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1. Introduction
In 1964, the principle of Banach contraction was described for contraction mappings in

spaces equipped with vector-valued metrics. Later, in [3] the results of Perov were gener-
alized by Filip et al. and they studied in generalized metric space (X,℧) the FPP (fixed
point property) of a self-mapping. In the present paper, the results are a generalization
of Theorem 2.1 given in [3] and in the generalized metric space (X,℧), we consider the
local FPP for four mappings. We also study on the generalized metric space (X,℧), the
common FPP for four mappings.

In this article, R,N and C are the sets of all real, natural and complex numbers,
respectively.

Let (U ,⪯) be an ordered Banach space, then the following usual properties for cone
U+ = {u ∈ U : θ ⪯ u}, where θ is the zero-vector of U , are holds:

(1) U+ ∩ −U+ = {θ};
(2) U+ + U+ ⊂ U+;
(3) ςU+ ⊂ U+, for ς ≥ 0.

Suppose the mapping ℧ : X2 −→ U satisfies:
(1) ℧(x1, x2) ≥ θ for all x1, x2 ∈ X. ℧(x1, x2) = θ, if and only if x1 = x2;
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(2) ℧(x1, x2) = ℧(x2, x1) for each x1, x2 ∈ X;
(3) ℧(x1, x2) ⪯ ℧(x1, x3) + ℧(x3, x2) for each x1, x2, x3 ∈ X.

Then ℧ is called a vector-valued metric on nonempty set X and (X,℧) is called a vector-
valued metric space.

It was shown in [2, Theorem 2] that for lower semi-continuous function F from complete
vector-valued metric space (X,℧) on an order continuous and order complete Banach
lattice U , if function T : X −→ X satisfied in the following condition:

℧(x1, T (x1)) ≤ F (x1)− F (T (x1)), ∀x1 ∈ X,

then Fix(T ) ̸= ∅ ( here Fix(T ) is the set of fixed points of a maping T ).

Definition 1.1. [5]. Let the mapping ℧ : X2 −→ Rn satisfies:
(1) ℧(x1, x2) ≥ 0 for all x1, x2 ∈ X. ℧(x1, x2) = 0 if and only if x1 = x2;
(2) ℧(x1, x2) = ℧(x2, x1) for each x1, x2 ∈ X;
(3) ℧(x1, x2) ≤ ℧(x1, x3) + ℧(x3, x2) for each x1, x2, x3 ∈ X.

Then, the set X equipped with vector-valued metric ℧ is called a generalized metric space
and denoted by (X,℧).

Let x1
1 be an element of generalized metric space X and r = (ri)

n
i=1 ∈ Rn, with ri > 0

for each 1 ≤ i ≤ n then B(x1
1, r) = {x1 ∈ X : ℧(x1

1, x
1) < r} is the open ball to center x1

1

and radius r, also B̃(x1
1, r) = {x1 ∈ X : ℧(x1

1, x
1) ≤ r} is the closed ball to center x1

1 and
radius r.

Let f : X −→ X be a single-valued map. Fix(f) = {x1 ∈ X : f(x1) = x1} is the set
of all fixed points of f .

In this paper, Mp,p(R+) represents the set of all p × p matrices with components in
R+, Θ is the zero matrix and I is the identity p× p matrix. Let A ∈ Mp,p(R+), then A
is called convergent to zero, if and only if An −→ 0 as n −→ ∞ ( see [4–6, 12] for more
details).

Let α, β ∈ Rn, where α = (α1, α2, · · · , αn), β = (β1, β2, · · · , βn) and c ∈ R. Note that
α ≤ β (resp. α < β), that is, αi ≤ βi (resp. αi < βi) for each 1 ≤ i ≤ n and also α ≤ c
(resp. α < c), that is, αi ≤ c (resp. αi < c) for 1 ≤ i ≤ n, respectively. We define

α+ β := (α1 + β1, α2 + β2, . . . , αn + βn),

and
α · β := (α1 · β1, α2 · β2, . . . , αn · βn).

That are addition and multiplication on Rn (see [3]).
Now, we have the following equivalent statements that the proof them is the classic

results in matrix analysis (see [1, 6, 8, 11] ).
(1) A −→ 0;
(2) An −→ 0 as n −→ ∞;
(3) for each λ ∈ C with det(A − λI) = 0, |λ| < 1, in other words, the eigenvalues of

A are in the open unit disc;
(4) the matrix I −A is nonsingular and

(I −A)−1 = I +A+ · · ·+An + · · · ;
(5) Anq −→ 0 and qAn −→ 0 as n −→ ∞, for each q ∈ Rn.

