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Abstract The purpose of this paper is to introduce a new iterative method that is a combination of

the modified Mann type forward-backward splitting with the viscosity approximation method and the

alternating resolvent method for finding the zero of sum of accretive operators in uniformly convex real

Banach spaces which are also uniformly smooth spaces. Our result is new and complements many recent
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solving the convex minimization problem for solving image restoration.
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1. Introduction

Image restoration is the solution of this ill-posed inverse problem which has been
extensively studied in various applications such as MRI, medical imaging, astronomical
imaging, remote sensing, video coding and image coding. Image restoration is a specific
branch in image processing, using the prior knowledge about convex optimization. As
mentioned earlier, the problem is about reconstructing an approximate original image
from the degraded one. We assume that the degradation process consists of only blurring
and the noise addition. These degradation ingredients are observed from statistical data,
and then is approximated by the operator R and noise v. Here, R : H → H is the blurring
operator, which is spatial invariant and linear.

Suppose that f, g : H × H → H are the spatial data for the original and the degraded
images, respectively. Also assume that R : H → H is linear and spatial invariant and
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v : H ×H → H is additive noise. Then, the following relation:

g(x, y) = R(f(x, y)) + v(x, y)

is the model of the degradation process. The image restoration problem is to approxima-
tively find the original image f that minimizes the least-square error of the degradation
related to the additive noise:

Min ∥v∥2 = ∥g −Rf∥2.

In various cases, R might be calculated as a convolution in an integral equation. But
we shall not specify such restrictions so that we can work in a more general form of
degradation process.

Let E be a real Banach space. Suppose A : E → 2E is a set-valued operator and
B : E → E is an operator. In this paper, we will consider the following inclusion problem
(assuming that the solution exists): find x ∈ E such that

0 ∈ Ax+Bx. (1.1)

This problem includes, as special cases, convex programming, variational inequalities,
split feasibility problem and minimization problem. To be more precise, some concrete
problems in machine learning, image processing and linear inverse problem can be mod-
elled mathematically as this form.

This paper is devoted to designing and discussing an efficient algorithmic framework for
minimizing the sum of two proper lower semi-continuous convex functions, i.e.

x∗ = argmin
x∈Rn

(f1 ◦B)(x) + f2(x), (1.2)

where Γ0(X) is the set of proper lower semi-continuous convex function from X to
(−∞,+∞], f1 ∈ Γ0(Rm), f2 ∈ Γ0(Rn) and f2 is differentiable on Rn with a 1

β -Lipschitz

continuous gradient for some β ∈ (0,+∞) and B : Rn → Rm a linear transform. Many
problems in image processing can be formulated in the form of (1.2). For instance, the
following variational sparse recovery models are often considered in image restoration and
medical image reconstruction:

x∗ = argmin
x∈Rn

µ∥Bx∥1 +
1

2
∥Ax− b∥22, (1.3)

where ∥·∥2 denotes the usual Euclidean norm for a vector, A is a p×nmatrix representing a
linear transform, b ∈ Rp and µ > 0 is the regularization parameter. The term ∥Bx∥1 is the
usual l1-based regularization in order to promote sparsity under the transform B. Problem
(1.3) can be expressed in the form of (1.2) by setting f1 = µ∥·∥1 and f2(x) =

1
2∥Ax−b∥22.

One of the main difficulties in solving it is that f1 is non-differentiable. The case often
occurs in many problems we are interested in.

Another general problem often considered in the literature takes the following form:

x∗ = argmin
x∈X

f(x) + h(x), (1.4)

where f, h ∈ Γ0(X) and h is differentiable on X with a 1
β -Lipschitz continuous gradient

for some β ∈ (0,+∞). Problem (1.2), which we are interested in this paper, can be
viewed as a special case of problem (1.4) for X = Rn and f = f1 ◦ B, h = f2. On the
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other hand, we can also consider that problem (1.4) is a special case of problem (1.2)
for X = Rn, f2 = h, f1 = f and B = I, where I denotes the usual identity operator.
For problem (1.4), Combettes and Wajs proposed in [1] a proximal forward-backward
splitting algorithm, i.e.

xn+1 = proxγf (xn − γ∇h(xn)), ∀n ≥ 1, (1.5)

where 0 < γ < 2β is a stepsize parameter, and the operator proxf is defined by

proxf : X → X

x 7→ argminy∈Xf(y) +
1

2
∥x− y∥22,

called the proximity operator of f.

It is well known that a forward-backward splitting method (please see, e.g., [1–6]) is a
classical method for solving problem (1.1). This forward-backward splitting method is
given by x1 ∈ E and

xn+1 = (Id+ rnA)−1(Id− rnB)xn, ∀n ≥ 1, (1.6)

where rn > 0. This method generalizes the proximal point algorithm (please see [7–11])
and the gradient method (see, e.g., [12]). There have been many works concerning the
problem of finding zero points of the sum of two monotone operators (in Hilbert spaces)
and accretive operators (in Banach spaces). For more details, please, see [13–17] and the
references contained therein.

In 2012, López et al. [18] proposed the following modification:

xn+1 = αnu+ (1− αn)J
A
rn(xn − rn(Bxn + an)) + bn), ∀n ≥ 1, (1.7)

where JA
rn = (Id+ rnA)−1 and {an}, {bn} ⊂ E stand for the computation, {αn} ⊂ (0, 1],

and {rn} ⊂ (0,+∞).

Recently, Shehu and Cai [19] expanded algorithm (1.6) by combining it with the viscosity
approximation method

xn+1 = αnf(xn) + (1− αn)J
A
rn(xn − rnBxn), ∀n ≥ 1, (1.8)

where f : E → E is contraction with coefficient k ∈ (0, 1), and αn ∈ (0, 1). They studied
this algorithm in uniformly smooth Banach spaces, and proved that the sequence {xn}
generated by algorithm (1.8) converges strongly to a solution of problem (1.1).

Very recently, Shehu [20] introduced the following modification:{
yn = αnf(xn) + (1− αn)xn

xn+1 = βnxn + (1− βn)J
A
rn(yn − rnByn), ∀n ≥ 1,

(1.9)
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where f : E → E is contraction with coefficient k ∈ (0, 1), and {αn}, {βn} ∈ (0, 1).
They studied this algorithm in a real uniformly convex Banach space which is also uni-
formly smooth, and proved that the sequence {xn} generated by algorithm (1.9) converges
strongly to a solution of problem (1.1).

In this paper, motivated and inspired by above literatures, we are going to consider a
problem (1.1) and suggest the following algorithm: for an arbitrary initial x1 ∈ E,{

yn = (1− βn)xn + βnJ
A
rn(Id− rnB)xn

xn+1 = αnf(xn) + (1− αn)J
A
rn(Id− rnB)yn, ∀n ≥ 1.

