Some Common Fixed Point Theorems for Four Mapping in Generalized Metric Spaces

Hasan Hosseinzadeh*, Samira Hadi Bonab and Khelghat Amini Sefidab
Department of Mathematics, Ardabil Branch Islamic Azad University, Ardabil, Iran
e-mail : hasan_hz2003@yahoo.com, h.hosseinzadeh@iauardabil.ac.ir (H. Hosseinzadeh); hadi.23bonab@gmail.com, s.hadibonab@iauardabil.ac.ir (S. Hadi Bonab); aminikhelghat@yahoo.com (Kh. Amini Sefidab)

Abstract

In this paper, we investigate the existence of a common fixed point for four mappings that are the pairs of weakly compatible mappings. Also, about the existence of an answer a class of integral equations, an application is presented to show the main results.

MSC: 49K35; 47H10; 20M12
Keywords: fixed points; coincidence points; common fixed point; integral equations; generalized metric spaces

Submission date: 18.10.2018 / Acceptance date: 18.01.2022

1. Introduction

In 1964, the principle of Banach contraction was described for contraction mappings in spaces equipped with vector-valued metrics. Later, in [3] the results of Perov were generalized by Filip et al. and they studied in generalized metric space (X, \mho) the FPP (fixed point property) of a self-mapping. In the present paper, the results are a generalization of Theorem 2.1 given in [3] and in the generalized metric space (X, \mho), we consider the local FPP for four mappings. We also study on the generalized metric space (X, \mho), the common FPP for four mappings.

In this article, \mathbb{R}, \mathbb{N} and \mathbb{C} are the sets of all real, natural and complex numbers, respectively.

Let (\mathcal{U}, \preceq) be an ordered Banach space, then the following usual properties for cone $\mathcal{U}_{+}=\{u \in \mathcal{U}: \theta \preceq u\}$, where θ is the zero-vector of \mathcal{U}, are holds:
(1) $\mathcal{U}_{+} \cap-\mathcal{U}_{+}=\{\theta\} ;$
(2) $\mathcal{U}_{+}+\mathcal{U}_{+} \subset \mathcal{U}_{+}$;
(3) $\varsigma \mathcal{U}_{+} \subset \mathcal{U}_{+}$, for $\varsigma \geq 0$.

Suppose the mapping $\mho: X^{2} \longrightarrow \mathcal{U}$ satisfies:
(1) $\mho\left(x^{1}, x^{2}\right) \geq \theta$ for all $x^{1}, x^{2} \in X . \mho\left(x^{1}, x^{2}\right)=\theta$, if and only if $x^{1}=x^{2}$;

[^0](2) $\mho\left(x^{1}, x^{2}\right)=\mho\left(x^{2}, x^{1}\right)$ for each $x^{1}, x^{2} \in X$;
(3) $\mho\left(x^{1}, x^{2}\right) \preceq \mho\left(x^{1}, x^{3}\right)+\mho\left(x^{3}, x^{2}\right)$ for each $x^{1}, x^{2}, x^{3} \in X$.

Then \mho is called a vector-valued metric on nonempty set X and (X, \mho) is called a vectorvalued metric space.

It was shown in [2, Theorem 2] that for lower semi-continuous function F from complete vector-valued metric space (X, \mho) on an order continuous and order complete Banach lattice \mathcal{U}, if function $T: X \longrightarrow X$ satisfied in the following condition:

$$
\mho\left(x^{1}, T\left(x^{1}\right)\right) \leq F\left(x^{1}\right)-F\left(T\left(x^{1}\right)\right), \quad \forall x^{1} \in X,
$$

then $\operatorname{Fix}(T) \neq \emptyset$ (here $\operatorname{Fix}(T)$ is the set of fixed points of a maping $T)$.
Definition 1.1. [5]. Let the mapping $\mho: X^{2} \longrightarrow \mathcal{R}^{n}$ satisfies:
(1) $\mho\left(x^{1}, x^{2}\right) \geq 0$ for all $x^{1}, x^{2} \in X$. $\mho\left(x^{1}, x^{2}\right)=0$ if and only if $x^{1}=x^{2}$;
(2) $\mho\left(x^{1}, x^{2}\right)=\mho\left(x^{2}, x^{1}\right)$ for each $x^{1}, x^{2} \in X$;
(3) $\mho\left(x^{1}, x^{2}\right) \leq \mho\left(x^{1}, x^{3}\right)+\mho\left(x^{3}, x^{2}\right)$ for each $x^{1}, x^{2}, x^{3} \in X$.

Then, the set X equipped with vector-valued metric \mho is called a generalized metric space and denoted by (X, \mho).

Let x_{1}^{1} be an element of generalized metric space X and $r=\left(r_{i}\right)_{i=1}^{n} \in \mathcal{R}^{n}$, with $r_{i}>0$ for each $1 \leq i \leq n$ then $B\left(x_{1}^{1}, r\right)=\left\{x^{1} \in X: \mho\left(x_{1}^{1}, x^{1}\right)<r\right\}$ is the open ball to center x_{1}^{1} and radius r, also $\widetilde{B}\left(x_{1}^{1}, r\right)=\left\{x^{1} \in X: \mho\left(x_{1}^{1}, x^{1}\right) \leq r\right\}$ is the closed ball to center x_{1}^{1} and radius r.

Let $f: X \longrightarrow X$ be a single-valued map. Fix $(f)=\left\{x^{1} \in X: f\left(x^{1}\right)=x^{1}\right\}$ is the set of all fixed points of f.

In this paper, $M_{p, p}\left(\mathcal{R}_{+}\right)$represents the set of all $p \times p$ matrices with components in \mathcal{R}_{+}, Θ is the zero matrix and I is the identity $p \times p$ matrix. Let $A \in M_{p, p}\left(\mathcal{R}_{+}\right)$, then A is called convergent to zero, if and only if $A^{n} \longrightarrow 0$ as $n \longrightarrow \infty$ (see [4-6, 12] for more details).

