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Symmetry of scalar second-order stochastic
ordinary differential equations
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Abstract : In this manuscript, the definition of an admitted Lie group for stochas-
tic differential equations given in [1] is applied to second-order ordinary stochastic
differential equations. Admitted Lie group generators for a variety of equations
are obtained.
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1 Introduction

One of the standard methods for finding exact solutions of differential equa-
tions is group analysis. A survey of this method can be found in [2], [3] and [4]. It
involves the study of symmetries of equations. Symmetry means that any solution
of a given system of equations is transformed by some local group of transforma-
tions to a solution of the same system. Moreover, symmetries allow finding new
solutions of the system.

In contrast to deterministic differential equations, there have been only few
attempts to apply symmetry techniques to stochastic differential equations. They
fall into two groups as we review now.

The system of Itô equations

dXi(t, ω) = fi(t, X(t, ω))dt + gik(t,X(t, ω))dBk(t, ω)
(i = 1, ..., n, k = 1, ..., r) (1.1)

with initial condition X(0) = X(0) is interpreted in the sense that

Xi(t, ω) = X
(0)
i (ω) +

∫ t

0

fi(s,X(s, ω))ds +
∫ t

0

gik(s,X(s, ω))dBk(s, ω), (1.2)

for almost all ω ∈ Ω and each t > 0, where fi(t,X) is a drift vector, gik(t,X) is a
diffusion matrix and Bk(k = 1, ..., r) are one-dimensional Brownian motions. The
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first integral in this equation is of Riemann type, while the second integral denotes
a sum of Itô integrals with repeat index k.

The first approach [5, 6, 7, 8] considers fiber-preserving transformations

xi = ϕ(t, x, a), t = H(t, a) (i = 1, ..., n), (1.3)

and has been applied to stochastic dynamical systems [5, 6] and to the Fokker-
Planck equation [7, 8]. Its weakness is that it can only be applied to fiber-
preserving transformations which form a small subclass of all possibly transfor-
mations.

The second approach [10, 11, 12, 13, 14] deals with symmetry transformations
including all the dependent variables in the transformation. This approach has
been applied to scalar second-order stochastic ordinary differential equations [10,
11], to the Hamiltonian-Stratonovich dynamical control system [12] and to the
Fokker-Planck equation [12, 13, 14]. There have also been attempts to involve
Brownian motion in the transformation, without strict proof that Brownian motion
is transformed to Brownian motion.

In [1] a new definition of an admitted Lie group of transformations for sto-
chastic differential equations is given, including dependent as well as independent
variables in the transformation. In particular, the transformation of Brownian
motion is defined by transformation of the dependent and independent variables,
and there is a strict proof that the transformed Brownian motion satisfies the
properties of Brownian motion. This theory was applied to first-order stochastic
ordinary differential equations in [1].

The present manuscript discusses how these idaes can be applied to scalar
second-order stochastic ordinary differential equations.

2 Preliminaries

2.1 Lie group of transformations for stochastic differential
equations

This section is devoted to reviewing the theory developed in [1]. We discuss
transformations of stochastic processes and admitted Lie groups.

Assume that the set of transformations

t̄ = H(t, x, a), x̄ = ϕ(t, x, a) (2.1)

composes a Lie group. Let h(t, x) = ∂H
∂a (t, x, 0), ξ(t, x) = ∂ϕ

∂a (t, x, 0) be the coeffi-
cients of the infinitesimal generator

h(t, x)∂t + ξ(t, x)∂x.
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According to Lie’s theorem, the functions H(t, x, a) and ϕ(t, x, a) satisfy the Lie
equations

∂H

∂a
= h(H, ϕ),

∂ϕ

∂a
= ξ(h, ϕ) (2.2)

and the initial conditions for a = 0:

H = t, ϕ = x. (2.3)

Since ∂H
∂t (t, x, 0) = 1, then ∂H

∂t (t, x, a) > 0 in a neighborhood of a = 0, where one
can find a function η(t, x, a) such that

η2(t, x, a) =
∂H

∂t
(t, x, a).

Using the function η(t, x, a), one can define a transformation of a stochastic process
X(t, ω) by

X̄(t̄, ω) = ϕ(α(t̄), X(α(t̄), ω), a), (2.4)

where

β(t) =
∫ t

0

η2(s,X(s, ω), a)ds, t ≥ 0,

and α(t) is the inverse function of β(t). This gives an action of Lie group (2.1) on
the set of stochastic processes. Replacing t̄ by β(t) in (2.4), one obtains

X̄(β(t), ω) = ϕ(t,X(t, ω), a).

It is useful to introduce the function

τ(t, x) =
∂η

∂a
(t, x, 0).

Notice that the functions h(t, x) and τ(t, x) are related by the formulae

τ(t, x) =
∂h
∂t (t, x)

2
, h(t, x) = 2

∫ t

0

τ(s, x)ds.