(1.10)

The strong convergence theorems of this iterative algorithms are obtain in Banach spaces.
Our algorithm combine between the modified Mann type forward-backward splitting with
the viscosity approximation method and the alternating resolvent method complements
many recent and important results in this direction in the literature. Moreover, we also
applied our algorithm to solving the convex minimization problem for application to image
restoration in the last section.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be its dual. The value of f ∈ E∗

at x ∈ E will be denoted by ⟨x, f⟩. Let J denote the normalized duality mapping from
E into 2E

∗
given by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 = ∥f∥2}, ∀x ∈ E,

where ⟨·, ·⟩ denotes the generalized duality pairing. It is well known that if E∗ is strictly
convex then J is single-valued. In the sequel, we shall denote the single-valued normalized
duality mapping by j.

Let SE = {x ∈ E : ∥x∥ = 1} and Fix(T ) be the set of fixed point of the mapping
T : E → E. A Banach space E is said to be strictly convex if for x, y ∈ SE with x ̸= y
and t ∈ (0, 1),

∥(1− t)x+ ty∥ < 1.

A Banach space E is said to be uniformly convex if for any ϵ ∈ (0, 2] the inequalities
∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ imply that there exists a δ = δ(ϵ) > 0 such that

∥x+ y∥
2

≤ 1− δ.

A Banach space E is said to be smooth provided the limit

lim
t→0

∥x+ ty∥+ ∥x∥
t

exists for each x, y ∈ SE .

In this case, the norm of E is said to be Gâteaux differentiable. It is said to be uniformly
Gâteaux differentiable if for each y ∈ SE , this limit attained uniformly for x ∈ SE . It is well
known that every uniformly smooth Banach space has uniformly Gâteaux differentiable
norm. A closed convex subset C of a Banach space E is said to have the fixed point
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property for nonexpansive mappings if every nonexpansive mapping of a nonempty closed
convex subset D of C into itself has a fixed point in D.

A subset C of Banach space E is called a retract of E if there is a continuous mapping
Q from E onto C such that Qx = x for all x ∈ C. We call such Q a retraction of E onto
C. It follows that if a mapping Q is a retraction, then Qy = y for all y in the range of
Q. A retraction Q is said to be sunny if Q(Qx + t(x − Qx)) = Qx for all x ∈ E and
t ≥ 0. If a sunny retraction Q is also nonexpansive, then C is said to be a sunny non
expansive retract of E [21]. In a smooth Banach space E, it is known (cf. [21], p. 48)
that Q : C → D is a sunny nonexpansive retraction if and only if the following condition
holds:

⟨x−Q(x), J(z −Q(x))⟩ ≤ 0, x ∈ C, z ∈ D.

A set-valued operator A : E → 2E , with domain D(A) and range R(A), is said to be
accretive if, for all t > 0 and every x, y ∈ D(A),

∥x− y∥ ≤ ∥x− y + t(u− v)∥, u ∈ Ax, v ∈ Ay.

Furthermore, an accretive operator A is said to be m-accretive if the range R(I + λA) =
E for all λ > 0. Given α > 0 and q ∈ (1,∞), we say that an accretive operator A
is α-inverse strongly accretive (α-isa) of order q if, for each x, y ∈ D(A), there exists
jq(x− y) ∈ Jq(x− y) such that

⟨u− v, jq(x− y)⟩ ≥ α∥u− v∥q, u ∈ Ax, v ∈ Ay.

When q = 2, we simply say α-isa, instead of α-isa of order 2; that is, A is α-isa if, for
each x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

⟨u− v, j(x− y)⟩ ≥ α∥u− v∥2, u ∈ Ax, v ∈ Ay.

Definition 2.1. A nonlinear operator T whose domain D(T ) ⊂ H and range R(T ) ⊂ H
is said to be:

(i) monotone if

⟨x− y, Tx− Ty⟩ ≥ 0, ∀x, y ∈ D(T );

(ii) β-strongly monotone if there exists β > 0 such that

⟨x− y, Tx− Ty⟩ ≥ β∥x− y∥2, ∀x, y ∈ D(T );

(iii) ν-inverse strongly monotone(for short, ν-ism) if there exists ν > 0 such that

⟨x− y, Tx− Ty⟩ ≥ ν∥Tx− Ty∥2, ∀x, y ∈ D(T ).

In other words, T is monotone if its graph, G(T ) = {(x, y) ∈ H ×H : x ∈ D(T ), y ∈ Tx},
is a monotone subset of H × H. A monotone operator T is called maximal monotone
if it is monotone and its graph is not properly contained in the graph of any other
monotone operator. Note that a ν−inverse strongly monotone operator is monotone. We
know that T is maximal monotone if and only if the range of Id+ T is equal to H (i.e.,
R(Id+T ) = H). If T is maximal monotone and µ is a positive number, then the resolvent
of T is defined by JT

µ (x) = (Id+ µT )−1(x) that a single-valued operator JT
µ : H → H .
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Definition 2.2. Let D be a nonempty subset of a Hilbert space H and let T : D → H.
Then,

(i) firmly nonexpansive if

∥Tx− Ty∥2 + ∥(Id− T )x− (Id− T )y∥2 ≤ ∥x− y∥2, ∀x, y ∈ D;

(ii) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ D;

(iii) quasi-nonexpansive if

∥Tx− p∥ ≤ ∥x− p∥, ∀x ∈ D, p ∈ Fix(T );

(iv) stricty quasi-nonexpansive if

∥Tx− p∥ < ∥x− p∥, ∀x ∈ D, p ∈ Fix(T ).

Definition 2.3. [22] Let T : E → E be nonexpansive, and let α ∈ (0, 1). Then, T is said
to be α-averaged, if there exists a nonexpansive operator R : E → E such that

T = (1− α)Id+ αR.

Remark 2.4. The firmly nonexpansive mappings are
1

2
-averaged.

Suppose that T : E → E is firmly nonexpansive. So, there exists a mapping defined by
R = 2T − Id : E → E such that

∥(2T − Id)x− (2T − Id)y∥2 = ∥2(Tx− Ty) + (1− 2)(x− y)∥2

= 2∥Tx− Ty∥2 + (1− 2)∥x− y∥2

− 2(1− 2)∥Tx− Ty − x+ y∥2

≤ 2∥x− y∥2 − ∥x− y∥2

= ∥x− y∥2.
Hence, R is a nonexpansive mapping. By a simple transformation, we have

T = Id− Id+ T

= (1− 1

2
)Id+

1

2
(2T − Id)

= (1− 1

2
)Id+

1

2
R.

Consequently, T is
1

2
-averaged.

Proposition 2.5. [23, 24] Let D be a nonempty subset of a Hilbert space H, let (α1, α2) ∈
(0, 1)2, let T1 : D → D be α1-averaged, and let T2 : D → D be α2-averaged. Set

T = T1T2 and α =
α1 + α2 − 2α1α2

1− α1α2
.