Let $\alpha, \beta \in \mathcal{R}^{n}$, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$ and $c \in \mathcal{R}$. Note that $\alpha \leq \beta$ (resp. $\alpha<\beta$), that is, $\alpha_{i} \leq \beta_{i}$ (resp. $\alpha_{i}<\beta_{i}$) for each $1 \leq i \leq n$ and also $\alpha \leq c$ (resp. $\alpha<c$), that is, $\alpha_{i} \leq c$ (resp. $\alpha_{i}<c$) for $1 \leq i \leq n$, respectively. We define

$$
\alpha+\beta:=\left(\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \ldots, \alpha_{n}+\beta_{n}\right)
$$

and

$$
\alpha \cdot \beta:=\left(\alpha_{1} \cdot \beta_{1}, \alpha_{2} \cdot \beta_{2}, \ldots, \alpha_{n} \cdot \beta_{n}\right)
$$

That are addition and multiplication on \mathbb{R}^{n} (see [3]).
Now, we have the following equivalent statements that the proof them is the classic results in matrix analysis (see $[1,6,8,11]$).
(1) $A \longrightarrow 0$;
(2) $A^{n} \longrightarrow 0$ as $n \longrightarrow \infty$;
(3) for each $\lambda \in \mathcal{C}$ with $\operatorname{det}(A-\lambda I)=0,|\lambda|<1$, in other words, the eigenvalues of A are in the open unit disc;
(4) the matrix $I-A$ is nonsingular and

$$
(I-A)^{-1}=I+A+\cdots+A^{n}+\cdots
$$

(5) $A^{n} q \longrightarrow 0$ and $q A^{n} \longrightarrow 0$ as $n \longrightarrow \infty$, for each $q \in \mathcal{R}^{n}$.

Definition 1.2. Let (X, \mho) be a generalized metric space, and $\left\{x_{n}^{1}\right\}$ be a sequence in X, then
(1) for any $\varepsilon>0$, there is a positive integer N and $x^{1} \in X$ such that $\mho\left(x_{n}^{1}, x^{1}\right)<\varepsilon$ for all $n>N$, then the sequence $\left\{x_{n}^{1}\right\}$ is said convergent.
(2) for any $\varepsilon>0$, there is N such that $\mho\left(x_{n}^{1}, x_{m}^{1}\right)<\varepsilon$ for all $m, n>N$, then the sequence $\left\{x_{n}^{1}\right\}$ is called a Cauchy sequence.
A sequence $\left\{x_{n}^{1}\right\}$ converges to a point $x^{1} \in X$ if and only if $\mho\left(x_{n}^{1}, x^{1}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Definition 1.3. [3] Let $f_{1}: X \rightarrow X$ and $f_{2}: X \rightarrow X$ are self-mappings. If $x=f_{1} x^{1}=$ $f_{2} x^{1}$ for some $x^{1} \in X$ then x^{1} is said a coincidence point of f_{1} and f_{2}, where x is said a point of the coincidence of f_{1} and f_{2}.

Definition 1.4. [3] Let $f_{1}: X \rightarrow X$ and $f_{2}: X \rightarrow X$ are self-mappings. Then f_{1} and f_{2} are called to be w-compatible if commute at coincidence points.

2. Main Results

Let (X, \mho) be a complete generalized metric space and $f_{1}, f_{2}, f_{3}, f_{4}$ be four selfmappings in (X, \mho). To start, first, we have the following lemma.

Lemma 2.1. Let f_{1}, f_{2}, f_{3} and f_{4} be self-mappings on a complete generalized metric space (X, \mho), satisfying $f_{1}(X) \subset f_{4}(X)$ and $f_{2}(X) \subset f_{3}(X)$. We define the sequences $\left\{x_{n}^{1}\right\}$ and $\left\{x_{n}^{2}\right\}$ in X by

$$
\left\{\begin{array}{l}
x_{2 n+1}^{2}=f_{1} x_{2 n}^{1}=f_{4} x_{2 n+1}^{1} \tag{2.1}\\
x_{2 n+2}^{2}=f_{2} x_{2 n+1}^{1}=f_{3} x_{2 n+2}^{1}, \quad \forall n \geq 0 .
\end{array}\right.
$$

Assuming that there is $A \in M_{p, p}\left(\mathcal{R}_{+}\right)$such that $A \rightarrow 0$ and

$$
\begin{equation*}
\mho\left(x_{n}^{2}, x_{n+1}^{2}\right) \leq A \mho\left(x_{n-1}^{2}, x_{n}^{2}\right), \quad \forall n \geq 1 . \tag{2.2}
\end{equation*}
$$

Then
(a) $\left\{x_{n}^{2}\right\}$ is converges to a point in X and $\left\{f_{1}, f_{3}\right\}$, $\left\{f_{2}, f_{4}\right\}$ have coincidence points or
(b) $\left\{x_{n}^{2}\right\}$ is a Cauchy sequence in X.

Further, if X is complete then $x_{n}^{2} \rightarrow x^{3}$ in X and

$$
\begin{equation*}
\mho\left(x_{n}^{2}, x^{3}\right) \leq A^{n}(I-A)^{-1} \mho\left(x_{0}^{2}, x_{1}^{2}\right), \quad \forall n \geq 1 . \tag{2.3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\mho\left(x_{n}^{2}, x_{n+1}^{2}\right) & \leq A \mho\left(x_{n-1}^{2}, x_{n}^{2}\right) \\
& \leq A^{2} \mho\left(x_{n-2}^{2}, x_{n-1}^{2}\right) \\
& \leq \cdots \\
& \leq A^{n} \mho\left(x_{0}^{2}, x_{1}^{2}\right) \longrightarrow 0 \quad \forall n \geq 1, \quad \text { as } \quad n \longrightarrow \infty .
\end{aligned}
$$

(a) Let there is a positive integer n such that $x_{2 n}^{2}=x_{2 n+1}^{2}$. Then, from the definition of $\left\{x_{n}^{2}\right\}$ we get

$$
f_{2} x_{2 n-1}^{1}=f_{3} x_{2 n}^{1}=f_{1} x_{2 n}^{1}=f_{4} x_{2 n+1}^{1},
$$

that f_{1} and f_{3} have a coincidence point $x_{2 n}^{1}$. Furthermore, by (2.2), one has

$$
\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right) \leq A \mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right) \rightarrow 0,
$$

and also $x_{2 n+1}^{2}=x_{2 n+2}^{2}$, that is, $f_{1} x_{2 n}^{1}=f_{4} x_{2 n+1}^{1}=f_{2} x_{2 n+1}^{1}=f_{3} x_{2 n+2}^{1}$, so f_{2} and f_{4} have a coincidence point $x_{2 n+1}^{1}$. Furthermore, (2.2) yields that $x_{2 n}^{2}=x_{m}^{2}$ for every $2 n<m$, so $\left\{x_{n}^{2}\right\}$ is converges to a point in X.