We are now ready to present the notions of admitted Lie group and determining
equations.
Definition 1. (see [1]) A Lie group of transformations (2.1) is called admitted
by the stochastic differential equation (1.2), if for any solution X(t, ω) of (1.2) the
functions ξ(t, x) and τ(t, x) satisfy the following determining equations:

ξi,t(t,X(t, ω)) + fjξi,j(t,X(t, ω)) + 1
2gjkglkξi,jl(t,X(t, ω))

−2fi,t(t, X(t, ω))
∫ t

0

τ(s,X(s, ω))ds

−fi,jξj(t,X(t, ω))− 2fiτ(t, X(t, ω)) = 0,

gjkξi,j(t,X(t, ω))− 2gik,t(t,X(t, ω))
∫ t

0

τ(s,X(s, ω))ds

−gikτ(t,X(t, ω))− gik,jξj(t,X(t, ω)) = 0,
(i = 1, ..., n; k = 1, ..., r),

(2.5)
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where (•),• stands for the partial derivative with respect to the coordinate appear-
ing in the subscript, for example, ξi,t = ∂ξi

∂t .
Note that the determining equations (2.5) were constructed under the assump-

tion that the Lie group of transformations (2.1) transforms any solution of equation
(1.2) to a solution of the same equation.

2.2 Determining equations for scalar second-order stochas-
tic differential equations

This section is devoted to constructing determining equations of an admitted Lie
group of transformations for a scalar second-order stochastic differential equation.
Let us consider the Itô equation

Ẍ(t) = f(t,X(t), Ẋ(t)) + g(t,X(t), Ẋ(t))
dB(t)

dt
, (2.6)

where f and g are given functions and B is a Brownian motion. Equation (2.6)
describes, for example, the motion of a particle in a noise-perturbed force field
and can be interpreted as the system of first-order stochastic ordinary differential
equations

X(t, ω) = X(0, ω) +
∫ t

0

Y (s, ω)ds,

Y (t, ω) = Y (0, ω) +
∫ t

0

f(s,X(s, ω), Y (s, ω))ds +
∫ t

0

g(s,X(s, ω), Y (s, ω))dB(s).

(2.7)
According to definition 1 in the previous section, a Lie group of transformations

(2.1) is called admitted by the stochastic differential equation (2.7), if for any
solution

(
X(t, ω), Y (t, ω)

)
of (2.7) the functions ξ(t, x) and τ(t, x) satisfy the

system of determining equations

ξ1,t

(
t,X(t, ω), Y (t, ω)

)
+ yξ1,x

(
t,X(t, ω), Y (t, ω)

)
+ fξ1,y

(
t,X(t, ω), Y (t, ω)

)

+ 1
2g2ξ1,yy

(
t,X(t, ω), Y (t, ω)

)
− ξ2

(
t,X(t, ω), Y (t, ω)

)

−2yτ
(
t, X(t, ω), Y (t, ω)

)
= 0,

ξ2,t

(
t,X(t, ω), Y (t, ω)

)
+ yξ2,x

(
t,X(t, ω), Y (t, ω)

)
+ fξ2,y

(
t,X(t, ω), Y (t, ω)

)

+ 1
2g2ξ2,yy

(
t,X(t, ω), Y (t, ω)

)
− 2ft

(
t,X(t, ω), Y (t, ω)

)∫ t

0

τ
(
s, X(s, ω), Y (s, ω)

)
ds

−fjξj

(
t,X(t, ω), Y (t, ω)

)
− 2fτ

(
t,X(t, ω), Y (t, ω)

)
= 0,

ξ1,y

(
t,X(t, ω), Y (t, ω)

)
= 0,

gξ2,y

(
t,X(t, ω), Y (t, ω)

)
− 2gt

(
t, X(t, ω), Y (t, ω)

)∫ t

0

τ
(
s,X(s, ω), Y (s, ω)

)
ds

−gτ
(
t,X(t, ω), Y (t, ω)

)
− gjξj

(
t, X(t, ω), Y (t, ω)

)
= 0.

(2.8)
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3 Main Results

In the following, we present and solve the determining equations for a variety
of scalar second-order stochastic differential equations.

