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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H1 and Q be a
nonempty closed convex subset of a real Hilbert space H2, and A : H1 → H2 is a linear
and bounded operator. The split feasibility problem (for short, SFP) is to find x∗ ∈ H1

such that

x∗ ∈ C and Ax∗ ∈ Q. (1.1)

Throughout this paper, we denote the set of solutions of SFP (1.1) by Γ, i.e., Γ = {x ∈
H1 : x∗ ∈ C and Ax∗ ∈ Q} and assume that Γ is nonempty. For related works, please
refer to [1–4].

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be
a nonempty closed and convex subset of H. Let S : C → C be a nonlinear mapping. The
fixed point problem is to find x ∈ C such that Sx = x. We denote the set of solutions of
fixed point problem by Fix(S), i.e., Fix(S) = {x ∈ C : Sx = x}. The mappings S is said
to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖,∀x, y ∈ C. (1.2)
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Following, let F1, F2 be two bifunction from C × C into R, where R is the set of real
numbers. Then we consider the mixed equilibrium problem (for short, MEP): finding
x ∈ C such that

F1(x, y) + F2(x, y) + 〈Ax, x− y〉 ≥ 0,∀y ∈ C, (1.3)

where A is nonlinear mapping from C into H. The set of solutions of the MEP (1.3)
is denoted by MEP(F1, F2, A). If A = 0, we denote MEP(F1, F2, 0) by MEP(F1, F2). If
A = 0 and F2 = 0, then the MEP (1.3) becomes the following equilibrium problem (for
short, EP): finding x ∈ C such that

F1(x, y) ≥ 0,∀y ∈ C. (1.4)

The set of solutions of the EP (1.4) is denoted by EP(F1). Let F1(x, y) = 〈Ax, y − x〉
for all x, y ∈ C. Then z ∈ EP(F1) if and only if 〈Az, y − z〉 ≥ 0 for all y ∈ C. Numerous
problem in physics, optimization and economics reduce to find a solution of (1.4).

Recently, many authors considered the iterative methods for finding a common element
of the set of solutions to the problem (1.4) and of the set of fixed points of nonexpansive
mappings; see, for example, [5, 6] and the references therein.

Next, let A : C → H be a nonlinear mapping. We recall the following definitions:
(1) A is said to be monotone, if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.
(2) A is said to be strongly monotone, if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.
In such a case, A is said to be α-strongly monotone.

(3) A is said to be inverse-strongly monotone, if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
In such a case, A is said to be α-inverse-strongly monotone.

Recall that the classical variational inequality is to find u ∈ C such that

〈Au, v − u〉 ≥ 0,∀v ∈ C. (1.5)

We denote the set of solutions of the problem (1.5) by VI(C,A). One can easily see that
the variational inequality problem is equivalent to a fixed point problem. u ∈ C is a
solution to the problem (1.5) if and only if u is a fixed point of the mapping PC(I − λ)T,
where λ > 0 is a constant. The variational inequalities have been widely studied in
the literature; see, for example, the work of Kumam and Jaiboon [7]and the references
therein.

Recently, Ceng, Wang and Yao [8] considered an iterative method for the system of
variational inequalities(1.5). They got a strongly convergence theorem for the problem
(1.5) and a fixed point problem for a single nonexpansive mapping; see [8]for more details.

On the other hand, Moudafi [9] introduced the viscosity approximation method for
nonexpansive mappings (see [10] for further developments in both Hilbert and Banach
spaces).

A mapping f : C → C is called α-contractive if there exists a constant α ∈ (0, 1) such
that

‖f(x)− f(y)‖ ≤ α‖x− y‖,∀x, y ∈ C. (1.6)
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Let f be a contraction on C. Starting with an arbitrary initial x1 ∈ C, define a
sequence {xn} recursively by

xn+1 = (1− σn)Txn + σnf(xn), n ≥ 0, (1.7)

where {σn} is a sequence in (0, 1). It is proved [9, 10] that under certain appropriate
conditions imposed on {σn}, the sequence {xn} generated by (1.7) strongly converges to
the unique solution q in C of the variational inequality

〈(I − f)q, p− q〉 ≥ 0, p ∈ C.