Also, a similar result is established, if $x_{2 n+1}^{2}=x_{2 n+2}^{2}$ for positive integer n.
(b) suppose that $x_{2 n}^{2} \neq x_{2 n+1}^{2}$ for all $n \geq 1$. Hence, from (2.2), we have

$$
\mho\left(x_{n}^{2}, x_{n+1}^{2}\right) \leq A^{n} \mho\left(x_{0}^{2}, x_{1}^{2}\right), \quad n \geq 1 .
$$

For each $n, m \geq 1$ with $n<m$, as a result

$$
\begin{align*}
\mho\left(x_{n}^{2}, x_{m}^{2}\right) & \leq \sum_{i=n}^{m-1} \mho\left(x_{i}^{2}, x_{i+1}^{2}\right) \leq \sum_{i=n}^{m-1} A^{i} \mho\left(x_{0}^{2}, x_{1}^{2}\right) \\
& =A^{n} \mho\left(x_{0}^{2}, x_{1}^{2}\right) \sum_{j=0}^{m-n-1} A^{j} \tag{2.4}\\
& \leq A^{n}(I-A)^{-1} \mho\left(x_{0}^{2}, x_{1}^{2}\right) \longrightarrow 0, \quad \text { as } n \longrightarrow \infty .
\end{align*}
$$

Therefore, $\left\{x_{n}^{2}\right\}$ is a Cauchy sequence in X. If X is complete, there exists a point $x^{3} \in X$ such that the sequence $x_{m}^{2} \rightarrow x^{3}$ as $m \rightarrow \infty$. Thus

$$
\begin{aligned}
\mho\left(x_{n}^{2}, x^{3}\right) & \leq \mho\left(x_{n}^{2}, x_{m}^{2}\right)+\mho\left(x_{m}^{2}, x^{3}\right) \\
& \leq A^{n}(I-A)^{-1} \mho\left(x_{0}^{2}, x_{1}^{2}\right)+\mho\left(x_{m}^{2}, x^{3}\right)
\end{aligned}
$$

which yields (2.3). So the proof is complete.
Theorem 2.2. Let f_{1}, f_{2}, f_{3} and f_{4} be self-mappings of a complete generalized metric space (X, \mho), satisfying $f_{1}(X) \subset f_{4}(X), f_{2}(X) \subset f_{3}(X)$ and there exists a $I \neq A \in$ $M_{p, p}\left(\mathcal{R}_{+}\right)$such that $A \rightarrow 0$ and

$$
\begin{equation*}
\mho\left(f_{1} x^{1}, f_{2} x^{2}\right) \leq A u_{x^{1}, x^{2}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& u_{x^{1}, x^{2}}^{1} \\
&\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \in\{ \left\{\mho\left(f_{3} x^{1}, f_{4} x^{2}\right), \mho\left(f_{1} x^{1}, f_{3} x^{1}\right), \mho\left(f_{2} x^{2}, f_{4} x^{2}\right),\right. \\
&\left.\frac{\mho\left(f_{1} x^{1}, f_{4} x^{2}\right)+\mho\left(f_{2} x^{2}, f_{3} x^{1}\right)}{2}\right\}, \quad \forall x^{1}, x^{2} \in X .
\end{aligned}
$$

If one of $f_{1}(X) \cup f_{2}(X)$ and $f_{3}(X) \cup f_{4}(X)$ is complete, then $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, if $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible then f_{1}, f_{2}, f_{3} and f_{4} have a unique common fixed point in X.
Proof. For each arbitrary point $x_{0}^{1} \in X$, We make the sequences $\left\{x_{n}^{1}\right\}$ and $\left\{x_{n}^{2}\right\}$ in X such that

$$
\left\{\begin{array}{l}
f_{1} x_{2 n}^{1}=f_{4} x_{2 n+1}^{1}=x_{2 n+1}^{2}, \\
f_{2} x_{2 n+1}^{1}=f_{3} x_{2 n+2}^{1}=x_{2 n+2}^{2}, \quad \forall n \geq 0
\end{array}\right.
$$

First show that

$$
\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right) \leq A \mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)
$$

By (2.5), we have

$$
\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)=\mho\left(f_{1} x_{2 n}^{1}, f_{2} x_{2 n+1}^{1}\right) \leq A u_{x^{1}{ }_{2 n}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right), \quad n \geq 1
$$

where

$$
\begin{aligned}
& u_{x_{2}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \in\left\{\mho\left(f_{3} x_{2 n}^{1}, f_{4} x_{2 n+1}^{1}\right), \mho\left(f_{1} x_{2 n}^{1}, f_{3} x_{2 n}^{1}\right), \mho\left(f_{2} x_{2 n+1}^{1}, f_{4} x_{2 n+1}^{1}\right),\right. \\
&\left.\frac{\left[\mho\left(f_{1} x_{2 n}^{1}, f_{4} x_{2 n+1}^{1}\right)+\mho\left(f_{2} x_{2 n+1}^{1}, f_{3} x_{2 n}^{1}\right)\right]}{2}\right\} \\
&=\left\{\mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right), \mho\left(x_{2 n+1}^{2}, x_{2 n}^{2}\right), \mho\left(x_{2 n+2}^{2}, x_{2 n+1}^{2}\right),\right. \\
&\left.\frac{\left[\mho\left(x_{2 n+1}^{2}, x_{2 n+1}^{2}\right)+\mho\left(x_{2 n+2}^{2}, x_{2 n}^{2}\right)\right]}{2}\right\} \\
&=\left\{\mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right), \mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right),\right. \\
&\left.\frac{\left[\mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)+\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)\right]}{2}\right\} .
\end{aligned}
$$