Definition 1.2. Let (X,℧) be a generalized metric space, and {x1
n} be a sequence in X,

then
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(1) for any ε > 0, there is a positive integer N and x1 ∈ X such that ℧(x1
n, x

1) < ε
for all n > N , then the sequence {x1

n} is said convergent.
(2) for any ε > 0, there is N such that ℧(x1

n, x
1
m) < ε for all m,n > N , then the

sequence {x1
n} is called a Cauchy sequence.

A sequence {x1
n} converges to a point x1 ∈ X if and only if ℧(x1

n, x
1) → 0 as n → ∞.

Definition 1.3. [3] Let f1 : X → X and f2 : X → X are self-mappings. If x = f1x
1 =

f2x
1 for some x1 ∈ X then x1 is said a coincidence point of f1 and f2, where x is said a

point of the coincidence of f1 and f2.

Definition 1.4. [3] Let f1 : X → X and f2 : X → X are self-mappings. Then f1 and f2
are called to be w-compatible if commute at coincidence points.

2. Main Results
Let (X,℧) be a complete generalized metric space and f1, f2, f3, f4 be four self-

mappings in (X,℧). To start, first, we have the following lemma.

Lemma 2.1. Let f1, f2, f3 and f4 be self-mappings on a complete generalized metric
space (X,℧), satisfying f1(X) ⊂ f4(X) and f2(X) ⊂ f3(X). We define the sequences
{x1

n} and {x2
n} in X by

{
x2
2n+1 = f1x

1
2n = f4x

1
2n+1

x2
2n+2 = f2x

1
2n+1 = f3x

1
2n+2, ∀n ≥ 0.

(2.1)

Assuming that there is A ∈ Mp,p(R+) such that A → 0 and

℧(x2
n, x

2
n+1) ≤ A℧(x2

n−1, x
2
n), ∀n ≥ 1. (2.2)

Then
(a) {x2

n} is converges to a point in X and {f1, f3}, {f2, f4} have coincidence points
or

(b) {x2
n} is a Cauchy sequence in X.

Further, if X is complete then x2
n → x3 in X and

℧(x2
n, x

3) ≤ An(I −A)−1℧(x2
0, x

2
1), ∀n ≥ 1. (2.3)

Proof. We have
℧(x2

n, x
2
n+1) ≤ A℧(x2

n−1, x
2
n)

≤ A2℧(x2
n−2, x

2
n−1)

≤ · · ·
≤ An℧(x2

0, x
2
1) −→ 0 ∀n ≥ 1, as n −→ ∞.

(a) Let there is a positive integer n such that x2
2n = x2

2n+1. Then, from the definition
of {x2

n} we get
f2x

1
2n−1 = f3x

1
2n = f1x

1
2n = f4x

1
2n+1,

that f1 and f3 have a coincidence point x1
2n. Furthermore, by (2.2), one has

℧(x2
2n+1, x

2
2n+2) ≤ A℧(x2

2n, x
2
2n+1) → 0,
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and also x2
2n+1 = x2

2n+2, that is, f1x
1
2n = f4x

1
2n+1 = f2x

1
2n+1 = f3x

1
2n+2, so f2 and

f4 have a coincidence point x1
2n+1. Furthermore, (2.2) yields that x2

2n = x2
m for every

2n < m, so {x2
n} is converges to a point in X.

Also, a similar result is established, if x2
2n+1 = x2

2n+2 for positive integer n.
(b) suppose that x2

2n ̸= x2
2n+1 for all n ≥ 1. Hence, from (2.2), we have

℧(x2
n, x

2
n+1) ≤ An℧(x2

0, x
2
1), n ≥ 1.

For each n,m ≥ 1 with n < m, as a result

℧(x2
n, x

2
m) ≤

m−1∑
i=n

℧(x2
i , x

2
i+1) ≤

m−1∑
i=n

Ai℧(x2
0, x

2
1)

= An℧(x2
0, x

2
1)

m−n−1∑
j=0

Aj (2.4)

≤ An(I −A)−1℧(x2
0, x

2
1) −→ 0, as n −→ ∞.