Let A be a strongly positive linear bounded operator on a Hilbert spaceH with constant
γ̄; that is there exists γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H. (1.8)

Recently, Marino and Xu [11] introduced the following general iterative method:

xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0, (1.9)

where A is a strongly positive bounded linear operator on H. They proved that if the
sequence {αn} of parameters satisfies appropriate conditions, then the sequence {xn}
generated by (1.9) converges strongly to the unique solution of the variational inequality

〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ C, (1.10)

which is the optimality condition for the minimization problem

min
x∈C

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf(i.e., h′(x) = γf(x) for x ∈ H).
In 2007, Takahashi and Takahashi [12] introduced an iterative scheme by the viscosity

approximation method for finding a common element of the set of solution (1.4) and the
set of fixed points of a nonexpansive mapping in Hilbert spaces. Let S : C → H be a
nonexpansive mapping. Starting with arbitrary initial x1 ∈ H, define sequence {xn} and
{un} recursively by{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnγf(xn) + (1− αn)Sun, ∀n ∈ N.
(1.11)

They proved that under certain appropriate conditions imposed on {αn} and {rn},
the sequences {xn} and {un} converge strongly to z ∈ Fix(S)∩ EP(F ) where z =
PFix(S)∩EP(F )f(z).

Next, Plubtieng and Punpaeng, [13] introduced an iterative scheme by the general it-
erative method for finding a common element of the set of solutions (1.4) and the set of
fixed points of nonexpansive mappings in Hilbert spaces.

Let S : H → H be a nonexpansive mapping. Starting with an arbitrary x1 ∈ H, define
sequence {xn} and {un} by{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnγf(xn) + (I − αnA)Sun, ∀n ∈ N.
(1.12)

They proved that if the sequence {αn} and {rn} of parameters satisfy appropriate
conditions, then the sequences {xn} generated by (1.12) converges strongly to the unique
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solution of the variational inequality

〈(A− γf)z, x− z〉 ≥ 0, ∀x ∈ Fix(S) ∩ EP(F ), (1.13)

which is the optimality condition for the minimization problem

min
x∈Fix(S)∩EP(F )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf(i.e., h′(x) = γf(x) for x ∈ H).
Furthermore, Bin-Chao Deang, Tong Chen and Qiao-Li Dong [14] introduced two

viscosity iteration algorithms (one implicit and one explicit) for finding a common element
of the solution set MEP(F1, F2) of a mixed equilibrium problem and the set Γ of a split
feasibility problem in a real Hilbert space. They derive the strong convergence of a
viscosity iteration to an element of MEP(F1, F2) ∩ Γ under mild assumpions.

Motivated by this result, we introduce the general iterative method for finding a com-
mon element of the solution set of a split feasibility problem and the set of a mixed
equilibrium problem in a real Hilbert space.

2. Preliminaries

Let H be a real Hilbert space with the norm ‖ · ‖ and the inner product 〈·, ·〉 and let
C be a closed convex subset of H. We call f : C → H is an α-contraction if there exists
a constant α ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖,∀x, y ∈ C.

Let A be a strongly positive linear bounded operator on a Hilbert spaceH with constant
γ̄; that is there exists γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

Next,we denote weak convergence and strong convergence by notations ⇀ and→, respec-
tively. A space X is said to satisfy Opials condition [15] if for each sequence {xn} in X
which converges weakly to a point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such
that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.
PC is called the (nearest point or metric) projection of H onto C. In addition, PCx is
characterized by the following properties: PCx ∈ C and

〈x− PCx, y − PCx〉 ≥ 0, (2.1)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C. (2.2)

Recall that a mapping T : H → H is said to be firmly nonexpansive mapping if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀x, y ∈ H.

It is well known that PC is a firmly nonexpansive mapping of H onto C and satisfies

‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉, ∀x, y ∈ H. (2.3)
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If A an α−inverse-strongly monotone mapping of C into H, then it is obvious that A
is 1

α − Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

‖(I − λA)x− (I − λA)y‖2 = ‖x− y − λ(Ax−Ay)‖2

= ‖x− y‖2 − 2λ〈Ax−Ay, x− y〉+ λ2‖Ax−Ay‖2

≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2 (2.4)

Thus, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1. Let H be a real Hilbert space. Then for all x, y ∈ H,

(1) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;
(2) ‖x+ y‖2 ≥ ‖x‖2 + 2〈y, x〉.

Lemma 2.2. ([16]) Let H be a real Hilbert space. Then, for all x, y ∈ H and β ∈ [0, 1],
we have

‖βx+ (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2.

Lemma 2.3. ([17]) Assume that F : C × C → R, let us assume that F satisfies the
following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt→ 0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 2.4. ([17]) Assume that F : C × C → R satisfies (A1)-(A4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

for all z ∈ H. Then, the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(iii) Fix(Tr) = EP(F );
(iv) EP(F ) is closed and convex.