Now, if $u_{x_{2 n}^{1}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)$ then obviously $\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right) \leq$ $A \mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)$. If $u_{x^{1}{ }_{2 n}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)$ then $\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right) \leq$ $A \mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)$, that implies $\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)=0$ and so $x_{2 n+1}^{2}=x_{2 n+2}^{2}$. If

$$
u_{x_{2 n}^{1}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\frac{\left[\mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)+\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)\right]}{2},
$$

then we get

$$
\begin{aligned}
\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right) & \leq \frac{A}{2}\left[\mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)+\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right)\right] \\
& \leq \frac{A}{2} \mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right)+\frac{1}{2} \mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right),
\end{aligned}
$$

that implies

$$
\mho\left(x_{2 n+1}^{2}, x_{2 n+2}^{2}\right) \leq A \mho\left(x_{2 n}^{2}, x_{2 n+1}^{2}\right), \quad \forall n \geq 0
$$

Thus, condition (2.2) of Lemma 2.1 holds.
To show that $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have coincidence points in X. Without loss of generality, we assume that $x_{n}^{2} \neq x_{n+1}^{2}$ for each $n \geq 1$. If there is equality for some n, in this case from assertion (a) of Lemma 2.1, $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have coincidence points in X. Therefore, from assertion (b) of Lemma 2.1, the sequence $\left\{x_{n}^{2}\right\}$ is a Cauchy sequence.
(1) Suppose that $f_{3}(X) \cup f_{4}(X)$ is complete. Then there is $u^{1} \in f_{3}(X) \cup f_{4}(X)$ such that $x_{n}^{2} \rightarrow u^{1}$ as $n \rightarrow \infty$. Furthermore, the subsequences $\left\{f_{3} x_{2 n+2}^{1}\right\}=\left\{f_{2} x_{2 n+1}^{1}\right\}=\left\{x_{2 n+2}^{2}\right\}$ and $\left\{f_{4} x_{2 n+1}^{1}\right\}=\left\{f_{1} x_{2 n}^{1}\right\}=\left\{x_{2 n+1}^{2}\right\}$ of $\left\{x_{n}^{2}\right\}$, converge to the point u^{1}.
Since $u^{1} \in f_{3}(X) \cup f_{4}(X)$, we have $u^{1} \in f_{3}(X)$ or $u^{1} \in f_{4}(X)$.
If $u^{1} \in f_{3}(X)$, then we can find $u^{2} \in X$ such that $f_{3} u^{2}=u^{1}$ and assertion that $f_{1} u^{2}=u^{1}$. To show this, consider

$$
\begin{aligned}
\mho\left(f_{1} u^{2}, u^{1}\right) & \leq \mho\left(f_{1} u^{2}, f_{2} x_{2 n+1}^{1}\right)+\mho\left(f_{2} x_{2 n+1}^{1}, u^{1}\right) \\
& \leq A u_{u^{2}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)+\mho\left(f_{2} x_{2 n+1}^{1}, u^{1}\right)
\end{aligned}
$$

where

$$
\begin{align*}
u_{u^{2}, x_{2 n+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \in\{ & \mho\left(f_{3} u^{2}, f_{4} x_{2 n+1}^{1}\right), \mho\left(f_{1} u^{2}, f_{3} u^{2}\right), \mho\left(f_{2} x_{2 n+1}^{1}, f_{4} x_{2 n+1}^{1}\right) \\
& \left.\frac{\mho\left(f_{1} u^{2}, f_{4} x_{2 n+1}^{1}\right)+\mho\left(f_{2} x_{2 n+1}^{1}, f_{3} u^{2}\right)}{2}\right\} \tag{2.6}
\end{align*}
$$

for each $n \geq 1$. Then, by (2.6), We have the following conditions:
(i) If $u_{u^{2}, x_{2 n_{k}+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(f_{3} u^{2}, f_{4} x_{2 n_{k}+1}^{1}\right)$ for all $k \geq 1$, then we have

$$
\mho\left(f_{1} u^{2}, u^{1}\right) \leq A \mho\left(f_{3} u^{2}, f_{4} x_{2 n_{k}+1}^{1}\right)+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, u^{1}\right)
$$

hence, $\mho\left(f_{1} u^{2}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
(ii) If $u_{u^{2}, x_{2 n_{k}}^{1}+1}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(f_{1} u^{2}, f_{3} u^{2}\right)$, then we have

$$
\mho\left(f_{1} u^{2}, u^{1}\right) \leq A \mho\left(f_{1} u^{2}, f_{3} u^{2}\right)+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, u^{1}\right)
$$

hence, $\mho\left(f_{1} u^{2}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
(iii) If $u_{u^{2}, x_{2 n_{k}+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(f_{2} x_{2 n_{k}+1}^{1}, f_{4} x_{2 n_{k}+1}^{1}\right)$, then we have

$$
\mho\left(f_{1} u^{2}, u^{1}\right) \leq A \mho\left(f_{2} x_{2 n_{k}+1}^{1}, f_{4} x_{2 n_{k}+1}^{1}\right)+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, u^{1}\right)
$$

hence, $\mho\left(f_{1} u^{2}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
(iv) If $u_{u^{2}, x_{2 n_{k}+1}^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\frac{\mho\left(f_{1} u^{2}, f_{4} x_{2 n_{k}+1}^{1}\right)+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, s v\right)}{2}$, then we have

$$
\begin{aligned}
\mho\left(f_{1} u^{2}, u^{1}\right) & \leq A \frac{\mho\left(f_{1} u^{2}, f_{4} x_{2 n_{k}+1}^{1}\right)+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, s v\right)}{2}+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, u^{1}\right) \\
& \leq \frac{A}{2} \mho\left(f_{1} u^{2}, f_{4} x_{2 n_{k}+1}^{1}\right)+\frac{1}{2} \mho\left(f_{2} x_{2 n_{k}+1}^{1}, s v\right)+\mho\left(f_{2} x_{2 n_{k}+1}^{1}, u^{1}\right)
\end{aligned}
$$

hence, $\mho\left(f_{1} u^{2}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
Therefore, from (i)-(iv), we have $\mho\left(f_{1} u^{2}, u^{1}\right)=0$. As a result, we have $f_{1} u^{2}=f_{3} u^{2}=$ u^{1} and since $u^{1} \in f_{1}(X) \subset f_{4}(X)$, there exists $u^{3} \in X$ such that $f_{4} u^{3}=u^{1}$.