Then, α ∈ (0, 1) and T is α-averaged.

We know that the sunny nonexpansive retract mapping form a Hilbert space H onto a
closed convex subset C ⊂ H is metric projection and we use PC to denote the metric
projection from H onto C.
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We now state some known results which will be used in the sequel.

Lemma 2.6. [25] A Banach space E is uniformly smooth if and only if the duality map
J is the single-valued and norm-to-norm uniformly continuous on bounded sets of E.

Lemma 2.7. [26] Let E be a Banach space. Then, for every x, y ∈ E, we have

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩,
for all j(x+ y) ∈ J(x+ y).

Lemma 2.8. [27] Let C be a nonempty closed convex subset of a uniformly smooth Banach
space E and T : C → C be a nonexpansive mapping with a fixed point. Let f : E → E
be a fixed contraction with coefficient k ∈ (0, 1). If there exists a bounded sequence {xn}
such that limn→∞ ∥xn − Txn∥ = 0, and p = limt→0 zt exists, where {zt} is defined by
zt = tf(zt) + (1− t)Tzt. Then,

lim sup
n→∞

⟨f(p)− p, j(xn − p)⟩ ≤ 0.

Lemma 2.9. [20] Let E be a real uniformly convex with Fréchet differentiable norm.
Assume that B is a single-valued α-inverse strongly accretive mapping on E. Then, given
s > 0, there exists a continuous, strictly increasing and convex function θ : R+ → R+

with θ(0) = 0 such that for all x, y ∈ E,

∥Tsx− Tsy∥2 ≤ ∥x− y∥2 − s(2α− sc)∥Bx−By∥2

− θ(∥(Id− JA
s )(Id− sB)x− (Id− JA

s )(Id− sB)y∥),

where Ts = JA
s (Id− sB) = (Id+ sA)−1(Id− sB).

Lemma 2.10. [18] Let E be a real Banach space. Let A : E → 2E be an m-accretive
operator and B : E → E be an α-inverse strongly accretive mapping on E. Then, we
have

(i) for r > 0, Fix(Tr) = (A+B)−1(0);
(ii) for 0 < s ≤ r and x ∈ E, ∥x− Tsx∥ ≤ ∥x− Trx∥.

Theorem 2.11. [28] Let X be a real Hilbert space and let S : X → X be quasi-
nonexpansive, T : X → X be strictly quasi-nonexpansive and Fix(S) ∩ Fix(T ) ̸= ∅.Then,
Fix(ST ) = Fix(TS) = Fix(S) ∩ Fix(T ).

Remark 2.12. Let Tn = (1 − θn)Id + θnSn with Sn nonexpansive on E,Fix(Sn) ̸= ∅
and θn ∈ (0, 1). Then, the following statements are reached:

(i) Fix(Sn) = Fix(Tn);
(ii) Tn is nonexpansive.

Lemma 2.13. [29] Let {an} and {cn} be sequences of nonnegative real numbers such that

an+1 ≤ (1− δn)an + bn + cn, ∀n ≥ 1, (2.1)

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume
∑∞

n=1 cn < 0.
Then, the following results hold:

(i) If bn ≤ δnM for some M > 0, then {an} is a bounded sequence;
(ii) If

∑∞
n=1 δn = ∞ and lim supn→∞

bn
δn

≤ 0, then limn→∞ an = 0.
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By employing the technique of Mainge [29], He and Yang [30] proved the following lemma.

Lemma 2.14. [30] Assume {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1− γ)sn + γnτn, ∀n ≥ 1,

and

sn+1 ≤ sn − ηn + ρn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers and
{τn}, and {ρn} are real sequences such that

(i)
∑∞

n=1 γn = ∞;
(ii) limn→∞ ρn = 0;
(iii) limk→∞ ηnk

= 0 implies lim supk→∞ τnk
≤ 0, for any subsequence

{nk} ⊂ {n}.
Then, limn→∞ sn = 0.

Lemma 2.15. [31] Let q > 1. Then, the following inequality holds:

ab ≤ 1

q
aq +

q − 1

q
b

q
q−1 ,

for arbitrary positive real numbers a and b.

3. Algorithm and convergence analysis

In this section, we start a new algorithm for solving (1.1), we know that a common zero of
sum of two operators i.e., A−10 ∩B−10 which is a partial of a zero sum of two operators
that is (A + B)−10 (i.e., A−10 ∩ B−10 ⊂ (A + B)−10). Hence our problem different of
[32] which is extended and improved more general.

Next, we will start our main result as follows:

Theorem 3.1. Let E be a real uniformly convex Banach space which is also uniformly
smooth. Let A : E → 2E be an m-accretive operator and let B : E → E be an α-inverse
strongly accretive mapping. Assume that Ω := (A + B)−1(0) ̸= ∅. Let f : E → E be a
fixed contraction with coefficient k ∈ (0, 1). Let {xn} be the sequence generated by x1 ∈ E
and {

yn = (1− βn)xn + βnJ
A
rn(Id− rnB)xn

xn+1 = αnf(xn) + (1− αn)J
A
rn(Id− rnB)yn, ∀n ≥ 1,

(3.1)

where JA
rn = (Id+rnA)−1 and {rn}∞n=1 is a sequence of positive real number and {αn}∞n=1

and {βn}∞n=1 are sequence in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) lim infn→∞ βn > 0;
(iii) 0 < lim infn→∞ rn < lim supn→∞ rn < 2α

c

for some constant c. Then, {xn}∞n=1 converges strongly to z = QΩf(z), where QΩ is
the unique sunny nonexpansive retraction of E onto Ω; that is, z solves the variational
inequality

⟨(Id− f)z, j(z − x)⟩ ≤ 0, ∀x ∈ Ω. (3.2)
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Proof. Denote by Sn := JA
rn(Id− rnB), Tn = (1− βn)Id+ βnSn and Un = SnTn. Then,

(3.1) can be rewritten as

xn+1 = αnf(xn) + (1− αn)Unxn, ∀n ≥ 1, (3.3)

Step 1. We prove that the sequence {xn} dened by (3.1) is well dened
For each n ≥ 1, and let Sn := JA

rn(Id− rnB). Then, for all x, y ∈ E, we have

∥Snx− Sny∥2 = ∥JA
rn(Id− rnB)x− JA

rn(Id− rnB)y∥2

≤ ∥x− y − rn(Bx−By)∥2

≤ ∥x− y∥2 − 2rn⟨Bx−By, j(x− y)⟩+ cr2n∥Bx−By∥2

≤ ∥x− y∥2 − 2rnα∥Bx−By∥2 + cr2n∥Bx−By∥2

≤ ∥x− y∥2 − (2α− crn)rn∥Bx−By∥2

≤ ∥x− y∥2.