Lemma 2.5. ([11]) Let H be a Hilbert space, C be a nonempty closed convex subset of
H, and f : H → H be a contraction with coefficient 0 < α < 1, and A be a strongly
positive linear bounded operator with coefficient γ̄ > 0. Then, for 0 < γ < γ̄

α ,

〈x− y, (A− γf)x− (A− γf)y〉 ≥ (γ̄ − γα)‖x− y‖2, x, y ∈ H.
That is, A− γf is strongly monotone with coefficient γ̄ − γα.

Lemma 2.6. ([11]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ̄.

Lemma 2.7. ([18]) Let C be a nonempty closed convex subset of a Hilbert space H. Let
F1 : C × C → R be a bifunction such that

(f1) F1(x, x) = 0 for all x ∈ C;
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(f2) F1(x, ·) is monotone and super hemicontinuous;
(f3) F1(·, x) is lower semicontinuous and convex.

Let F2 : C × C → R be a bifunction such that
(h1) F2(x, x) = 0 for all x ∈ C;
(h2) F2(x, ·) is monotone and upper semicontinuous;
(h3) F2(·, x) is convex.

Moreover, let us suppose that
(H) for fixed r > 0 and x ∈ C, there exists a bounded set k ⊂ C and a ∈ K such that for
all z ∈ C \ K, −F1(a, z) + F2(z, a) + 1

rn
〈a − zn, z − x〉 < 0, for r > 0 and x ∈ H. Let

Tr : H → C be a mapping defined by

Tr(x) = {z ∈ C : F1(z, y) + F2(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, (2.5)

called a resolvent of F1 and F2. for all z ∈ H.
Then

(i) Tr 6= ∅;
(ii) Tr is asingle-valued;
(iii) Tr is firmly nonexpansive;
(iv) MEP(F1, F2) = Fix(Tr) and it is closed and convex.

Definition 2.8. Let C be a nonempty closed convex subset of a Hilbert space H and
f : H → H be a function.

(i) Minimization problem:

min
x∈C

f(x) =
1

2
‖Ax− PQAx‖2,

(ii) Tikhonov’s regularization problem:

min
x∈C

fα(x) =
1

2
‖Ax− PQAx‖2 +

1

2
α‖x‖2 (2.6)

where α > 0 is the regularization parameter.

Proposition 2.9. ([19]) If the SFP is consistent, then the strong limα→0 xα exists and
is the minimum-norm solution of the SFP.

Proposition 2.10. ([19]) A necessary and sufficient condition for xα to converge in norm
as α→ 0 is that the minimization

lim
u∈A(C)

dist(u,Q) = min
u∈A(C)

‖u− PQu‖ (2.7)

is attained at a point in the set A(C).

Remark 2.11. Assume that the SFP is consistent, and let xmin be its minimum-norm
solution, namely xmin ∈ Γ has the property

‖xmin‖ = min {‖x∗‖ : x∗ ∈ Γ} .

From (2.6), observing that the gradient

Ofα(x) = Of(x) + αI = A∗(I − PQ)A+ αI
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is an (α + ‖A‖2)-Lipschitzian and α-strongly monotone mapping, the mapping PC(I −
λOfα) is a contraction with the coefficient√

1− λ(2α− λ(‖A‖2 + α)2) ≤ 1− 1

2
αλ,

where

0 < λ <
α

(‖A‖2 + α)2
. (2.8)

Remark 2.12. ([14]) The mapping T = PC(I − λOfα) is nonexpansive.

Lemma 2.13. ([19]) Assume that the SFP(1.1) is consistent. Define a sequence {xn} by
the iterative algorithm

xn+1 = PC(I − γnOfαn
)xn = PC((1− γnαn)xn − γnA∗(I − PQ)Axn), (2.9)

where {αn} and {γn} satisfy the following conditions:

(i) 0 < γn ≤ αn

‖A‖2+αn
for all n;

(ii) limn→∞ αn = 0 and limn→∞ γn = 0;
(iii)

∑∞
n=1 αnγn =∞;

(iv) limn→∞ = |γn+1−γn|−γn|αn+1−αn|
(αn+1γn+1)2 = 0.

Then {xn} converges in norm to the minimum-norm solution of the SFP(1.1).

Lemma 2.14. ([20]) Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose
that xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ −
‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.15. ([15]) Let H be a Hilbert space, C a closed convex subset of H, and
S : C → C a nonexpansive mapping with Fix(S) 6= ∅. If {xn} is a sequence in C weakly
converging to x ∈ C and if {(I − S)xn} converges strongly to y, then (I − S)x = y;
inparticular, if y = 0, then x ∈Fix(S).