Therefore, {x2
n} is a Cauchy sequence in X. If X is complete, there exists a point x3 ∈ X

such that the sequence x2
m → x3 as m → ∞. Thus

℧(x2
n, x

3) ≤ ℧(x2
n, x

2
m) + ℧(x2

m, x3)

≤ An(I −A)−1℧(x2
0, x

2
1) + ℧(x2

m, x3),

which yields (2.3). So the proof is complete.

Theorem 2.2. Let f1, f2, f3 and f4 be self-mappings of a complete generalized metric
space (X,℧), satisfying f1(X) ⊂ f4(X), f2(X) ⊂ f3(X) and there exists a I ̸= A ∈
Mp,p(R+) such that A → 0 and

℧(f1x1, f2x
2) ≤ Au1

x1,x2(f1, f2, f3, f4), (2.5)
where

u1
x1,x2(f1, f2, f3, f4) ∈

{
℧(f3x1, f4x

2),℧(f1x1, f3x
1),℧(f2x2, f4x

2),

℧(f1x1, f4x
2) + ℧(f2x2, f3x

1)

2

}
, ∀x1, x2 ∈ X.

If one of f1(X) ∪ f2(X) and f3(X) ∪ f4(X) is complete, then {f1, f3} and {f2, f4} have
a unique coincidence point in X. Furthermore, if {f1, f3} and {f2, f4} are w-compatible
then f1, f2, f3 and f4 have a unique common fixed point in X.

Proof. For each arbitrary point x1
0 ∈ X, We make the sequences {x1

n} and {x2
n} in X

such that {
f1x

1
2n = f4x

1
2n+1 = x2

2n+1,

f2x
1
2n+1 = f3x

1
2n+2 = x2

2n+2, ∀n ≥ 0.

First show that
℧(x2

2n+1, x
2
2n+2) ≤ A℧(x2

2n, x
2
2n+1).

By (2.5), we have

℧(x2
2n+1, x

2
2n+2) = ℧(f1x1

2n, f2x
1
2n+1) ≤ Au1

x1
2n,x1

2n+1
(f1, f2, f3, f4), n ≥ 1,
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where
u1
x1
2n,x

1
2n+1

(f1, f2, f3, f4) ∈
{
℧(f3x1

2n, f4x
1
2n+1),℧(f1x1

2n, f3x
1
2n),℧(f2x1

2n+1, f4x
1
2n+1),

[℧(f1x1
2n, f4x

1
2n+1) + ℧(f2x1

2n+1, f3x
1
2n)]

2

}
=

{
℧(x2

2n, x
2
2n+1),℧(x2

2n+1, x
2
2n),℧(x2

2n+2, x
2
2n+1),

[℧(x2
2n+1, x

2
2n+1) + ℧(x2

2n+2, x
2
2n)]

2

}
=

{
℧(x2

2n, x
2
2n+1),℧(x2

2n+1, x
2
2n+2),

[℧(x2
2n, x

2
2n+1) + ℧(x2

2n+1, x
2
2n+2)]

2

}
.

Now, if u1
x1
2n,x

1
2n+1

(f1, f2, f3, f4) = ℧(x2
2n, x

2
2n+1) then obviously ℧(x2

2n+1, x
2
2n+2) ≤

A℧(x2
2n, x

2
2n+1). If u1

x1
2n,x1

2n+1
(f1, f2, f3, f4) = ℧(x2

2n+1, x
2
2n+2) then ℧(x2

2n+1, x
2
2n+2) ≤

A℧(x2
2n+1, x

2
2n+2), that implies ℧(x2

2n+1, x
2
2n+2) = 0 and so x2

2n+1 = x2
2n+2.

If
u1
x1
2n,x

1
2n+1

(f1, f2, f3, f4) =
[℧(x2

2n, x
2
2n+1) + ℧(x2

2n+1, x
2
2n+2)]

2
,

then we get

℧(x2
2n+1, x

2
2n+2) ≤ A

2
[℧(x2

2n, x
2
2n+1) + ℧(x2

2n+1, x
2
2n+2)]

≤ A

2
℧(x2

2n, x
2
2n+1) +

1

2
℧(x2

2n+1, x
2
2n+2),

that implies
℧(x2

2n+1, x
2
2n+2) ≤ A℧(x2

2n, x
2
2n+1), ∀n ≥ 0.