(3.4)

Thus, Sn is nonexpansive for all n ≥ 1.
Set Rn = (Id− rnB). Since B is α-inverse strongly accretive mapping, we have

∥Rnx−Rny∥2 = ∥(Id− 2αB)x− (Id− 2αB)y∥2

= ∥(x− y)− 2α(Bx−By)∥2

= ∥x− y∥2 + 4α2∥Bx−By∥2 − 4α⟨x− y,Bx−By⟩
≤ ∥x− y∥2 + 4α2∥Bx−By∥2 − 4α2∥Bx−By∥2

= ∥x− y∥2.

(3.5)

Hence, Rn is nonexpansive. By a simple transformation, we have

Id− rnB = (1− rn
2α

)Id+
rn
2α

Id− rnB

= (1− rn
2α

)Id+
rn
2α

(Id− 2αB)

= (1− rn
2α

)Id+
rn
2α

Rn.

(3.6)

On the other hand, in view of rn ∈ (0, 2α),
rn
2α

∈ (0, 1). Consequently, Id − rnB is
rn
2α

-

averaged. Set Ln = 2JA
rn − Id. Since A is m-accretive operator and JA

rn is nonexpansive
mapping, we have

∥Lnx− Lny∥2 = ∥(2JA
rn − Id)x− (2JA

rn − Id)y∥2

= ∥(y − x)− 2(JA
rnx− JA

rny)∥
2

= ∥x− y∥2 + 4∥JA
rnx− JA

rny∥
2 − 4⟨y − x, JA

rnx− JA
rny⟩

≤ ∥x− y∥2 + 4∥x− y∥2 − 4∥x− y∥2

= ∥x− y∥2.

(3.7)
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Hence, Ln is nonexpansive. By a simple transformation, we have

JA
rn = (1− 1

2
)Id+

1

2
Id+ JA

rn − Id

= (1− 1

2
)Id+

1

2
(2JA

rn − Id)

= (1− 1

2
)Id+

1

2
Ln.

(3.8)

Consequently, JA
rn is

1

2
-averaged. By Proposition 2.5, we have Sn = JA

rn(Id − rnB) is

an
2α

4α− rn
-averaged. For each n ≥ 1, and let Tn := (1 − βn)Id + βnSn. Since Sn is a

nonexpansive mapping, Tn is βn-averaged. For each n ≥ 1, and let Un := SnTn. Then,
for all x, y ∈ E, we have

∥Unx− Uny∥ = ∥SnTnx− SnTny∥
≤ ∥Snx− Sny∥
≤ ∥x− y∥.

(3.9)

Thus, Un is nonexpansive for all n ≥ 1. By Proposition 2.5, we have θn =
2α− rnβn

4α− rn − 2αβn
∈

(0, 1) such that rn ∈ (0, 2α) and βn ∈ (0, 1) and so, Un = SnTn is an θn-averaged. Let us
define a mapping Wn : E → E as follows

Wn(x) := αnf(x) + (1− αn)Unx. (3.10)

For any x, y ∈ E, we have

∥Wnx−Wny∥ = ∥αnf(x) + (1− αn)Unx− αnf(y) + (1− αn)Uny∥
≤ αn∥f(x)− f(y)∥+ (1− αn)∥Unx− Uny∥
≤ αnk∥x− y∥+ (1− αn)∥x− y∥
= (1− αn(1− k))∥x− y∥
= (1− ϵ)∥x− y∥

(3.11)

for some ϵ ∈ (0, 1). This implies that Wn is a contraction mapping. So, there exists a
unique fixed point zn of Wn. Note that xn+1 := zn satisfies (3.1).

Step 2. We prove that the sequence {xn} is bounded.
For each n ∈ N, we put Unx = SnTnx where Sn = JA

rn(Id− rnB) and Tn = (1− βn)Id+
βnSn and let {yn} be defined by

yn+1 = αnf(yn) + (1− αn)Unyn. (3.12)

Firstly, we compute the following:

∥xn+1 − yn+1∥ = ∥αnf(xn) + (1− αn)Unxn − αnf(yn)− (1− αn)Unyn∥
≤ αn∥f(xn)− f(yn)∥+ (1− αn)∥Unxn − Unyn∥
≤ αnk∥xn − yn∥+ (1− αn)∥xn − yn∥
= (1− αn(1− k))∥xn − yn∥.

(3.13)
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By the assumption and Lemma 2.13 (ii), we conclude that limn→∞ ∥xn − yn∥ = 0. Let
p ∈ E, we have

p = Snp ⇐⇒ p = (Id+ rnA)−1(Id− rnB)p

⇐⇒ p− rnBp ∈ p+ rnAp

⇐⇒ 0 ∈ Ap+Bp.

(3.14)

Thus, Fix(Sn) = (A+B)−1(0) for all n ≥ 1.
Let p ∈ E, we have

p = Tnp ⇐⇒ p = ((1− βn)Id+ βnSn)p

⇐⇒ p = (1− βn)p+ βnSnp

⇐⇒ p = Snp.

(3.15)

From (3.14), we have, Fix(Tn) = (A+B)−1(0) for all n ≥ 1. By Theorem 2.11, Fix(Un) =
Fix(SnTn) = Fix(Sn)∩Fix(Tn) = (A+B)−1(0). Taking p ∈ Ω = (A+B)−1(0) = Fix(Un),
we next show that {yn} is bounded. Indeed,

∥yn+1 − p∥ = ∥αnf(yn) + (1− αn)Unyn − p∥
≤ αn∥f(yn)− p∥+ (1− αn)∥Unyn − p∥
≤ αnk∥yn − p∥+ αn∥f(p)− p∥+ (1− αn)∥yn − p∥

≤ (1− αn(1− k))∥yn − p∥+ αn
∥f(p)− p∥

1− k

(3.16)

for every n ∈ N. Thus, by induction on n, we have

∥yn − p∥ ≤ max{∥x1 − p∥, ∥f(p)− p∥/(1− k)}. (3.17)

This shows that {yn} bounded by Lemma 2.13 (i) and {xn} is also bounded.