Now, we show that $f_{2} u^{3}=u^{1}$. Consider

$$
\begin{aligned}
\mho\left(f_{2} u^{3}, u^{1}\right) & \leq \mho\left(f_{2} u^{3}, f_{1} x_{2 n}^{1}\right)+\mho\left(f_{1} x_{2 n}^{1}, u^{1}\right) \\
& =\mho\left(f_{1} x_{2 n}^{1}, f_{2} u^{3}\right)+\mho\left(f_{1} x_{2 n}^{1}, u^{1}\right) \\
& \leq A u_{x_{2 n}^{1}, u^{3}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)+\mho\left(f_{1} x_{2 n}^{1}, u^{1}\right)
\end{aligned}
$$

where

$$
\begin{align*}
& u_{x_{2 n}^{1}, u^{3}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \in\left\{\mho\left(f_{3} x_{2 n}^{1}, f_{4} u^{3}\right), \mho\left(f_{1} x_{2 n}^{1}, f_{3} x_{2 n}^{1}\right), \mho\left(f_{2} u^{3}, f_{4} u^{3}\right),\right. \\
&\left.\frac{\mho\left(f_{1} x_{2 n}^{1}, f_{4} u^{3}\right)+\mho\left(f_{2} u^{3}, f_{3} x_{2 n}^{1}\right)}{2}\right\} \tag{2.7}
\end{align*}
$$

for each $n \geq 1$. Then, from (2.7), we have the following four:
(v) If $u_{x_{2 n_{k}}^{1}, u^{3}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(f_{3} x_{2 n_{k}}^{1}, f_{4} u^{3}\right)$ for each $k \geq 1$, then

$$
\mho\left(f_{2} u^{3}, u^{1}\right) \leq A \mho\left(f_{3} x_{2 n_{k}}^{1}, f_{4} u^{3}\right)+\mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right)
$$

hence, $\mho\left(f_{2} u^{3}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
(vi) If $u_{x_{2 n_{k}}, u^{3}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(f_{1} x_{2 n_{k}}^{1}, f_{3} x_{2 n_{k}}^{1}\right)$, then

$$
\mho\left(f_{2} u^{3}, u^{1}\right) \leq A \mho\left(f_{1} x_{2 n_{k}}^{1}, f_{3} x_{2 n_{k}}^{1}\right)+\mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right)
$$

hence, $\mho\left(f_{2} u^{3}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
(vii) If $u_{x_{2 n_{k}}^{1}, u^{3}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\mho\left(f_{2} u^{3}, f_{4} u^{3}\right)$, then

$$
\begin{aligned}
\mho\left(f_{2} u^{3}, u^{1}\right) & \leq A \mho\left(f_{2} u^{3}, f_{4} u^{3}\right)+\mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right) \\
& =A \mho\left(f_{2} u^{3}, u^{1}\right)+\mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right),
\end{aligned}
$$

hence, $\mho\left(f_{2} u^{3}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
(ix) If $u_{x_{2 n_{k}}^{1}, u^{3}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\frac{\mho\left(f_{1} x_{2 n_{k}}^{1}, f_{4} u^{3}\right)+\mho\left(f_{2} u^{3}, f_{3} x_{2 n_{k}}^{1}\right)}{2}$, then

$$
\begin{aligned}
\mho\left(f_{2} u^{3}, u^{1}\right) & \leq A \frac{\mho\left(f_{1} x_{2 n_{k}}^{1}, f_{4} u^{3}\right)+\mho\left(f_{2} u^{3}, f_{3} x_{2 n_{k}}^{1}\right)}{2}+\mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right) \\
& \leq \frac{A}{2} \mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right)+\frac{1}{2} \mho\left(f_{2} u^{3}, f_{3} x_{2 n_{k}}^{1}\right)+\mho\left(f_{1} x_{2 n_{k}}^{1}, u^{1}\right)
\end{aligned}
$$

hence, $\mho\left(f_{2} u^{3}, u^{1}\right) \rightarrow 0$, as $k \rightarrow \infty$.
Therefore, from (v)-(ix), $\mho\left(f_{2} u^{3}, u^{1}\right)=0$ and following the same arguments as above, we get $f_{2} u^{3}=f_{4} u^{3}=u^{1}$. Hence $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a common coincidence point in X.

Now, if $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible, $f_{1} u^{1}=f_{1} f_{3} v=f_{3} f_{1} v=f_{3} u^{1}:=u_{1}^{3}$ and $f_{2} u^{1}=f_{2} f_{4} w=f_{4} f_{2} w=f_{4} u^{1}:=u_{2}^{3}$. Then

$$
\mho\left(u_{1}^{3}, u_{2}^{3}\right)=\mho\left(f_{1} u^{1}, f_{2} u^{1}\right) \leq A u_{u^{1}, u^{1}}\left(f_{1}, f_{2}, f_{3}, f_{4}\right),
$$

where

$$
\begin{align*}
\left.u_{u^{1}, u^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)\right) \in & \left\{\mho\left(f_{3} u^{1}, f_{4} u^{1}\right), \mho\left(f_{1} u^{1}, f_{3} u^{1}\right), \mho\left(f_{2} u^{1}, f_{4} u^{1}\right),\right. \\
& \left.\frac{\mho\left(f_{1} u^{1}, f_{4} u^{1}\right)+\mho\left(f_{2} u^{1}, f_{3} u^{1}\right)}{2}\right\} \tag{2.8}\\
= & \mho\left(u_{1}^{3}, u_{2}^{3}\right) .
\end{align*}
$$

Therefore, $\mho\left(u_{1}^{3}, u_{2}^{3}\right) \leq A \mho\left(u_{1}^{3}, u_{2}^{3}\right)$, which implies that $u_{1}^{3}=u_{2}^{3}$ and thus $f_{1} u^{1}=f_{2} u^{1}=$ $f_{3} u^{1}=f_{4} u^{1}$, that is, the point u^{1} is a coincidence point of $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$. Now, we show that $u^{1}=f_{2} u^{1}$. Indeed, we have

$$
\mho\left(u^{1}, f_{2} u^{1}\right)=\mho\left(f_{1} u^{2}, f_{2} u^{1}\right) \leq A u_{u^{2}, u^{1}}\left(f_{1}, f_{2}, f_{3}, f_{4}\right),
$$

where

$$
\begin{aligned}
\left.u_{u^{2}, u^{1}}^{1}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)\right) \in & \left\{\mho\left(f_{3} u^{2}, f_{4} u^{1}\right), \mho\left(f_{1} u^{2}, f_{3} u^{2}\right), \mho\left(f_{2} u^{1}, f_{4} u^{1}\right),\right. \\
& \left.\frac{\mho\left(f_{1} u^{2}, f_{4} u^{1}\right)+\mho\left(f_{2} u^{1}, f_{3} u^{2}\right)}{2}\right\} \\
= & \left\{\mho\left(u^{1}, f_{2} u^{1}\right)\right\} .
\end{aligned}
$$

So $\mho\left(u^{1}, f_{2} u^{1}\right) \leq A \mho\left(u^{1}, f_{2} u^{1}\right)$, which implies that $f_{2} u^{1}=u^{1}$ and thus u^{1} is a common fixed point of f_{1}, f_{2}, f_{3} and f_{4}.