Thus, condition (2.2) of Lemma 2.1 holds.
To show that {f1, f3} and {f2, f4} have coincidence points in X. Without loss of

generality, we assume that x2
n ̸= x2

n+1 for each n ≥ 1. If there is equality for some n, in
this case from assertion (a) of Lemma 2.1, {f1, f3} and {f2, f4} have coincidence points in
X. Therefore, from assertion (b) of Lemma 2.1, the sequence {x2

n} is a Cauchy sequence.
(1) Suppose that f3(X)∪f4(X) is complete. Then there is u1 ∈ f3(X)∪f4(X) such that

x2
n → u1 as n → ∞. Furthermore, the subsequences {f3x1

2n+2} = {f2x1
2n+1} = {x2

2n+2}
and {f4x1

2n+1} = {f1x1
2n} = {x2

2n+1} of {x2
n}, converge to the point u1.

Since u1 ∈ f3(X) ∪ f4(X), we have u1 ∈ f3(X) or u1 ∈ f4(X).
If u1 ∈ f3(X), then we can find u2 ∈ X such that f3u

2 = u1 and assertion that
f1u

2 = u1. To show this, consider
℧(f1u2, u1) ≤ ℧(f1u2, f2x

1
2n+1) + ℧(f2x1

2n+1, u
1)

≤ Au1
u2,x1

2n+1
(f1, f2, f3, f4) + ℧(f2x1

2n+1, u
1),

where
u1
u2,x1

2n+1
(f1, f2, f3, f4) ∈

{
℧(f3u2, f4x

1
2n+1),℧(f1u2, f3u

2),℧(f2x1
2n+1, f4x

1
2n+1),

℧(f1u2, f4x
1
2n+1) + ℧(f2x1

2n+1, f3u
2)

2

}
, (2.6)
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for each n ≥ 1. Then, by (2.6), We have the following conditions:
(i) If u1

u2,x1
2nk+1

(f1, f2, f3, f4) = ℧(f3u2, f4x
1
2nk+1) for all k ≥ 1, then we have

℧(f1u2, u1) ≤ A℧(f3u2, f4x
1
2nk+1) + ℧(f2x1

2nk+1, u
1),

hence, ℧(f1u2, u1) → 0, as k → ∞.
(ii) If u1

u2,x1
2nk

+1
(f1, f2, f3, f4) = ℧(f1u2, f3u

2), then we have

℧(f1u2, u1) ≤ A℧(f1u2, f3u
2) + ℧(f2x1

2nk+1, u
1),

hence, ℧(f1u2, u1) → 0, as k → ∞.
(iii) If u1

u2,x1
2nk+1

(f1, f2, f3, f4) = ℧(f2x1
2nk+1, f4x

1
2nk+1), then we have

℧(f1u2, u1) ≤ A℧(f2x1
2nk+1, f4x

1
2nk+1) + ℧(f2x1

2nk+1, u
1),

hence, ℧(f1u2, u1) → 0, as k → ∞.

(iv) If u1
u2,x1

2nk+1
(f1, f2, f3, f4) =

℧(f1u2, f4x
1
2nk+1) + ℧(f2x1

2nk+1, sv)

2
, then we have

℧(f1u2, u1) ≤ A
℧(f1u2, f4x

1
2nk+1) + ℧(f2x1

2nk+1, sv)

2
+ ℧(f2x1

2nk+1, u
1)

≤ A

2
℧(f1u2, f4x

1
2nk+1) +

1

2
℧(f2x1

2nk+1, sv) + ℧(f2x1
2nk+1, u

1),

hence, ℧(f1u2, u1) → 0, as k → ∞.
Therefore, from (i)-(iv), we have ℧(f1u2, u1) = 0. As a result, we have f1u

2 = f3u
2 =

u1 and since u1 ∈ f1(X) ⊂ f4(X), there exists u3 ∈ X such that f4u
3 = u1.