Step 3. We prove that xn → p = Qf(p) ∈ Ω = (A+B)−1(0) = Fix(Un).
Let p ∈ Fix(Un) = Fix(SnTn), we have p ∈ Fix(Sn) and p ∈ Fix(Tn). From Lemma 2.9
(q = 2) and Lemma 2.15 and setting wn = Tnyn, we consider the following

∥wn − p∥2 = ∥Tnyn − p∥2

= ∥(1− βn)yn + βnSnyn − p∥2

= ∥(1− βn)(yn − p) + βn(Snyn − p)∥2

≤ (1− βn)∥yn − p∥2 + βn∥Snyn − Snp∥2

≤ (1− βn)∥yn − p∥2 + βn∥yn − p∥2 − βnrn(2α− rnc)∥Byn −Bp∥2

− βnϕ(∥yn − rnAyn − Snyn + rnAp∥)
≤ ∥yn − p∥2 − βnrn(2α− rnc)∥Byn −Bp∥2

− βnϕ(∥yn − rnAyn − Snyn + rnAp∥)
(3.18)

and

∥Snwn − p∥2 ≤ ∥wn − p∥2 − rn(2α− rnc)∥Bwn −Bp∥2

− ϕ(∥wn − rnAwn − Snwn + rnAp∥).
(3.19)
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By the definition of yn+1, we have

∥yn+1 − p∥2 = ∥αn(f(yn)− p) + (1− αn)(Unyn − p)∥2

= ∥(1− αn)(Snwn − p) + αn(f(yn)− p)∥2

≤ (1− αn)∥Snwn − p∥2 + 2αn⟨f(yn)− p, j(yn+1 − p)⟩

≤ (1− αn)∥Snwn − p∥2 + 2αn

(
⟨f(yn)− f(p), j(yn+1 − p)⟩

+ ⟨f(p)− p, j(yn+1 − p)⟩
)

≤ (1− αn)∥Snwn − p∥2 + 2αnk∥yn − p∥∥yn+1 − p∥
+ 2αn⟨f(p)− p, j(yn+1 − p)⟩

≤ (1− αn)∥Snwn − p∥2 + 2αn

(1
2
∥yn − p∥2 + 1

2
∥yn+1 − p∥2

)
+ 2αn⟨f(p)− p, j(yn+1 − p)⟩.

(3.20)

After simplifying, it follows that

∥yn+1 − p∥2 ≤ 1− αn(1− 2k)

1− αnk
∥yn − p∥2 + 2αn

1− αnk
⟨f(p)− p, j(yn+1 − p)⟩

− (1− αn)βnrn(2α− rnc)∥Byn −Bp∥2

− (1− αn)rn(2α− rnc)∥Bwn −Bp∥2

− (1− αn)βnϕ(∥yn − rnByn − Snyn + rnBp∥)
− (1− αn)ϕ(∥wn − rnBwn − Snwn + rnBp∥).

(3.21)

We can check that αn

( 1− 2k

1− kαn

)
is in (0, 1), since {αn} ⊂ (0, 1) and limn→∞ αn = 0.

Moreover, by condition (ii),
2αn

1− kαn
is a nonnegative real numbers. For each n ≥ 1, we

set

sn := ∥yn − p∥2;

γn :=
αn(1− 2k)

1− kαn
;

τn :=
2

1− 2k
⟨f(p)− p, j(yn+1 − p)⟩;

ηn := (1− αn)βnrn(2α− rnc)∥Byn −Bp∥2

+ (1− αn)βnϕ(∥yn − rnByn − Snyn + rnBp∥)
+ (1− αn)rn(2α− rnc)∥Bwn −Bp∥2

+ (1− αn)ϕ(∥wn − rnBwn − Snwn + rnBp∥);

ρn :=
2αn

1− kαn
⟨f(p)− p, j(yn+1 − p)⟩.

(3.22)

From (3.21), we have

sn+1 ≤ (1− γn)sn + γnτn, ∀n ≥ 1, (3.23)
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and

sn+1 ≤ sn − ηn + ρn, ∀n ≥ 1. (3.24)

Since
∑∞

n=1 αn = ∞, it follows that
∑∞

n=1 γn = ∞. By the boundedness of {yn} and
limn→∞ αn = 0, we see that limn→∞ ρn = 0. In order to complete proof, by using
Lemma 2.13, it remains to show that limk→∞ ηnk

= 0 implies lim supk→∞ τnk
≤ 0, for

any subsequence {nk} ⊂ {n}.

Indeed, if {nk} is a subsequence of {n} such that limk→∞ ηnk
= 0, then by the assumptions

that rn(2α− rnc) > 0 and the property of ϕ, we can deduce that
limk→∞ ∥Bynk

−Bp∥ = 0;

limk→∞ ∥Bwnk
−Bp∥ = 0;

limk→∞ ∥ynk
− rnBynk

− Snk
ynk

+ rnBp∥ = 0;

limk→∞ ∥wnk
− rnBynk

− Snk
wnk

+ rnBp∥ = 0.

(3.25)

This implies, by the triangle inequality, that{
limk→∞ ∥Snk

ynk
− ynk

∥ = 0;

limk→∞ ∥Snk
wnk

− wnk
∥ = 0.

(3.26)

Since wn = (1− βn)yn + βnSnyn, we have

∥wnk
− Snk

ynk
∥ = ∥(1− βnk

)ynk
+ βnk

Snk
ynk

− Snk
∥

≤ (1− βnk
)∥Snk

ynk
− ynk

∥.
(3.27)

This together with (3.26) and (3.27) implies that

∥Unk
ynk

− ynk
∥ = ∥Snk

wnk
− ynk

∥
≤ ∥Snk

wnk
− wnk

∥+ ∥wnk
− Snk

ynk
∥+ ∥Snk

ynk
− ynk

∥
≤ ∥Snk

wnk
− wnk

∥+ (1− βnk
)∥Snk

ynk
− ynk

∥+ ∥Snk
ynk

− ynk
∥

→ 0 (as k → ∞).

(3.28)

Since lim infk→∞ rn > 0, there exists r > 0 such that rn ≥ r, for all n ≥ 1. In particular,
rnk

≥ r for all k ≥ 1.

∥wnk
− ynk

∥ = ∥(1− βnk
)ynk

+ βnk
Snk

ynk
− ynk

∥
≤ βnk

∥Snk
ynk

− ynk
∥.

(3.29)

Lemma 2.10 (ii) yields that

∥SA,B
r wnk

− ynk
∥ ≤ ∥SA,B

r wnk
− wnk

∥+ ∥wnk
− ynk

∥
≤ 2∥Snk

wnk
− ynk

∥+ βnk
∥Snk

ynk
− ynk

∥.
(3.30)

Then, by (3.26) and (3.28), we obtain

lim sup
k→∞

∥SA,B
r wnk

− ynk
∥ ≤ 2 lim

k→∞
∥Snk

wnk
− ynk

∥+ lim
k→∞

βnk
∥Snk

ynk
− ynk

∥.