Lemma 2.16. ([10]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− σn)an + σnbn,

where {σn} is a sequence in (0, 1) and {bn} is a sequence in R such that

(1)
∑∞
n=1 σn =∞;

(2) lim supn→∞ σnbn ≤ 0 or
∑∞
n=1 |σnbn| <∞.

Then limn→∞ an = 0.

3. Main Results

In this section, we introduce two algorithms for solving the mixed equilibrium problem
(1.3). Namely, we want to find a solution x∗ of a mixed equilibrium problem (1.3) and
x∗ also solves the following variational inequality:

x∗ ∈ Γ〈(γg − µB)x∗, x− x∗〉 ≤ 0, x ∈ Γ, (3.1)

where B is a k-Lipschitz and η-strongly monotone operator on H with k > 0, η > 0 and
0 < µ < 2η/k2, and g : C → H is a β-contraction mapping, β ∈ (0, 1). Let F1, F2 :
C × C → R be two bifunctions. In order to find a particular solution of the variational
inequality (3.1), we construct the following implicit algorithm.
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Algorithm 3.1. For an arbitrary initial point x0, we defind a sequence {xn}n≥0 itera-
tively

xn = (I − tµB)TrPC(I − λnOfαn
)xn, ∀t ∈ (0, 1), (3.2)

for all n ≥ 0, where {αn} is a real in [0, 1], Tr is defined by Lemma 2.7 and Ofαn
is

introduced in Remark 2.11.

We show that the sequence xn defined by (3.2) converges to a particular solution of
the variational inequality (3.1). As a matter of fact, in this paper, we study a general
algorithm for solving the variational inequality (3.1).

Let g : C → H be a β-contraction mapping. For each t ∈ (0, 1), we consider the
following mapping St given by:

Stx = [tγg + (I − tµB)TrPC(I − λnOfαn
)]x, x ∈ C, (3.3)

Lemma 3.2. ([14]) St is a contraction. Indeed,

‖Stx− Sty‖ ≤ [1− (τ − γβ)t]‖x− y‖, ∀x, y ∈ H,

where t ∈ (0, 1
τ−γβ ), and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in

Lemma 2.13.

From Lemma 3.2 and using the Banach contraction principle, there exists a unique
fixed point xt of St in C, i.e., we obtain the following algorithm.

Algorithm 3.3. For an arbitrary initial point x0, we defind a sequence {xn}n≥0 itera-
tively

xn = [εnγg + (I − εnµB)TrPC(I − λnOfαn
)]xn, x ∈ C, (3.4)

for all n ≥ 0, where {αn} and {εn} are two real sequences in [0, 1], Tr is defined by Lemma
2.7 and Ofαn

is introduced in Remark 2.11.

At this point, we would like to point out that Algorithm 3.3 includes Algorithm 3.1 as
a special case due to the fact that the contraction g is a possible nonself-mapping.

Theorem 3.4. Let C be a closed convex subset of a real Hilbert space H. Let B be a k-
Lipschitz and η-strongly monotone operator on H with k > 0, η > 0 and 0 < µ < 2η/k2,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma 2.13. Let
F1, F2 : C×C → R be two bifunctions which satisfy the conditions (f1)− (f4), (h1)− (h3)
and (H) in Lemma 2.7. Let g : C → H be a β-contraction. Let S be a nonexpansive
mapping of C into itself. Assume that Ω =Fix(S) ∩ Γ∩ MEP(F1, F2) 6= ∅. For given
x0 ∈ C arbitrarily, let the sequences {xn} generated by

xn+1 = δnxn + (1− δn)S[εnγg + (I − εnµB)TrPC(I − λnOfαn
)]xn, n ≥ 0, (3.5)

where {εn} and {δn} are two sequence in [0, 1), satisfy the following conditions:

(C1) limn→∞ εn = 0 and
∑∞
n=1 εn =∞;

(C2) limn→∞ δn = 0 and 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1;
(C3) limn→∞ λn = 0.

Then the sequence {xn} converges strongly to x∗ which is the unique solution of the
variational inequality (3.1). In particular, if g = 0, then the sequence {xn} generated by

xn+1 = δnxn + (1− δn)S[(I − εnµB)TrPC(I − λnOfαn
)]xn, n ≥ 0,
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converges strongly to a solution of the following variational inequality:

〈µBx∗, x− x∗〉 ≥ 0, ∀x ∈ Ω.

Proof. We devide the proof into five steps as follows.
Step 1. We first show that the sequences {xn} is bounded. Indeed, pick p ∈ Ω.

