on the interval [0,∞) and showed the bet-
ter error estimation for the modified operators. One may see some of the results in
[2, 3, 5, 6, 13, 17, 25, 37] etc.
In this section, as in [18] for Szász-Mirakjan Kantorovich operators, we consider a similar
modification of the Lupaş-Jain-beta operators which preserve the test functions e0 and

e1. We introduce the operators for x ∈ [0,∞) ,
{
D̃

1/n
n : C[0,∞)→ C[0,∞)

}
n>1

D̃1/n
n (f ;x) =

∞∑
k=1

nλn(x)
(
nλn(x) + 1 + k 1

n

)
k−1

2kk!
2−(nλn(x)+k 1

n ) (5.1)

×
∫ ∞
0

f (t)

B (n+ 1, k)

tk−1

(1 + t)
n+k+1

dt+ 2−nλn(x)f (0) .

Let’s find the function λn, satisfying the condition

D̃1/n
n (t;x) = x

for all x ∈ [0,∞) and n > 1. From the definition of King-type Lupaş-Jain-beta operators,
we can write

λn(x) =

(
1− 1

n

)
x, n > 1, x ∈ [0,∞) ,

where {λn : [0,∞)→ R}n>1 is the sequence of functions.

Noting the fact that when n → ∞, λn → x, D̃
1/n
n reduces to the classical Lupaş-

Jain-beta operators. That is, classical Lupaş-Jain-beta operators turn out to be a limit

element of D̃
1/n
n .

Lemma 5.1. For each x ∈ [0,∞) and n > 1, we have

D̃1/n
n (1;x) = 1,

D̃1/n
n (t;x) = x, (5.2)

D̃1/n
n (t2;x) =

n

(n− 1)
x2 +

3n2 − 2n+ 1

(n− 1)3
x.

Proof. Using the results for the Lupaş-Jain-beta operators (5.1), it is found that

D̃1/n
n (1;x) = 1,

D̃1/n
n (t;x) = x,

D̃1/n
n (t2;x) =

n3

(n− 1)3
(λn)2 +

n(3n2 − 2n+ 1)

(n− 1)4
(λn).
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In view of the definition of λn, we can obtain the moments of the operators.

Lemma 5.2. For every x ≥ 0, we have

D̃1/n
n (t− x;x) = 0,

D̃1/n
n ((t− x)

2
;x) =

1

n− 1
x2 +

3n2 − 2n+ 1

(n− 1)3
x.

6. Better Error Estimation

The aim of the constructing new type operators concerning King type modification
is to deal with the best approximation. In this section, we concern with the rate of

convergence of the operators D̃
1/n
n defined by (5.1). Then we will demonstrate that the

operators (5.1) have a better error estimation on the interval [0,∞) than the classical
operators given by (1.2).

We have the following estimates for D̃
1/n
n and D

1/n
n in terms of the modulus of conti-

nuity ω(f, δ).

Theorem 6.1. For every f ∈ CB [0,∞) and x ∈ [0,∞) , we have∣∣∣D̃1/n
n (f ;x)− f(x)

∣∣∣ ≤ 2ω(f, ρn,x),

where ρ2n,x = 1
n−1x

2 + 3n2−2n+1
(n−1)3 x.

Remark 6.2. For the classical Lupaş-Jain-beta operators satisfy∣∣∣D1/n
n (f ;x)− f(x)

∣∣∣ ≤ 2ω(f, ηn,x),

where η2n,x = n2+n−1
(n−1)3 x

2 +
n(3n2−2n+1)

(n−1)4 x.

In the following theorem, we present analogues theorem for D̃
1/n
n to show a better

order of approximation.

Theorem 6.3. For every f ∈ CB [0,∞), x ∈ [0,∞) and n > 1, we have

ρn,x ≤ ηn,x

and one can get the best approximation using D̃
1/n
n .

Proof. The order of approximation to a function f ∈ CB [0,∞), given by the sequence

D̃
1/n
n will be at least as good as of D

1/n
n whenever

1

n− 1
x2 +

3n2 − 2n+ 1

(n− 1)3
x ≤ n2 + n− 1

(n− 1)3
x2 +

n
(
3n2 − 2n+ 1

)
(n− 1)4

x.

Let

Kn(x) =
3n− 2

(n− 1)3
x2 +

3n2 − 2n+ 1

(n− 1)4
x.

For all x ∈ [0,∞) and n > 1, we can always write ρn,x ≤ ηn,x and this guarantees that
error estimations of King type operators are better than the classical operators.
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[34] M.A. Özarslan, O. Duman, and H. Srivastava, Statistical approximation results for
Kantorovich-type operators involving some special polynomials, Math. Comput.
Model. 48 (3-4) (2008) 388–401.

[35] P. Patel and V.N. Mishra, Jain-Baskakov operators and its different generalization,
Acta Math. Vietnamica 40 (4) (2015) 715–733.

[36] P. Patel and V.N. Mishra, On new class of linear and positive operators, Boll.
Unione Mat. Ital. 8 (2) (2015) 81–96.

[37] L. Rempulska and K. Tomczak, Approximation by certain linear operators preserving
x2, Turkish J. Math. 33 (3) (2009) 273–281.
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