Now, we show that f2u
3 = u1. Consider

℧(f2u3, u1) ≤ ℧(f2u3, f1x
1
2n) + ℧(f1x1

2n, u
1)

= ℧(f1x1
2n, f2u

3) + ℧(f1x1
2n, u

1)

≤ Au1
x1
2n,u

3(f1, f2, f3, f4) + ℧(f1x1
2n, u

1),

where

u1
x1
2n,u

3(f1, f2, f3, f4) ∈
{
℧(f3x1

2n, f4u
3),℧(f1x1

2n, f3x
1
2n),℧(f2u3, f4u

3),

℧(f1x1
2n, f4u

3) + ℧(f2u3, f3x
1
2n)

2

}
, (2.7)

for each n ≥ 1. Then, from (2.7), we have the following four:
(v) If u1

x1
2nk

,u3(f1, f2, f3, f4) = ℧(f3x1
2nk

, f4u
3) for each k ≥ 1, then

℧(f2u3, u1) ≤ A℧(f3x1
2nk

, f4u
3) + ℧(f1x1

2nk
, u1),

hence, ℧(f2u3, u1) → 0, as k → ∞.
(vi) If u1

x1
2nk

,u3(f1, f2, f3, f4) = ℧(f1x1
2nk

, f3x
1
2nk

), then

℧(f2u3, u1) ≤ A℧(f1x1
2nk

, f3x
1
2nk

) + ℧(f1x1
2nk

, u1),

hence, ℧(f2u3, u1) → 0, as k → ∞.
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(vii) If u1
x1
2nk

,u3(f1, f2, f3, f4) = ℧(f2u3, f4u
3), then

℧(f2u3, u1) ≤ A℧(f2u3, f4u
3) + ℧(f1x1

2nk
, u1)

= A℧(f2u3, u1) + ℧(f1x1
2nk

, u1),

hence, ℧(f2u3, u1) → 0, as k → ∞.

(ix) If u1
x1
2nk

,u3(f1, f2, f3, f4) =
℧(f1x1

2nk
, f4u

3) + ℧(f2u3, f3x
1
2nk

)

2
, then

℧(f2u3, u1) ≤ A
℧(f1x1

2nk
, f4u

3) + ℧(f2u3, f3x
1
2nk

)

2
+ ℧(f1x1

2nk
, u1)

≤ A

2
℧(f1x1

2nk
, u1) +

1

2
℧(f2u3, f3x

1
2nk

) + ℧(f1x1
2nk

, u1),

hence, ℧(f2u3, u1) → 0, as k → ∞.
Therefore, from (v)-(ix), ℧(f2u3, u1) = 0 and following the same arguments as above,

we get f2u
3 = f4u

3 = u1. Hence {f1, f3} and {f2, f4} have a common coincidence point
in X.

Now, if {f1, f3} and {f2, f4} are w-compatible, f1u1 = f1f3v = f3f1v = f3u
1 := u3

1

and f2u
1 = f2f4w = f4f2w = f4u

1 := u3
2. Then

℧(u3
1, u

3
2) = ℧(f1u1, f2u

1) ≤ Auu1,u1(f1, f2, f3, f4),

where

u1
u1,u1(f1, f2, f3, f4)) ∈

{
℧(f3u1, f4u

1),℧(f1u1, f3u
1),℧(f2u1, f4u

1),

℧(f1u1, f4u
1) + ℧(f2u1, f3u

1)

2

}
(2.8)

= ℧(u3
1, u

3
2).

Therefore, ℧(u3
1, u

3
2) ≤ A℧(u3

1, u
3
2), which implies that u3

1 = u3
2 and thus f1u

1 = f2u
1 =

f3u
1 = f4u

1, that is, the point u1 is a coincidence point of {f1, f3} and {f2, f4}. Now,
we show that u1 = f2u

1. Indeed, we have

℧(u1, f2u
1) = ℧(f1u2, f2u

1) ≤ Auu2,u1(f1, f2, f3, f4),

where

u1
u2,u1(f1, f2, f3, f4)) ∈

{
℧(f3u2, f4u

1),℧(f1u2, f3u
2),℧(f2u1, f4u

1),

℧(f1u2, f4u
1) + ℧(f2u1, f3u

2)

2

}
= {℧(u1, f2u

1)}.

So ℧(u1, f2u
1) ≤ A℧(u1, f2u

1), which implies that f2u
1 = u1 and thus u1 is a common

fixed point of f1, f2, f3 and f4.
To prove the uniqueness of the point u1, we assume that u1∗ is another common fixed

point of f1, f2, f3 and f4. By (2.5), it concludes that

℧(u1, u1∗) = ℧(f1u1, f2u
1∗) ≤ Auu1,u1∗(f1, f2, f3, f4),
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where

u1
u1,u1∗(f1, f2, f3, f4)) ∈

{
℧(f3u1, f4u

1∗),℧(f1u1, f3u
1),℧(f2u1∗, f4u

1∗),

℧(f1u1, f4u
1∗) + ℧(f2u1∗, f3u

1)

2

}
= ℧(u1, f2u

1∗),

that implies that u1 = u1∗.
(2) Let f1(X)∪ f2(X) is complete and u1 ∈ f4(X). In this case, the proof is similar to

the completeness of f3(X) ∪ f4(X) and u1 ∈ f4(X).