Let p = PC(I − λnOfαn
)p. Set un = PC(I − λnOfαn

)xn for all n ≥ 0. Since PC(I −
λnOfαn) is nonexpansive mapping, then from (3.5), we have

‖un − p‖ = ‖PC(I − λnOfαn)xn − PC(I − λnOfαn)p‖ ≤ ‖xn − p‖,
and

‖xn+1 − p‖ = ‖δnxn + (1− δn)S[εnγg(xn) + (I − εnµB)Trun]− p‖
= ‖δn(xn − p) + (1− δn)

(
S[εnγg(xn) + (I − εnµB)Trun]− Sp

)
‖

≤ ‖δn(xn − p)‖+ ‖(1− δn)
(
S[εnγg(xn) + (I − εnµB)Trun]− Sp

)
‖

≤ δn‖xn − p‖+ (1− δn)‖[εnγg(xn) + (I − εnµB)Trun]− p‖
= δn‖xn − p‖+ (1− δn)‖(I − εnµB)(Trun − p) + εn(γg(xn)− µBp)‖
≤ δn‖xn − p‖+ (1− δn)

(
(1− εnτ)‖un − p‖+ εnγβ‖xn − p‖

+εn‖γg(p)− µBp‖
)

≤ δn‖xn − p‖+ (1− δn)
(
(1− εnτ)‖xn − p‖+ εnγβ‖xn − p‖

+εn‖γg(p)− µBp‖
)

=
(
1− (τ − γβ)(1− δn)εn

)
‖xn − p‖

+εn(1− δn)(τ − γβ)
‖γg(p)− µBp‖

τ − γβ

≤ max

{
‖xn − p‖,

‖γg(p)− µBp‖
τ − γβ

}
. (3.6)

By induction, we have

‖xn − p‖ ≤ max

{
‖x0 − p‖,

‖γg(p)− µBp‖
τ − γβ

}
, ∀n ≥ 0. (3.7)

Hence {xn} is bounded and consequently, we deduce that {un}, {g(xn)} and {Of(xn)}
are all bounded.

Now, we can choose a constant M > 0 such that

sup
n

{
‖xn − un‖, ‖µBTrun‖+ ‖γg(xn)‖, ‖µBTrun − γg(xn)‖2

}
≤M.

Step 2. We show that ‖xn − un‖ → 0 as n→∞.
Let dn = εnγg(xn) + (I − εnµB)Trun for all n > 0, then from (3.5) we get xn+1 =
δnxn + (1− δn)Sdn for all n > 0 and

‖dn+1 − dn‖ = ‖[εn+1γg(xn+1)+(I − εn+1µB)Trun+1]−[εnγg(xn)+(I − εnµB)Trun]‖
≤ ‖un+1 − un‖+ εn+1

(
‖µB(Trun+1‖+ ‖γg(xn+1)‖

)
+ εn

(
‖µB)(Trun‖+ ‖γg(xn)‖

)
≤ ‖PC(I − λnOfαn)xn+1 − PC(I − λnOfαn)xn‖+M(εn+1 + εn)

≤ ‖xn+1 − xn‖+M(εn+1 + εn).
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This together with (i) implies that

lim sup
n→∞

(
‖dn+1 − dn‖ − ‖xn+1 − xn‖

)
≤ 0.

Hence, by Lemma 2.14 we get limn→∞ ‖dn − xn‖ = 0. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− δn)‖dn − xn‖ = 0. (3.8)

By the convexity of the norm ‖ · ‖, we obtain

‖xn+1 − p‖2 = ‖δnxn + (1− δn)Sdn − p‖2

≤ δn‖xn − p‖2 + (1− δn)‖Sdn − p‖2

≤ δn‖xn − p‖2 + (1− δn)‖Trun − p− εn(µBTrun − γg(xn))‖2

= δn‖xn − p‖2 + (1− δn)
[
‖un − p‖2

−2εn〈µBTrun − γg(xn), Trun − p〉+ ε2
n‖µBTrun − γg(xn)‖2

]
≤ δn‖xn − p‖2 + (1− δn)‖un − p‖2 + εnM. (3.9)

Let yn = Trun and by un = PC(I − λnOfαn
)xn, we obtain

‖yn − p‖2 = ‖Trun − Trp‖2

≤ ‖un − p‖2

= ‖PC(I − λnOfαn
)xn − PC(I − λnOfαn

)p‖2

≤ 〈(I − λnOfαn
)xn − (I − λnOfαn

)p, un − p〉

=
1

2

(
‖(I − λnOfαn

)xn − (I − λnOfαn
)p‖2 + ‖un − p‖2

−‖(xn − p)− λn(Ofαn(xn)− Ofαn(p))− (un − p)‖2
)