To prove the uniqueness of the point u^{1}, we assume that $u^{1 *}$ is another common fixed point of f_{1}, f_{2}, f_{3} and f_{4}. By (2.5), it concludes that

$$
\mho\left(u^{1}, u^{1 *}\right)=\mho\left(f_{1} u^{1}, f_{2} u^{1 *}\right) \leq A u_{u^{1}, u^{1 *}}\left(f_{1}, f_{2}, f_{3}, f_{4}\right),
$$

where

$$
\begin{aligned}
\left.u_{u^{1}, u^{1 *}}^{1 *}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)\right) \in & \left\{\mho\left(f_{3} u^{1}, f_{4} u^{1 *}\right), \mho\left(f_{1} u^{1}, f_{3} u^{1}\right), \mho\left(f_{2} u^{1 *}, f_{4} u^{1 *}\right)\right. \\
& \left.\frac{\mho\left(f_{1} u^{1}, f_{4} u^{1 *}\right)+\mho\left(f_{2} u^{1 *}, f_{3} u^{1}\right)}{2}\right\} \\
= & \mho\left(u^{1}, f_{2} u^{1 *}\right)
\end{aligned}
$$

that implies that $u^{1}=u^{1 *}$.
(2) Let $f_{1}(X) \cup f_{2}(X)$ is complete and $u^{1} \in f_{4}(X)$. In this case, the proof is similar to the completeness of $f_{3}(X) \cup f_{4}(X)$ and $u^{1} \in f_{4}(X)$.

Corollary 2.3. Let f_{1}, f_{2}, f_{3} and f_{4} be self-mappings on complete generalized metric space (X, \mho), satisfying $f_{1}(X) \subset f_{4}(X), f_{2}(X) \subset f_{3}(X)$ and for some $m, n \geq 1$ there is a $A \in M_{p, p}\left(\mathcal{R}_{+}\right)$such that $A \rightarrow 0$ and

$$
\begin{equation*}
\mho\left(f_{1}^{m} x^{1}, f_{2}^{n} x^{2}\right) \leq A u_{x^{1}, x^{2}}^{1}\left(f_{1}^{m}, f_{2}^{n}, f_{3}^{m}, f_{4}^{n}\right) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
u_{x^{1}, x^{2}}^{1}\left(f_{1}^{m}, f_{2}^{n}, f_{3}^{m}, f_{4}^{n}\right) \in\{ & \mho\left(f_{3}^{m} x^{1}, f_{4}^{n} x^{2}\right), \mho\left(f_{1}^{m} x^{1}, f_{3}^{m} x^{1}\right), \mho\left(f_{2}^{n} x^{2}, f_{4}^{n} x^{2}\right), \\
& \left.\frac{\mho\left(f_{1}^{m} x^{1}, f_{4}^{n} x^{2}\right)+\mho\left(f_{2}^{n} x^{2}, f_{3}^{m} x^{1}\right)}{2}\right\}, \quad \forall x^{1}, x^{2} \in X .
\end{aligned}
$$

If one of $f_{1}(X) \cup f_{2}(X)$ and $f_{3}(X) \cup f_{4}(X)$ is complete subspace of X then $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, if $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible then f_{1}, f_{2}, f_{3} and f_{4} have a unique common fixed point in X.
Proof. According to Theorem 2.2, it follows that $\left\{f_{1}^{m}, f_{3}^{m}\right\}$ and $\left\{f_{2}^{n}, f_{4}^{n}\right\}$ have a unique common fixed point $s \in X$. Now, we have

$$
\begin{aligned}
f_{1}(s) & =f_{1}\left(f_{1}^{m}(s)\right)=f_{1}^{m+1}(s)=f_{1}^{m}\left(f_{1}(s)\right), \\
f_{3}(s) & =f_{3}\left(f_{3}^{m}(s)\right)=f_{3}^{m+1}(s)=f_{3}^{m}\left(f_{3}(s)\right)
\end{aligned}
$$

So $f_{1}(s)$ and $f_{3}(s)$ are again fixed points for the mappings f_{1}^{m} and f_{3}^{m}. Thus, $f_{1}(s)=$ $f_{3}(s)=s$. Using the same method to prove the Theorem 2.2, we get $f_{2}(s)=f_{4}(s)=s$. So the proof is complete.

Corollary 2.4. Let f_{1}, f_{2}, f_{3} and f_{4} be self-mappings on complete generalized metric space (X, \mho), satisfying $f_{1}(X) \subset f_{4}(X), f_{2}(X) \subset f_{3}(X)$ and there is a $A \in M_{p, p}\left(\mathcal{R}_{+}\right)$ such that $A \rightarrow 0$ and

$$
\mho\left(f_{1} x^{1}, f_{2} x^{2}\right) \leq A \mho\left(f_{3} x^{1}, f_{4} x^{2}\right), \quad \forall x^{1}, x^{2} \in X
$$

If one of $f_{1}(X) \cup f_{2}(X)$ and $f_{3}(X) \cup f_{4}(X)$ is complete subspace of X then $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, if $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible then f_{1}, f_{2}, f_{3} and f_{4} have a unique common fixed point in X.