Corollary 2.3. Let f1, f2, f3 and f4 be self-mappings on complete generalized metric
space (X,℧), satisfying f1(X) ⊂ f4(X), f2(X) ⊂ f3(X) and for some m,n ≥ 1 there is a
A ∈ Mp,p(R+) such that A → 0 and

℧(fm
1 x1, fn

2 x
2) ≤ Au1

x1,x2(fm
1 , fn

2 , f
m
3 , fn

4 ), (2.9)

where

u1
x1,x2(fm

1 , fn
2 , f

m
3 , fn

4 ) ∈
{
℧(fm

3 x1, fn
4 x

2),℧(fm
1 x1, fm

3 x1),℧(fn
2 x

2, fn
4 x

2),

℧(fm
1 x1, fn

4 x
2) + ℧(fn

2 x
2, fm

3 x1)

2

}
, ∀x1, x2 ∈ X.

If one of f1(X) ∪ f2(X) and f3(X) ∪ f4(X) is complete subspace of X then {f1, f3} and
{f2, f4} have a unique coincidence point in X. Furthermore, if {f1, f3} and {f2, f4} are
w-compatible then f1, f2, f3 and f4 have a unique common fixed point in X.

Proof. According to Theorem 2.2, it follows that {fm
1 , fm

3 } and {fn
2 , f

n
4 } have a unique

common fixed point s ∈ X. Now, we have

f1(s) = f1(f
m
1 (s)) = fm+1

1 (s) = fm
1 (f1(s)),

f3(s) = f3(f
m
3 (s)) = fm+1

3 (s) = fm
3 (f3(s)).

So f1(s) and f3(s) are again fixed points for the mappings fm
1 and fm

3 . Thus, f1(s) =
f3(s) = s. Using the same method to prove the Theorem 2.2, we get f2(s) = f4(s) = s.
So the proof is complete.

Corollary 2.4. Let f1, f2, f3 and f4 be self-mappings on complete generalized metric
space (X,℧), satisfying f1(X) ⊂ f4(X), f2(X) ⊂ f3(X) and there is a A ∈ Mp,p(R+)
such that A → 0 and

℧(f1x1, f2x
2) ≤ A℧(f3x1, f4x

2), ∀x1, x2 ∈ X.

If one of f1(X) ∪ f2(X) and f3(X) ∪ f4(X) is complete subspace of X then {f1, f3} and
{f2, f4} have a unique coincidence point in X. Furthermore, if {f1, f3} and {f2, f4} are
w-compatible then f1, f2, f3 and f4 have a unique common fixed point in X.

Corollary 2.5. Let f1, f2 and f4 be self-mappings on complete generalized metric space
(X,℧), satisfying f1(X) ∪ f2(X) ⊂ f4(X) and there is a A ∈ Mp,p(R+) such that A → 0
and

℧(f1x1, f2x
2) ≤ Aux1,x2(f1, f2, f4),
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where

u1
x1,x2(f1, f2, f4)

∈
{
℧(f4x1, f4x

2),℧(f1x1, f4x
1),℧(f2x2, f4x

2),
℧(f1x1, f4x

2) + ℧(f2x2, f4x
1)

2

}
,

∀x1, x2 ∈ X.

If one of f1(X)∪f2(X) or f4(X) is complete subspace of X then {f1, f4} and {f2, f4} have
a unique coincidence point in X. Furthermore, if {f1, f4} and {f2, f4} are w-compatible
then the mappings f1, f2 and f4 have a unique common fixed point in X.

Corollary 2.6. Let f1 and f4 be self-mappings on complete generalized metric space
(X,℧), satisfying f1(X) ⊂ f4(X) and there exists a A ∈ Mp,p(R+) such that A → 0 and

℧(f1x1, f1x
2) ≤ Aux1,x2(f1, f4), (2.10)

where

u1
x1,x2(f1, f4)

∈
{
℧(f4x1, f4x

2),℧(f1x1, f4x
1),℧(f1x2, f4x

2),
℧(f1x1, f4x

2) + ℧(f1x2, f4x
1)

2

}
,

(2.11)
∀x1, x2 ∈ X.