≤ 1

2

(
‖xn − p‖2 + ‖un − p‖2 − ‖(xn − un)− λn(Ofαn

(xn)− Ofαn
(p))‖2

)
≤ 1

2

(
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2

+2λn〈xn − un,Ofαn
(xn)− Ofαn

(p)〉
−λ2

n‖Ofαn
(xn)− Ofαn

(p)‖2
)
. (3.10)

Therefore, we deduce

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 + 2λn‖xn − un‖‖Ofαn(xn)− Ofαn(p)‖
≤ ‖xn − p‖2 − ‖xn − un‖2 + λnM‖Ofαn

(xn)− Ofαn
(p)‖. (3.11)

By (3.9) and (3.11), we obtain

‖xn+1 − p‖2 ≤ δn‖xn − p‖2 + (1− δn)‖un − p‖2 + εnM

≤ δn‖xn − p‖2

+ (1− δn)
[
‖xn − p‖2 − ‖xn − un‖2 + λnM‖Ofαn

(xn)− Ofαn
(p)‖

]
+ εnM

= ‖xn − p‖2 − (1− δn)‖xn − un‖2 + (λn‖Ofαn
(xn)− Ofαn

(p)‖+ εn)M.
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It follows that

(1− δn)‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (λn‖Ofαn
(xn)− Ofαn

(p)‖+ εn)M

≤ −‖xn+1 − xn‖2 + (λn‖Ofαn
(xn)− Ofαn

(p)‖+ εn)M.

Wherewith lim infn→∞(1− δn) > 0, limn→∞ εn = 0, limn→∞ ‖xn+1 − xn‖ = 0,
{Of(xn)} is bounded and limn→∞ λn = 0, we derive that

‖xn − un‖ → 0 as n→∞. (3.12)

Step 3. We show that ‖yn− un‖ → 0 and ‖Syn− yn‖ → 0 as n→∞, where yn = Trun.
From (3.5), we have

‖xn − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − yn‖
≤ ‖xn+1 − xn‖+ ‖δnxn + (1− δn)S[εnγg(xn) + (I − εnµB)yn]− yn‖
≤ ‖xn+1 − xn‖+ δn‖xn − yn‖+ (1− δn)‖εnγg(xn)− εnµBTrun‖
≤ ‖xn+1 − xn‖+ δn‖xn − yn‖

+ (1− δn)
(
εnγβ‖xn − un‖+ εn‖γg(un)− µBTrun‖

)
.

Therefore,

‖xn − yn‖ ≤
1

1− δn
‖xn+1 − xn‖+ εnγβ‖xn − un‖+ εn‖γg(un)− µBTrun‖.

From limn→∞ εn = 0 and {un} is bounded, we obtain

‖xn − yn‖ → 0 as n→∞. (3.13)

Since ‖yn − un‖ ≤ ‖yn − xn‖+ ‖xn − un‖, and by (3.12), (3.13) it follows that

‖yn − un‖ → 0 as n→∞.

Next, we will show that ‖Syn − yn‖ → 0 as n→∞. We have

‖yn − dn‖ = ‖yn − [εnγg(xn) + (I − εnµB)Trun]‖
= ‖ − εnγg(xn) + εnµBTrun‖
= ‖εnγg(un)− εnγg(xn) + εnµBTrun − εnγg(un)‖
≤ ‖εnγ(g(un)− g(xn))‖+ ‖εn(µBTrun − γg(un))‖
≤ εnγβ‖un − xn‖+ εn‖µBTrun − γg(un)‖.

From εn → 0 and {un} is bounded, we obtain

‖yn − dn‖ → 0 as n→∞. (3.14)

On the other hand, we have

‖Sdn − xn+1‖ = ‖Sdn − (δnxn + (1− δn)Sdn)‖ = δn‖Sdn − xn‖.

From δn → 0, we obtain

‖Sdn − xn+1‖ → 0 as n→∞. (3.15)

Since ‖Sdn−xn‖ ≤ ‖Sdn−xn+1‖+‖xn+1−xn‖, then by (3.15) and (3.8) it follows that

‖Sdn − xn‖ → 0 as n→∞. (3.16)
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Since ‖Syn−xn‖ ≤ ‖Syn−Sdn‖+ ‖Sdn−xn‖ ≤ ‖yn− dn‖+ ‖Sdn−xn‖, then by (3.14)
and (3.16) it follows that

‖Syn − xn‖ → 0 as n→∞. (3.17)

Since ‖Syn − yn‖ ≤ ‖Syn − xn‖+ ‖xn − yn‖, then by (3.17) and (3.13) it follows that

‖Syn − yn‖ → 0 as n→∞. (3.18)

Step 4. We show that

lim sup
n→∞

〈(γg − µB)x∗, yn − x∗〉 ≤ 0,where x∗ ∈ PΩg(x∗).