3.1 Narrow-sense linear equation

Let µ, ν and σ be constants, and σ 6= 0. Consider the equation [15],

Ẍ = −ν2X − µẊ + σ
dB

dt
,

called the narrow-sense linear equation. The functions f and g in equations (2.8)
are f = −ν2x−µy and g = σ. The system of determining equations thus becomes

ξ1,t + yξ1,x − (ν2x + µy)ξ1,y + 1
2σ2ξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x − (ν2x + µy)ξ2,y + 1
2σ2ξ2,yy + 2(ν2x + µy)τ + ν2ξ1 + µξ2 = 0,

ξ1,y = 0, ξ2,y − τ = 0.
(3.1)

If µ2 − 4ν2 ≥ 0, then the general solution of this system is

ξ1 = C1e
γ1t + C2e

γ2t, ξ2 = C1γ1e
γ1t + C2γ2e

γ2t, τ = 0, (3.2)

where γ1 = − 1
2 (µ +

√
µ2 − 4ν2) and γ2 = − 1

2 (µ−
√

µ2 − 4ν2). For this solution,
h = 0, and a basis of admitted generators corresponding to (3.2) is

eγ1t∂x, eγ2t∂x.

If µ2 − 4ν2 < 0, then the general solution of determining equations (3.1) is

ξ1 = C1e
−µ

2 t cos(γ3t) + C2e
−µ

2 t sin(γ3t),
ξ2 = C1γ1e

−µ
2 t cos(γ3t) + C2γ2e

−µ
2 t sin(γ3t), τ = 0,

(3.3)

where γ1 = − 1
2 (µ +

√
µ2 − 4ν2), γ2 = − 1

2 (µ−
√

µ2 − 4ν2) and γ3 =
√

4ν2 − µ2.
Here again, h = 0. Thus, a basis of admitted generators corresponding to (3.3) is

e−
µ
2 t cos(γ3t)∂x, e−

µ
2 t sin(γ3t)∂x.

3.2 Ornstein-Uhlenbeck process

A better model of Brownian movement is provided by the Ornstein-Uhlenbeck
equation [16]

Ẍ = −bẊ + σ
dB

dt
, (3.4)

where b > 0 is the friction coefficient, and σ 6= 0 is the diffusion coefficient. The
functions f and g in equations (2.8) are f = −by and g = σ. Thus, the system of
determining equations becomes

ξ1,t + yξ1,x − byξ1,y + 1
2σ2ξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x − byξ2,y + 1
2σ2ξ2,yy + 2yτ + bξ2 = 0,

ξ1,y = 0, ξ2,y − τ = 0.
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The general solution of this system is

ξ1 = C1 + C2e
−bt, ξ2 = −C2be

−bt, τ = 0. (3.5)

A basis of admitted generators corresponding to (3.5) is

∂x, e−bt∂x.

3.3 Mass-Spring linear oscillator

The response of a mass-spring linear oscillator to white-noise is described by the
equation [11]

Ẍ = −b2X + σ
dB

dt
,

where b2 = k
m , m is the mass, k is the characteristic coefficient of the spring and

σ 6= 0 is constant. The functions appearing in equations (2.8) are f = −b2x and
g = σ, and the system of determining equations becomes

ξ1,t + yξ1,x − b2xξ1,y + 1
2σ2ξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x − b2xξ2,y + 1
2σ2ξ2,yy + 2b2xτ + b2ξ1 = 0,

ξ1,y = 0, ξ2,y − τ = 0.
(3.6)

If b = 0, the general solution of determining equations (3.6) is

ξ1 = 3C1x + C2t + C3, ξ2 = C1y + C2, τ = C1. (3.7)

For this solution h(t, x) = 2
∫ t

0

τ(s, x)ds = 2C1t. Thus, a basis of admitted

generators corresponding to (3.7) is

3x∂x + 2t∂t, t∂x, ∂x.

If b 6= 0, the general solution of determining equations (3.6) is

ξ1 = C1 sin(bt) + C2 cos(bt), ξ2 = C1b cos(bt)− C2b sin(bt), τ = 0. (3.8)

A basis of admitted generators corresponding to (3.8) is

sin(bt)∂x, cos(bt)∂x.

3.4 Nonlinear equation

Consider the equation [11]

Ẍ = a exp(−Ẋ) + b exp(−Ẋ

2
)
dB

dt
, (3.9)
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where a, b 6= 0 are constant.The functions appearing in equations (2.8) are f =
ae−y and g = be−

y
2 . The system of determining equations becomes

ξ1,t + yξ1,x + ae−yξ1,y + 1
2b2e−yξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x + ae−yξ2,y + 1
2b2e−yξ2,yy − 2ae−yτ − ae−yξ1 = 0,

ξ1,y = 0, ξ2,y − τ + 1
2ξ2 = 0.

Its general solution is

ξ1 = C1 + C2(x + t), ξ2 = C2, τ =
1
2
C2. (3.10)

For this solution, h(t, x) = 2
∫ t

0

τ(s, x)ds = C1t. A basis of admitted generators

corresponding to (3.10) is

∂x, (x + t)∂x + t∂t.

In the above examples, all transformations were fiber-preserving. In this case,
the proof that a Lie group of transformations transforms every solution of the
equation into a solution of the same equation is easy.