If f1(X) or f4(X) is complete subspace of X then {f1, f4} have a unique coincidence
point in X. Furthermore, if {f1, f4} is w-compatible then the mappings f1 and f4 have a
unique common fixed point in X.

Example 2.7. Let X = [0,∞) and ℧ : X2 → R2 with ℧(x1, x2) =
(
|x1 − x2|, |x1 − x2|

)
.

Then (X,℧) is a complete generalized metric space. Consider four mappings f1, f2, f3, f4 :
X → X defined by

f1x
1 =

3x1

5
, f2x

1 =
2x1

5
, f4x

1 =
5x1

3
, f3x

1 =
5x1

2
, for all x1 ∈ X.

Clearly, f1(X) ⊆ f4(X) and f2(X) ⊆ f3(X). Also, {f1, f3} and {f2, f4} have a unique
coincidence point in X. Furthermore, {f1, f3} and {f2, f4} are w-compatible, that is,

f1f3x
1 = f3f1x

1 = x1 and f2f4x
1 = f4f2x

1 = x1.

Now, for all x1, x2 ∈ X,

℧(f1x1, f2x
2) = (|3x

1

5
− 2x2

5
|, |3x

1

5
− 2x2

5
|) = 1

5
(|3x1 − 2x2|, |3x1 − 2x2|),

℧(f3x1, f4x
2) = (|5x

1

2
− 5x2

3
|, |5x

1

2
− 5x2

3
|),

℧(f1x1, f3x
1) = (|3x

1

5
− 5x1

2
|, |3x

1

5
− 5x1

2
|) = (

19x1

10
,
19x1

10
),

℧(f2x2, f4x
2) = (|2x

2

5
− 5x2

3
|, |2x

2

5
− 5x2

3
|) = (

19x2

15
,
19x2

15
),

℧(f1x1, f4x
2) + ℧(f2x2, f3x

1) = (|3x
1

5
− 5x2

3
|, |2x

2

5
− 5x1

2
|+ |2x

2

5
− 5x1

2
|, |3x

1

5
− 5x2

3
|).
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Let A =

(
3
4 0
0 3

4

)
be a matrix convergent to zero. If x1 ≥ x2 then

℧(f1x1, f2x
2) =

1

5
(|3x1 − 2x2|, |3x1 − 2x2|)

≤ (
3x1

5
,
3x1

5
)

≤ A(
19x1

10
,
19x1

10
)

= Ad(f1x
1, f3x

1)

= Aux1,x2(f1, f2, f3, f4).

If x1 ≤ x2 then

℧(f1x1, f2x
2) =

1

5
(|3x1 − 2x2|, |3x1 − 2x2|)

≤ (
2x2

5
,
2x2

5
)

≤ A(
19x2

15
,
19x2

15
)

= Ad(f2x
2, f4x

2)

= Aux1,x2(f1, f2, f3, f4).

Therefore, all the conditions of Theorem 2.2 hold. Then the mappings f1, f2, f3 and
f4 have a unique common fixed point.

Example 2.8. Let X = [0, 1]∪{2, 3} and ℧ : X2 → R2 with ℧(x1, x2) =
(
|x1 − x2|, |x1 − x2|

)
.

Then (X,℧) is a complete generalized metric space. Consider four mappings f1, f2, f3, f4 :
X → X defined by

f1x
1 =

{
1−x1

2 , x1 ∈ [0, 1]

x1, x1 ∈ {2, 3}
f2x

1 =

{
2x1

5 , x1 ∈ [0, 1]

x1, x1 ∈ {2, 3}
f3x

1 =

{
x1

2 , x1 ∈ [0, 1]

x1, x1 ∈ {2, 3}

f4x
1 =

{
3x1

5 , x1 ∈ [0, 1]

x1, x1 ∈ {2, 3}.

Clearly, f1(X) ⊆ f4(X) and f2(X) ⊆ f3(X). Also, {f1, f3} and {f2, f4} have a unique
coincidence point in X. Furthermore, {f1, f3} and {f2, f4} are w-compatible, that is,

f1f3x
1 = f3f1x

1 = x1 and f2f4x
1 = f4f2x

1 = x1.