Since {yn} is bounded, then we can choose a subsequence {ynk
} of {yn}, such that

lim sup
n→∞

〈(γg − µB)x∗, yn − x∗〉 ≤ lim sup
k→∞

〈(γg − µB)x∗, ynk
− x∗〉 ≤ 0.

Without loss of generality, we can assume that ynk
⇀ x∗ ∈ C.

Next, we show that x∗ ∈ Ω = Fix(S) ∩ Γ∩MEP(F1, F2). Indeed, first we show that
x∗ ∈Fix(S). Since S is nonexpansive, then by (3.18) and Lemma 2.15, we obtain that
x∗ ∈Fix(S).

Second, we show that x∗ ∈MEP(F1, F2).
Since yn = Trun, then we obtain

F1(yn, y) + F2(yn, y) +
1

r
〈y − yn, yn − un〉 ≥ 0,∀y ∈ C.

From the monotoniccity of F1 and F2, we obtain

1

r
〈y − yn, yn − un〉 ≥ F1(yn, y) + F2(yn, y),∀y ∈ C.

Hence, 〈
y − ynk

,
ynk
− xnk

r

〉
≥ F1(ynk

, y) + F2(ynk
, y),∀y ∈ C. (3.19)

Since
ynk
−xnk

r → 0 and yn ⇀ x∗, from (A2), it follows F1(yn, y) + F2(yn, y) ≤ 0 for all
y ∈ H. Put zt = ty + (1 − t)x∗ for all t ∈ (0, 1] and y ∈ H, then we have F1(zt, x

∗) +
F2(zt, x

∗) ≤ 0. So, from (A1) and (A4), we have

0 = F1(yt, yt) + F2(yt, yt)

≤ tF1(yt, y) + (1− t)F1(yt, x
∗) + tF2(yt, y) + (1− t)F2(yt, x

∗)

≤ F1(yt, y) + F2(yt, y)

and hence 0 ≤ F1(yt, y) + F2(yt, y). From (A3), we have 0 ≤ F1(x∗, y) + F2(x∗, y) for all
y ∈ H. Thus, x∗ ∈MEP(F1, F2).

Third, we show that x∗ ∈ Γ. From Remark (2.12), we know that the mapping T =
PC(I − λnOf) is nonexpansive, then we have

‖xn − Txn‖ ≤ ‖xn − un‖+ ‖un − Txn‖
= ‖xn − un‖+ ‖PC(I − λnOfαn

)xn − PC(I − λnOf)xn‖
= ‖xn − un‖+ ‖(I − λnOfαn

)xn − (I − λnOf)xn‖
= ‖xn − un‖+ λnαn‖xn‖.
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So, from {xn} is bounded sequence, limn→∞ αn = 0, limn→∞ λn = 0,
∑∞
n=1 αnλn = ∞

and Step 2 it follows that

‖xn − Txn‖ → 0 as n→∞. (3.20)

Thus, taking into account xnk
→ x∗ and unk

→ x∗, and from Lemma 2.15, we get x∗ ∈ Γ.
Therefore x∗ ∈ Ω = Fix(S) ∩ Γ∩MEP(F1, F2). Since x∗ = PΩg(x∗). Indeed, we have

lim sup
n→∞

〈(γg − µB)x∗, yn − x∗〉 = lim
k→∞

〈(γg − µB)x∗, ynk
− x∗〉

= 〈(γg − µB)x∗, w − x∗〉 ≤ 0. (3.21)

Step 5. Finally, we show that {xn} strongly converge to x∗ ∈ Ω.
Let x∗ ∈ Ω and yn = Trun, where un = PC(I −λnOfαn

)xn for all n ≥ 0, then from (3.5),
we have

‖xn+1 − x∗‖2 = ‖δnxn + (1− δn)S[εnγg(xn) + (I − εnµB)yn]− x∗‖2

=
∥∥δn(xn − x∗) + (1− δn)

[
(S[yn + εnγg(xn)− εnµByn]