Corollary 2.5. Let f_{1}, f_{2} and f_{4} be self-mappings on complete generalized metric space (X, \mho), satisfying $f_{1}(X) \cup f_{2}(X) \subset f_{4}(X)$ and there is a $A \in M_{p, p}\left(\mathcal{R}_{+}\right)$such that $A \rightarrow 0$ and

$$
\mho\left(f_{1} x^{1}, f_{2} x^{2}\right) \leq A u_{x^{1}, x^{2}}\left(f_{1}, f_{2}, f_{4}\right)
$$

where

$$
\begin{aligned}
& u_{x^{1}, x^{2}}^{1}\left(f_{1}, f_{2}, f_{4}\right) \\
& \in\left\{\mho\left(f_{4} x^{1}, f_{4} x^{2}\right), \mho\left(f_{1} x^{1}, f_{4} x^{1}\right), \mho\left(f_{2} x^{2}, f_{4} x^{2}\right), \frac{\mho\left(f_{1} x^{1}, f_{4} x^{2}\right)+\mho\left(f_{2} x^{2}, f_{4} x^{1}\right)}{2}\right\}, \\
& \forall x^{1}, x^{2} \in X
\end{aligned}
$$

If one of $f_{1}(X) \cup f_{2}(X)$ or $f_{4}(X)$ is complete subspace of X then $\left\{f_{1}, f_{4}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, if $\left\{f_{1}, f_{4}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible then the mappings f_{1}, f_{2} and f_{4} have a unique common fixed point in X.

Corollary 2.6. Let f_{1} and f_{4} be self-mappings on complete generalized metric space (X, \mho), satisfying $f_{1}(X) \subset f_{4}(X)$ and there exists a $A \in M_{p, p}\left(\mathcal{R}_{+}\right)$such that $A \rightarrow 0$ and

$$
\begin{equation*}
\mho\left(f_{1} x^{1}, f_{1} x^{2}\right) \leq A u_{x^{1}, x^{2}}\left(f_{1}, f_{4}\right) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{x^{1}, x^{2}}^{1}\left(f_{1}, f_{4}\right) \\
& \in\left\{\mho\left(f_{4} x^{1}, f_{4} x^{2}\right), \mho\left(f_{1} x^{1}, f_{4} x^{1}\right), \mho\left(f_{1} x^{2}, f_{4} x^{2}\right), \frac{\mho\left(f_{1} x^{1}, f_{4} x^{2}\right)+\mho\left(f_{1} x^{2}, f_{4} x^{1}\right)}{2}\right\}, \tag{2.11}
\end{align*}
$$

$$
\forall x^{1}, x^{2} \in X
$$

If $f_{1}(X)$ or $f_{4}(X)$ is complete subspace of X then $\left\{f_{1}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, if $\left\{f_{1}, f_{4}\right\}$ is w-compatible then the mappings f_{1} and f_{4} have a unique common fixed point in X.

Example 2.7. Let $X=[0, \infty)$ and $\mho: X^{2} \rightarrow \mathbb{R}^{2}$ with $\mho\left(x^{1}, x^{2}\right)=\left(\left|x^{1}-x^{2}\right|,\left|x^{1}-x^{2}\right|\right)$. Then (X, \mho) is a complete generalized metric space. Consider four mappings $f_{1}, f_{2}, f_{3}, f_{4}$: $X \rightarrow X$ defined by

$$
f_{1} x^{1}=\frac{3 x^{1}}{5}, \quad f_{2} x^{1}=\frac{2 x^{1}}{5}, \quad f_{4} x^{1}=\frac{5 x^{1}}{3}, \quad f_{3} x^{1}=\frac{5 x^{1}}{2}, \quad \text { for all } x^{1} \in X .
$$

Clearly, $f_{1}(X) \subseteq f_{4}(X)$ and $f_{2}(X) \subseteq f_{3}(X)$. Also, $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible, that is,

$$
f_{1} f_{3} x^{1}=f_{3} f_{1} x^{1}=x^{1} \quad \text { and } f_{2} f_{4} x^{1}=f_{4} f_{2} x^{1}=x^{1}
$$

Now, for all $x^{1}, x^{2} \in X$,
$\mho\left(f_{1} x^{1}, f_{2} x^{2}\right)=\left(\left|\frac{3 x^{1}}{5}-\frac{2 x^{2}}{5}\right|,\left|\frac{3 x^{1}}{5}-\frac{2 x^{2}}{5}\right|\right)=\frac{1}{5}\left(\left|3 x^{1}-2 x^{2}\right|,\left|3 x^{1}-2 x^{2}\right|\right)$,
$\mho\left(f_{3} x^{1}, f_{4} x^{2}\right)=\left(\left|\frac{5 x^{1}}{2}-\frac{5 x^{2}}{3}\right|,\left|\frac{5 x^{1}}{2}-\frac{5 x^{2}}{3}\right|\right)$,
$\mho\left(f_{1} x^{1}, f_{3} x^{1}\right)=\left(\left|\frac{3 x^{1}}{5}-\frac{5 x^{1}}{2}\right|,\left|\frac{3 x^{1}}{5}-\frac{5 x^{1}}{2}\right|\right)=\left(\frac{19 x^{1}}{10}, \frac{19 x^{1}}{10}\right)$,
$\mho\left(f_{2} x^{2}, f_{4} x^{2}\right)=\left(\left|\frac{2 x^{2}}{5}-\frac{5 x^{2}}{3}\right|,\left|\frac{2 x^{2}}{5}-\frac{5 x^{2}}{3}\right|\right)=\left(\frac{19 x^{2}}{15}, \frac{19 x^{2}}{15}\right)$,
$\mho\left(f_{1} x^{1}, f_{4} x^{2}\right)+\mho\left(f_{2} x^{2}, f_{3} x^{1}\right)=\left(\left|\frac{3 x^{1}}{5}-\frac{5 x^{2}}{3}\right|,\left|\frac{2 x^{2}}{5}-\frac{5 x^{1}}{2}\right|+\left|\frac{2 x^{2}}{5}-\frac{5 x^{1}}{2}\right|,\left|\frac{3 x^{1}}{5}-\frac{5 x^{2}}{3}\right|\right)$.