Since ℧(f12, f23) = (|2− 3|, |2− 3|) = (1, 1) = ℧(2, 3) and ℧(f32, f43) = ℧(f12, f32) =
℧(f23, f43) = 1

2℧(f12, f43) + ℧(f23, f32) = (1, 1). Then, we have

℧(f12, f23) ≥ Au2,3(f1, f2, f3, f4),

where A =

(
1
4 0
0 1

4

)
is a matrix convergent to zero. Therefore, Theorem 2.2 cannot be

used for this example



Some Common Fixed Point Theorems for Four Mapping in Generalized Metric Spaces 435

3. Application
Let X = L2(C) be the set of comparable functions on C = [0, 1] whose square is

integrable on C. Consider the following integral equations

x1(r) =

∫
C

g1(r, s, x
1(s))ds+ u2(r),

x2(r) =

∫
C

g2(r, s, x
1(s))ds+ u2(r), (3.1)

where g1, g2 : C×C×R → R2 and u2 : C → R+ are given continuous mappings. We will
study the sufficient conditions for the existence of a common solution of integral equations
in the frame of complete generalized metric spaces. We define ℧ : X2 → R2 with

℧(x1, x2) =
(
|x1(r)− x2(r)|, |x1(r)− x2(r)|

)
.

Then ℧ is a complete generalized metric on X. Assume that the following conditions
hold:

(i) For each r, s ∈ C, we have

g1(r, s, x
1(s)) = u1

1(r) ≤
∫
C

g1(r, s, u
1
1(s))ds

and

g2(r, s, x
1(s)) = u1

2(r) ≤
∫
C

g1(r, s, u
1
2(s))ds.

(ii) There is ρ : C → M2×2(C) that the following condition satisfies

∫
C

|g1(r, s, u1(s))− g1(r, s, u
2(s))|ds ≤ ρ(r)|f4u1(t)− f4u

2(r)|,

for all r, s ∈ C with A ≥ ρ(t) where A =

(
a 0
0 b

)
is a matrix that converges to

zero.
So the integral equations (3.1) have a common solution in L2(C).

Proof. Define (f1x1)(r) =
∫
C
g1(r, s, x

1(s))ds+u2(r) and (f4x
1)(r) =

∫
C
g2(r, s, x

1(s))ds+

u2(r). From (i), we have

(f1x
1)(r) =

∫
C

g1(r, s, x
1(s))ds+ u2(r)

≥ x1(r) + u2(r)

≥ x1(r)

and

(f4x
1)(r) =

∫
C

g2(r, s, x
1(s))ds+ u2(r)

≥ x1(r) + u2(r)

≥ x1(r).
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Hence f1 and f4 are mappings on X. Now, for all comparable x1, x2 ∈ X, we have

℧(f1x1, f1x
2) =

(
|f1x1(r)− f1x

2(r)|, |f1x1(r)− f1x
2(r)|

)
=

( ∣∣∣∣∫
C

g1(r, s, x
1(s))ds−

∫
C

g1(r, s, x
2(s))ds

∣∣∣∣ ,∣∣∣∣∫
C

g1(r, s, x
1(s))ds−

∫
C

g1(r, s, x
2(s))ds

∣∣∣∣ )
≤

(∫
C

∣∣g1(r, s, x1(s))ds− g1(r, s, x
2(s))

∣∣ ds,∫
C

∣∣g1(r, s, x1(s))ds− g1(r, s, x
2(s))

∣∣ ds)
≤

(
ρ(r)|f4x1(r)− f4x

2(r)|, ρ(t)|f4x1(r)− f4x
2(r)|

)
≤ A

(
|f4x1(r)− f4x

2(r)|, |f4x1(r)− f4x
2(r)|

)
= A℧(f4x1, f4x

2)

= Aux1,x2(f1, f4),

where

u1
x1,x2(f1, f4) = ℧(f4x1, f4x

2) ∈
{
℧(f4x1, f4x

2),℧(f1x1, f4x
1),℧(f1x2, f4x

2),

℧(f1x1, f4x
2) + ℧(f1x2, f4x

1)

2

}
.

Thus equation (2.10) is hold. Now, by apply Corollary 2.6 we can get the answer of
common of integral equations (3.1) in L2(C).
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