)
− x∗

]∥∥2

= δn‖xn − x∗‖2 + (1− δn)
∥∥[S[yn + εnγg(xn)− εnµByn]− x∗

]∥∥2

− δn(1− δn)
∥∥(xn − x∗)− S[yn + εnγg(xn)− εnµByn]− x∗

∥∥2

≤ δn‖xn − x∗‖2 + (1− δn)
∥∥[S[yn + εnγg(xn)− εnµByn]− x∗

]∥∥2

= δn‖xn − x∗‖2 + (1− δn)
∥∥[S[yn + εnγg(xn)− εnµByn]− Sx∗

]∥∥2

≤ δn‖xn − x∗‖2 + (1− δn)‖yn − x∗ + εnγg(xn)− εnµByn‖2

≤ δn‖xn − x∗‖2 + (1− δn)
(
‖yn − x∗‖2 + 2εnγ〈g(xn), yn − x∗〉

− 2εn〈µByn, yn − x∗〉+ ε2
n‖γg(xn)− µByn‖2

)
= δn‖xn − x∗‖2 + (1− δn)

(
‖Trun − x∗‖2 + 2εnγ〈g(xn)− g(x∗), yn − x∗〉

− 2εn〈µByn − µBx∗, yn − x∗〉+ 2εn〈γg(x∗)− µBx∗, yn − x∗〉
+ ε2

n‖γg(xn)− µByn‖2
)

≤ δn‖xn − x∗‖2 + (1− δn)
(
‖un − x∗‖2 + 2εnγ‖g(xn)− g(x∗)‖‖Trun − x∗‖

− 2εn‖µByn − µBx∗‖‖Trun − x∗‖+ 2εn〈γg(x∗)− µBx∗, yn − x∗〉
+ ε2

n‖γg(xn)− µBTrun‖2
)

≤ δn‖xn − x∗‖2 + (1− δn)
(
‖xn − x∗‖2 + 2εnγβ‖xn − x∗‖2

− 2εnτ‖xn − x∗‖2 + 2εn〈γg(x∗)− µBx∗, yn − x∗〉+ ε2
nM

)
= (1− 2εn(γβ − τ))‖xn − x∗‖2 + 2(1− δn)εn〈γg(x∗)− µBx∗, yn − x∗〉

+ ε2
n(1− δn)M.

It then follows that

‖xn+1 − x∗‖2 ≤ (1− σn)‖xn − x∗‖2 + σnbn, (3.22)

where σn = 2εn(γβ − τ) and bn = (1−δn)
(γβ−τ) 〈γg(x∗)− µBx∗, yn − x∗〉+ εn(1−δn)

2(γβ−τ) M.

Let an = ‖xn − x∗‖2 then, we can write the last inequality as

an+1 ≤ (1− σn)an + σnbn.
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Note that in virtue of condition (C1),
∑∞
n=1 σn =∞. Moreover

lim sup
n→∞

δn
γn

=
1

γ̄ − γα
lim sup
n→∞

2〈γf(x∗)−Ax∗, xn+1 − x∗〉.

By Step 4, we obtain

lim sup
n→∞

δn
γn
≤ 0. (3.23)

Now applying Lemma 2.16 to (3.22), we conclude that xn → x∗ as n→∞. The proof is
now complete.

Putting S = I which is the identity operator in Theorem 3.4, we obtain the following
results.

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H. Let B be a k-
Lipschitz and η-strongly monotone operator on H with k > 0, η > 0 and 0 < µ < 2η/k2,
and the sequence of {αn} and {γn} satisfy the conditions (i)-(iv) in Lemma 2.13. Let
F1, F2 : C×C → R be two bifunctions which satisfy the conditions (f1)− (f4), (h1)− (h3)
and (H) in Lemma 2.7. Let g : C → H be a β-contraction. Assume that Ω = Γ ∩
MEP (F1, F2) 6= ∅. For given ∀x0 ∈ C, let the sequences {xn} generated by

xn+1 = δnxn + (1− δn)[εnγg + (I − εnµB)TrPC(I − λnOfαn
)]xn, n ≥ 0, (3.24)

where {εn} and {δn} are two sequence in [0, 1), satisfy the following conditions:

(C1) limn→∞ εn = 0 and
∑∞
n=1 εn =∞;

(C2) limn→∞ δn = 0 and 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1;
(C3) limn→∞ λn = 0.

Then the sequence {xn} converges strongly to x∗ which is the unique solution of the
variational inequality (3.1). In particular, if g = 0, then the sequence {xn} generated by

xn+1 = δnxn + (1− δn)[(I − εnµB)TrPC(I − λnOfαn)]xn, n ≥ 0,

converges strongly to a solution of the following variational inequality:

〈µBx∗, x− x∗〉 ≥ 0, ∀x ∈ Ω.
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