(3.31)
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It follows that

lim
k→∞

∥SA,B
r wnk

− ynk
∥ = lim

k→∞
∥UA,B

r ynk
− ynk

∥ = 0. (3.32)

Let

zt = tf(zt) + (1− t)UA,B
r zt, t ∈ (0, 1). (3.33)

By Lemma 2.8, {zt} converges strongly as t → 0 to the unique fixed point z = Qf(z) ∈
Fix(Sn) = (A + B)−1(0), where Q : E → Fix(Sn) is the unique sunny nonexpansive
retraction from E onto Fix(Sn) = (A+B)−1(0). So we obtain

∥zt − ynk
∥2 = ∥t(f(zt)− ynk

) + (1− t)(UA,B
r zt − ynk

)∥2

≤ (1− t)2∥UA,B
r zt − ynk

∥2 + 2t⟨f(zt)− zt, j(zt − ynk
)⟩

+ 2t⟨zt − xnk
, j(zt − xnk

)⟩
≤ (1− t)2(∥UA,B

r zt − UA,B
r ynk

∥+ ∥UA,B
r ynk

− tnk
∥)2

+ 2t⟨f(zt)− zt, j(zt − ynk
)⟩+ 2t∥zt − ynk

∥2

≤ (1− t)2(∥zt − ynk
∥+ ∥UA,B

r ynk
− tnk

∥)2

+ 2t⟨f(zt)− zt, j(zt − ynk
)⟩+ 2t∥zt − ynk

∥2.

(3.34)

After simplifying we have

⟨zt − f(zt), j(zt − ynk
)⟩

≤ (1− t)2

2t
(∥zt − ynk

∥+ ∥UA,B
r ynk

− ynk
∥)2 + (2t− 1)

2t
∥zt − xnk

∥2.
(3.35)

It follows from (3.34) and (3.28) that

lim sup
k→∞

⟨zt − f(zt), j(zt − ynk
)⟩ ≤ 1

2t
[(1− t)2 + (2t− 1)]M2, (3.36)

where M = supk≥0,t∈(0,1) ∥zt − ynk
∥. Since limt→0

1

2t
[(1 − t)2 + (2t − 1)] = 0, zt → z =

Qf(z) as t → 0 and by Lemma 2.6 (ii), we know that j is norm-to-norm uniformly
continuous on bounded subsets of E, we have

∥j(zt − ynk
)− j(z − ynk

)∥ → 0 (as t → 0). (3.37)

Observe that

|⟨zt − f(zt), j(zt − ynk
)⟩ − ⟨z − f(zt), j(z − ynk

)⟩|
= |⟨zt − z + z − f(zt), j(zt − ynk

)⟩ − ⟨z − f(zt), j(z − ynk
)⟩|

≤ |⟨zt − z, j(zt − ynk
)⟩|+ |⟨z − f(zt), j(zt − ynk

)− j(z − ynk
)⟩|

≤ ∥zt − z∥∥zt − ynk
∥+ ∥z − f(zt)∥∥j(zt − ynk

)− j(z − ynk
)∥.

(3.38)

This together with (3.36) and (3.37) shows that

lim sup
k→∞

⟨z − f(z), j(z − ynk
)⟩ = lim sup

t→0
lim sup
k→∞

⟨z − f(zt), j(zt − ynk
)⟩

= lim sup
t→0

lim sup
k→∞

⟨zt − f(zt), j(zt − ynk
)⟩

= 0.

(3.39)
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From {yn} is bounded, and so is {f(yn)}, by condition (i), (3.12) and (3.28), we have

∥ynk+1 − ynk
∥ = ∥αnk

f(ynk
) + (1− αnk

)Unk
ynk

− ynk
∥

≤ αnk
∥f(ynk

)− ynk
∥+ (1− αnk

)∥Unk
ynk

− ynk
∥

→ 0,

(3.40)

as k → ∞. By combining (3.39) and (3.40), we get that

lim sup
k→∞

⟨z − f(z), j(z − ynk+1)⟩ ≤ 0. (3.41)

This implies that lim supk→∞ τnk
≤ 0. We conclude that limn→∞ sn = 0 by Lemma 2.14,

yn → z (as n → ∞), by the boundedness of {yn}, we have limn→∞ ∥xn − yn∥ = 0, so
limn→∞ xn = z ∈ Ω. This complete the proof of Theorem 3.1.

If the mapping f maps every point in E to a fixed element, then we have the following
result.

Corollary 3.2. Let E be a real uniformly convex Banach space which is also uniformly
smooth. Let A : E → 2E be an m-accretive operator and let B : E → E be an α-inverse
strongly accretive mapping. Assume that Ω := (A + B)−1(0) ̸= ∅. Let {rn}∞n=1 be a
sequence of positive real number and suppose that {αn}∞n=1 and {βn}∞n=1 are sequence in
(0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) lim infn→∞ βn > 0;
(iii) 0 < lim infn→∞ rn < lim supn→∞ rn < 2α

c

for some constant c. For a fixed element u ∈ E and let {xn}∞n=1 be a sequence generated
by u, x1 ∈ E,{

yn = (1− βn)xn + βnJ
A
rn(Id− rnB)xn

xn+1 = αnu+ (1− αn)J
A
rn(Id− rnB)yn, ∀n ≥ 1,

(3.42)

where JA
rn = (Id+ rnA)−1. Then, {xn}∞n=1 converges strongly to z = QΩu, where QΩ is

the unique sunny nonexpansive retraction of E onto Ω; that is, p solves the variational
inequality

⟨z − u, j(z − x)⟩ ≤ 0, ∀x ∈ Ω. (3.43)

As well known, if H is a real Hilbert space, then it is a uniformly convex and 2-uniformly
smooth Banach space, the 2-uniform smoothness coefficient c = 1. And the monotonicity
coincides with the accretivity. Hence from Theorem (3.1) we can obtain the following
result.

Theorem 3.3. Let H be a real Hilbert space, A : H → 2H be a maximal monotone
operator and let B : H → H be an α-inverse strongly monotone operator. Assume that
Ω := (A+B)−1(0) ̸= ∅. Let f : H → H be a fixed contraction with coefficient k ∈ (0, 1).
Let {xn} be the sequence generated by x1 ∈ H and{

yn = (1− βn)xn + βnJ
A
rn(Id− rnB)xn

xn+1 = αnf(xn) + (1− αn)J
A
rn(Id− rnB)yn, ∀n ≥ 1,

(3.44)

where JA
rn = (Id+rnA)−1 and {rn}∞n=1 is a sequence of positive real number and {αn}∞n=1

and {βn}∞n=1 are sequence in (0, 1) satisfying the following conditions:
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(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) lim infn→∞ βn > 0;
(iii) 0 < lim infn→∞ rn < lim supn→∞ rn < 2α.

Then, {xn}∞n=1 converges strongly to z = PΩf(z), where PΩ is the metric projection of H
onto Ω; that is, z solves the variational inequality

⟨(Id− f)z, z − x⟩ ≤ 0, ∀x ∈ Ω. (3.45)

Corollary 3.4. Let H be a real Hilbert space, A : H → 2H be a maximal monotone
operator and let B : H → H be an α-inverse strongly monotone operator. Assume that
Ω := (A+B)−1(0) ̸= ∅. Let {xn} be the sequence generated by u, x1 ∈ H and{

yn = (1− βn)xn + βnJ
A
rn(Id− rnB)xn

xn+1 = αnu+ (1− αn)J
A
rn(Id− rnB)yn, ∀n ≥ 1,

(3.46)

where JA
rn = (Id+rnA)−1 and {rn}∞n=1 is a sequence of positive real number and {αn}∞n=1

and {βn}∞n=1 are sequence in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) lim infn→∞ βn > 0;
(iii) 0 < lim infn→∞ rn < lim supn→∞ rn < 2α.