3.5 Non fiber-preserving transformations

Consider the equation [11]

Ẍ = σX
dB

dt
, (3.11)

where σ 6= 0 is constant. Here the functions appearing in equations (2.8) are f = 0
and g = σx. The system of determining equations becomes

ξ1,t + yξ1,x + 1
2σ2x2ξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x + 1
2σ2x2ξ2,yy = 0,

ξ1,y = 0, xξ2,y − xτ − ξ1 = 0.

and its general soilution is

ξ1 = C1x + C2x
−2, ξ2 = C1y, τ = −C2x

−3. (3.12)

For this solution, h(t, x) = 2
∫ t

0

τ(s, x)ds = −2C2x
−3t, and a basis of generators

corresponding to (3.12) is

x∂x, x−2∂x − 2x−3t∂t.

For finding the Lie group of transformations corresponding to the second gen-
erator, one has to solve the Lie equations

∂H

∂a
= −2ϕ−3

1 H,
∂ϕ1

∂a
= ϕ−2

1 ,
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with the initial conditions for a = 0:

H = t, ϕ1 = x.

The solution of this Cauchy problem gives the transformations of the independent
variable t and the dependent variable x,

t̄ = H = t(1 + 3ax−3)−
2
3 , x̄ = ϕ1 = (x3 + 3a)

1
3 . (3.13)

Hence η2 = (1 + 3ax−3)−
2
3 .

Let us show that the Lie group of transformations (3.13) transforms every
solution of equation (3.11) into a solution of the same equation. Assume that
X(t) is a solution of equation (3.11). In [1], it was proven that the Brownian
motion B(t) is transformed to the Brownian motion

B̄(t) =
∫ α(t)

0

(1 + 3aX−3(s))−
1
3 dB(s), (3.14)

where

β(t) =
∫ t

0

(1 + 3aX−3(s))−
2
3 ds, α(t) = inf

s≥0
{s : β(s) > t}, t ≥ 0.

Applying Itô’s formula to the functions ϕ1(t, x, y, a) = (x3+3a)
1
3 and ϕ2(t, x, y, a) =

y, one has

ϕ1(t, X(t, ω), Y (t, ω), a) = ϕ1(0, X(0, ω), Y (0, ω), a)

+
∫ t

0

Y (s)X2(s)(X3(s) + 3a)−
2
3 ds

ϕ2(t, X(t, ω), Y (t, ω), a) = ϕ2(0, X(0, ω), Y (0, ω), a)

+
∫ t

0

σX(s)dB(s).

(3.15)

Changing the variable s = α(s̄) in the Riemann integral in (3.15), it becomes

∫ t

0

Y (s)X2(s)(X3(s) + 3a)−
2
3 ds =

∫ β(t)

0

Y (α(s̄))ds̄.

Because of the transformation of the Brownian motions (3.14), the Itô integral in
(3.15) becomes

∫ t

0

σX(s)dB(s) =
∫ β(t)

0

σX(α(s̄))(1 + 3aX−3(α(s̄)))
1
3 dB̄(s̄).

Since X(α(t̄))
(
1 + 3aX−3(α(t̄))

) 1
3 = X̄(t̄, ω) and Y (α(t̄)) = Ȳ (t̄, ω), one obtains

ϕ1(t,X(t, ω), Y (t, ω), a) = ϕ1(0, X(0, ω), Y (0, ω), a) +
∫ β(t)

0

Ȳ (s, ω)ds,
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ϕ2(t,X(t, ω), Y (t, ω), a) = ϕ2(0, X(0, ω), Y (0, ω), a) +
∫ β(t)

0

σX̄(s, ω)dB̄(s).

Because ϕ1(t,X(t, ω), Y (t, ω), a) = X̄(β(t), ω), and ϕ2(t,X(t, ω), Y (t, ω), a) =
Ȳ (β(t), ω), one has

X̄(β(t), ω) = X̄(0, ω) +
∫ β(t)

0

Ȳ (s, ω)ds,

Ȳ (β(t), ω) = Ȳ (0, ω) +
∫ β(t)

0

σX̄(s, ω)dB̄(s),

which is equivalent to
¨̄X = σX̄

dB̄

dt
.

This confirms that the Lie group of transformations (3.13) indeed transforms every
solution of equation (3.11) into a solution of the same equation.

4 Conclusion

The new definition of an admitted Lie group of transformations for stochastic dif-
ferential equations given in [1] was applied to scalar second-order stochastic differ-
ential equations. This approach includes the dependent and independent variables
in the transformation. The transformation of Brownian motion is defined by the
transformation of dependent and independent variables. The developed theory was
applied to five scalar second-order stochastic differential equations: an equation
representing an Ornstein-Uhlenbeck process, an equation describing a mass-spring
linear oscillator to a white-noise random, the narrow-sense linear equation, a linear
Itô equation and a nonlinear Itô equation.
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