Then, {xn}∞n=1 converges strongly to z = PΩu, where PΩ is the metric projection of H
onto Ω; that is, z solves the variational inequality

⟨z − u, z − x⟩ ≤ 0, ∀x ∈ Ω. (3.47)

4. Computational experiments

Example 4.1. Let A : l3 → l3 be defined by Ax = 10x and let B : l3 → l3 be defined
by Bx = 4x + (1, 1, 1, 0, 0, 0, ...), where x = (x1, x2, x3, ...) ∈ l3. Find x ∈ l3 such that
0 ∈ Ax+Bx.

We see that A is an m-accretive and B is a 1/4-isa operator. Indeed, let x, y ∈ l3, then

⟨Ax−Ay, j(x− y)⟩ = 10∥x− y∥2l3 ≥ 0. (4.1)

We also have

⟨Bx−By, j(x− y)⟩ = ⟨4x− 4y, j(x− y)⟩
= 4∥x− y∥2l3

=
1

4
∥Ax−Ay∥2l3

(4.2)

and R(Id+ rA) = l3 for all r > 0. By a direct calculation, we have for r > 0

JA
r (x− rBx) = (Id+ rA)−1(x− rBx)

=
1− 4r

1 + 10r
x− r

1 + 10r
(1, 1, 1, 0, 0, 0, ...),

(4.3)

where x = (x1, x2, x3, 0, 0, 0, ...) ∈ l3. Since, in l3 and α = 1/4, we can choose rn = 0.1 for
all n ∈ N. Let βn = 0.01 and αn = 0.001. Starting x1 = (4, 10, 7, 0, 0, 0, ...) and computing
iteratively algorithm (3.1) in Theorem 3.1 and algorithm (1.6), we obtain the following
numerical results. From Table 1, the solution is (−0.07143,−0.07143,−0.07143, 0, 0, 0, ...).
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Table 1. Numerical results of Example 4.1 for iteration process (3.1)
and (1.6)

n xn in algorithm (3.1) error in (3.1) error in (1.6)
1 (4.00000, 10.0000, 7.00000, 0, 0, 0, ...) - -
2 (0.30355, 0.85615, 0.57985, 0, 0, 0, ...) 1.17683E+01 9.07345E+00
3 (-0.03689, 0.01400, -0.01144, 0, 0, 0, ...) 1.08386E+00 2.72204E+00
4 (-0.06825, -0.06356, -0.06590, 0, 0, 0, ...) 9.98239E-02 8.16611E-01
5 (-0.07113, -0.07070, -0.07092, 0, 0, 0, ...) 9.19382E-03 2.44983E-01
6 (-0.07140, -0.07136, -0.07138, 0, 0, 0, ...) 8.46753E-04 7.34949E-02
7 (-0.07143, -0.07142, -0.07142, 0, 0, 0, ...) 7.79863E-05 2.20485E-02
8 (-0.07143, -0.07143, -0.07143, 0, 0, 0, ...) 7.18256E-06 6.61455E-03
9 (-0.07143, -0.07143, -0.07143, 0, 0, 0, ...) 6.61516E-07 1.98436E-03
10 (-0.07143, -0.07143, -0.07143, 0, 0, 0, ...) 6.09259E-08 5.95309E-04
11 (-0.07143, -0.07143, -0.07143, 0, 0, 0, ...) 5.61129E-09 1.78593E-04

Figure 1. Error of ∥xn+1 − xn∥l3 of different algorithm shown in Table. 1

5. Application

In this section, we shall utilize the generalized viscosity implicit rules presented in the
paper to study the convex minimization problem and convexly constrained linear inverse
problem. Throughout this section, let C be a nonempty closed and convex subset of a
real Hilbert space H. Note that in this case the concept of monotonicity coincides with
the concept of accretivity.

5.1. Application to the convex minimization problem

Let h : H → R be a convex smooth function and g : H → R be a proper convex and
lower-semicontinuous function. We consider the following convex minimization problem
of finding x∗ ∈ H such that

h(x∗) + g(x∗) = min
x∈H

{
h(x) + g(x)

}
. (5.1)
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This problem (5.1) is equivalent, by Fermat’s rule, to the problem of finding x∗ ∈ H such
that

0 ∈ ∇h(x∗) + ∂g(x∗), (5.2)

where ∇h is a gradient of h and ∂g is a subdifferential of g. Set B = ∇h and A = ∂g in
Theorem 3.3. If ∇h is (1/L)-Lipschitz continuous, then it is L-inverse strongly monotone.
Moreover, ∂g is maximal monotone. Hence from Theorem 3.3 we have the following result.

Theorem 5.1. Let h : H → R be a convex and differentiable function with (1/L)-
Lipschitz continuous gradient ∇h and g : H → R be a proper convex and lower semi-
continuous function such that h+g attains a minimizer. Let f : H → H be a k-contractive
mapping with k ∈ (0, 1), {βn} and {αn} be sequence in (0, 1). Let {xn} be the sequence
generated by x1 ∈ H and{

yn = (1− βn)xn + βnJ
∂g
rn (Id− rn∇h)xn

xn+1 = αnf(xn) + (1− αn)J
∂g
rn (Id− rn∇h)yn, ∀n ≥ 1,

(5.3)

where J∂g
rn = (Id+rn∂g)

−1 and {rn}∞n=1 is a sequence of positive real number and {αn}∞n=1

and {βn}∞n=1 are sequence in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) lim infn→∞ βn > 0;
(iii) 0 < lim infn→∞ rn < lim supn→∞ rn < 2L.

Then, {xn} strongly converges to a minimizer of h+ g.

5.2. Application to Signal Processing

For consider some applications of our algorithm to inverse problems occurring from
signal processing:

b = Ax+ v, (5.4)

where x ∈ Rn is recovered, b ∈ Rk is noisy observations, A : Rn → Rk is a bounded
linear observation operator. It determines a process with loss of information. For finding
solutions of the linear inverse problems (5.4), a successful one of some models is the convex
unconstrained minimization problem, see more detail in [34].

5.3. Application to image restoration problems

In this section, we apply our algorithm to image deblurring. General image recovery
problem can be formulated by the inversion of the following observation model:

b = Ax+ v, (5.5)

where x ∈ Rn, v and b are unknown original image, unknown additive random noise and
known degraded observation, respectively. A linear operator A depends on the concerned
image recovery problem.

This is approximately equivalent to several different formulations available for optimiza-
tion problems. In the literature, there is a growing interest in using l1 norm for solving
these types of problems. The l1 regularization can remove noise in the restoration process
that it is given by (see [33])

min
x

{1

2
∥Ax− b∥22 + λn∥x∥1

}
, (5.6)
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Next, an iteration is used to find the solution of the following convex minimization prob-
lem:

Find x ∈ argmin
x∈Rn

{1

2
∥Ax− b∥22 + λn∥x∥1

}
, (5.7)

where b is the degraded image, and A an operator representing the mask. Therefore,
we use our Theorem 5.1 to solve (5.7). We set g(x) = ∥x∥1, h(x) = 1

2∥Ax − b∥22 and
λn = 0.023. We define the gradient as:

∇h(x) = A∗(Ax− b).

The image went through a random blur and random noise. It is followed from Theorem
5.1, we set f(x) = x

8 , βn = 0.1 and αn = 1/(10n+1). In algorithm (1.6), we set λn = 0.1.
The improvement in signal to noise ratio (ISNR) is used to measure the quality of the
restored images. They are defined as follows:

ISNR = 10 log
∥x− b∥22
∥x− xn∥22

,

where x, b and xn are the original image, observed and estimated image at iteration n,
respectively. The original, observed and restored images are given in Figure 2 (grey image)
and 4 (color image).

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 2. Figure (A) shows the original image, (B) shows the crop
original image, figure (C) shows the image degraded by a random blur
and random noise, figure (D) shows the crop image degraded, figure (E)
shows the restored image by forward-backward (1.6), figure (F) shows the
crop restored image by forward-backward, figure (G) shows the restored
image by our algorithm (5.3) and figure (H) shows the crop restored
image by our algorithm.

Next, we compare algorithms between our algorithm and forward-backward in Table
2 and Figure 3.

Table 2. Numerical results of ISNR in Figure 2.

n The improvement in signal to noise ratio (ISNR)
forward-backward algorithm (1.6) our algorithm (5.3)

1 0.25040 0.12804
10 1.26985 1.55567
20 1.97277 2.59079
30 2.51430 3.32105
40 2.95140 3.86967
50 3.31486 4.30754
60 3.62476 4.67321
70 3.89473 4.98815
80 4.13418 5.26502
90 4.34968 5.51188
100 4.54594 5.73422
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Figure 3. ISNR of different algorithm shown in Figure 2

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 4. Figure (A) shows the original image, (B) shows the crop
original image, figure (C) shows the image degraded by a random blur
and random noise, figure (D) shows the crop image degraded, figure (E)
shows the restored image by forward-backward (1.6), figure (F) shows the
crop restored image by forward-backward, figure (G) shows the restored
image by our algorithm (5.3) and figure (H) shows the crop restored
image by our algorithm.

In addition, we use two state-of-the-art metrics for image quality: the structural simi-
larity index (SSIM) defined by

SSIM(x, xn) =
(2µxµxn + C1)(2σxxn + C2)

(µ2
x + µ2

xn
+ C1)(σ2

x + σ2
xn

+ C2)
,

where µx and µxn are averages of x and xn respectively, σx and σxn are the variance of
x and xn respectively and σxxn is the covariance of x and xn. The positive constants C1

and C2 can be thought of as stabilizing constants for near-zero denominator values. The
one important property of SSIM is

lim
n→∞

SSIM(x, xn) = 1 if and only if lim
n→∞

xn = x.

All algorithms are implemented under Windows 10 and MATLAB 2017b running on a
Dell laptop with Intel(R) Core(TM) i5 CPU and 4 GB of RAM. The stopping criterion
of the algorithm is

∥xn+1 − xn∥2
∥xn+1∥2

< 10−4.

Finally, we use method SSIM for comparing between our algorithm and forward-backward
in Figure 5.
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(a)

(b) (c) SSIM=0.8951

(d) (e) SSIM=0.9606

(f) (g) SSIM=0.9532

Figure 5. Figure (A) shows the original image, figure (B) shows the
image degraded by a random blur and random noise, figure (C) shows
the SSIM of figure (B) image, figure (D) shows the restored image by
forward-backward (1.6), figure (E) shows the SSIM of figure (D) image,
figure (F) shows the restored image by our algorithm (5.3) and figure (G)
shows the SSIM of figure (F) image.
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6. Conclusion

In this work, we introduce a new iterative method that is a combination of the
modified Mann type forward-backward splitting with the viscosity approximation method
and the alternating resolvent method for finding the zero of sum of m-accretive operators
in uniformly convex real Banach spaces. The results obtain in this paper extend many
recent ones in the literature.

Acknowledgements

The first author was supported by Rambhai Barni Rajabhat University, Chan-
thaburi.
The second author was supported by Rajamangala University of Technology Thanyaburi
(RMUTT).

References

[1] P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Model. Simul. 4 (4) (2005) 1168–1200. Available from: https://doi.org/
10.1137/050626090.

[2] P. Tseng, A modified forward-backward splitting method for maximal monotone
mappings, SIAM J. Control. Optim. 38 (2) (2000) 431–446. Available from: https:
//doi.org/10.1137/S0363012998338806.

[3] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in
Hilbert space, J. Math. Anal. Appl. 72 (2) (1979) 383–390. Available from: https:
//doi.org/10.1016/0022-247X(79)90234-8.

[4] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal. 16 (6) (1979) 964–979. Available from: https://doi.org/

10.1137/0716071.
[5] P. Phairatchatniyom, P. Kumam, Y.J. Cho, W. Jirakitpuwapat, K. Sitthithak-

erngkiet, The Modified Inertial Iterative Algorithm for Solving Split Variational
Inclusion Problem for MultiValued Quasi Nonexpansive Mappings with Some Ap-
plications, Mathematics 2019, 7, 560. Available from: https://doi.org/10.3390/
math7060560.

[6] J. Abubakar, P. Kumam, A.H. Ibrahim, A. Padcharoen, Relaxed Inertial Tsengs
Type Method for Solving the Inclusion Problem with Application to Image Restora-
tion, Mathematics 8 (5) (2020) 818. Available from: https://doi.org/10.3390/

math8050818.

[7] G.H.G. Chen, R.T. Rockafellar, Convergence rates in forward-backward splitting,
SIAM J. Optim. 7 (2) (1997) 421–444. Available from: https://doi.org/10.1137/
S1052623495290179.
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[29] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth

and nonstrictly convex minimization, Set-Valued Anal. 16 (7-8) (2008) 899–912.
Available from: https://doi.org/10.1007/s11228-008-0102-z.

[30] S. He, C. Yang, Solving the variational inequality problem defined on intersection of
finite level sets, Abstr. Appl. Anal. 2013 (2013) 8 page, Art. ID 942315. Available
from: https://doi.org/10.1155/2013/942315.
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