Let $A=\left(\begin{array}{cc}\frac{3}{4} & 0 \\ 0 & \frac{3}{4}\end{array}\right)$ be a matrix convergent to zero. If $x^{1} \geq x^{2}$ then

$$
\begin{aligned}
\mho\left(f_{1} x^{1}, f_{2} x^{2}\right) & =\frac{1}{5}\left(\left|3 x^{1}-2 x^{2}\right|,\left|3 x^{1}-2 x^{2}\right|\right) \\
& \leq\left(\frac{3 x^{1}}{5}, \frac{3 x^{1}}{5}\right) \\
& \leq A\left(\frac{19 x^{1}}{10}, \frac{19 x^{1}}{10}\right) \\
& =A d\left(f_{1} x^{1}, f_{3} x^{1}\right) \\
& =A u_{x^{1}, x^{2}}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
\end{aligned}
$$

If $x^{1} \leq x^{2}$ then

$$
\begin{aligned}
\mho\left(f_{1} x^{1}, f_{2} x^{2}\right) & =\frac{1}{5}\left(\left|3 x^{1}-2 x^{2}\right|,\left|3 x^{1}-2 x^{2}\right|\right) \\
& \leq\left(\frac{2 x^{2}}{5}, \frac{2 x^{2}}{5}\right) \\
& \leq A\left(\frac{19 x^{2}}{15}, \frac{19 x^{2}}{15}\right) \\
& =A d\left(f_{2} x^{2}, f_{4} x^{2}\right) \\
& =A u_{x^{1}, x^{2}}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
\end{aligned}
$$

Therefore, all the conditions of Theorem 2.2 hold. Then the mappings f_{1}, f_{2}, f_{3} and f_{4} have a unique common fixed point.

Example 2.8. Let $X=[0,1] \cup\{2,3\}$ and $\mho: X^{2} \rightarrow \mathbb{R}^{2}$ with $\mho\left(x^{1}, x^{2}\right)=\left(\left|x^{1}-x^{2}\right|,\left|x^{1}-x^{2}\right|\right)$. Then (X, \mho) is a complete generalized metric space. Consider four mappings $f_{1}, f_{2}, f_{3}, f_{4}$: $X \rightarrow X$ defined by

$$
\begin{aligned}
& f_{1} x^{1}=\left\{\begin{array}{l}
\frac{1-x^{1}}{2}, x^{1} \in[0,1] \\
x^{1},
\end{array} x^{1} \in\{2,3\}\right.
\end{aligned} \quad f_{2} x^{1}=\left\{\begin{array}{ll}
\frac{2 x^{1}}{5}, & x^{1} \in[0,1] \\
x^{1}, & x^{1} \in\{2,3\}
\end{array} \quad f_{3} x^{1}=\left\{\begin{array}{ll}
\frac{x^{1}}{2}, & x^{1} \in[0,1] \\
x^{1}, & x^{1} \in\{2,3\}
\end{array}\right\}\right.
$$

Clearly, $f_{1}(X) \subseteq f_{4}(X)$ and $f_{2}(X) \subseteq f_{3}(X)$. Also, $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ have a unique coincidence point in X. Furthermore, $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{4}\right\}$ are w-compatible, that is,

$$
f_{1} f_{3} x^{1}=f_{3} f_{1} x^{1}=x^{1} \quad \text { and } f_{2} f_{4} x^{1}=f_{4} f_{2} x^{1}=x^{1}
$$

Since $\mho\left(f_{1} 2, f_{2} 3\right)=(|2-3|,|2-3|)=(1,1)=\mho(2,3)$ and $\mho\left(f_{3} 2, f_{4} 3\right)=\mho\left(f_{1} 2, f_{3} 2\right)=$ $\mho\left(f_{2} 3, f_{4} 3\right)=\frac{1}{2} \mho\left(f_{1} 2, f_{4} 3\right)+\mho\left(f_{2} 3, f_{3} 2\right)=(1,1)$. Then, we have

$$
\mho\left(f_{1} 2, f_{2} 3\right) \geq A u_{2,3}\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
$$

where $A=\left(\begin{array}{cc}\frac{1}{4} & 0 \\ 0 & \frac{1}{4}\end{array}\right)$ is a matrix convergent to zero. Therefore, Theorem 2.2 cannot be used for this example

3. Application

Let $X=L^{2}(C)$ be the set of comparable functions on $C=[0,1]$ whose square is integrable on C. Consider the following integral equations

$$
\begin{align*}
& x^{1}(r)=\int_{C} g_{1}\left(r, s, x^{1}(s)\right) d s+u^{2}(r) \\
& x^{2}(r)=\int_{C} g_{2}\left(r, s, x^{1}(s)\right) d s+u^{2}(r) \tag{3.1}
\end{align*}
$$

where $g_{1}, g_{2}: C \times C \times \mathcal{R} \rightarrow \mathcal{R}^{2}$ and $u^{2}: C \rightarrow \mathcal{R}_{+}$are given continuous mappings. We will study the sufficient conditions for the existence of a common solution of integral equations in the frame of complete generalized metric spaces. We define $\mho: X^{2} \rightarrow \mathcal{R}^{2}$ with

$$
\mho\left(x^{1}, x^{2}\right)=\left(\left|x^{1}(r)-x^{2}(r)\right|,\left|x^{1}(r)-x^{2}(r)\right|\right) .
$$

Then \mho is a complete generalized metric on X. Assume that the following conditions hold:
(i) For each $r, s \in C$, we have

$$
g_{1}\left(r, s, x^{1}(s)\right)=u_{1}^{1}(r) \leq \int_{C} g_{1}\left(r, s, u_{1}^{1}(s)\right) d s
$$

and

$$
g_{2}\left(r, s, x^{1}(s)\right)=u_{2}^{1}(r) \leq \int_{C} g_{1}\left(r, s, u_{2}^{1}(s)\right) d s
$$

(ii) There is $\rho: C \rightarrow M_{2 \times 2}(C)$ that the following condition satisfies

$$
\int_{C}\left|g_{1}\left(r, s, u^{1}(s)\right)-g_{1}\left(r, s, u^{2}(s)\right)\right| d s \leq \rho(r)\left|f_{4} u^{1}(t)-f_{4} u^{2}(r)\right|
$$

for all $r, s \in C$ with $A \geq \rho(t)$ where $A=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$ is a matrix that converges to zero.
So the integral equations (3.1) have a common solution in $L^{2}(C)$.
Proof. Define $\left(f_{1} x^{1}\right)(r)=\int_{C} g_{1}\left(r, s, x^{1}(s)\right) d s+u^{2}(r)$ and $\left(f_{4} x^{1}\right)(r)=\int_{C} g_{2}\left(r, s, x^{1}(s)\right) d s+$ $u^{2}(r)$. From (i), we have

$$
\begin{aligned}
\left(f_{1} x^{1}\right)(r) & =\int_{C} g_{1}\left(r, s, x^{1}(s)\right) d s+u^{2}(r) \\
& \geq x^{1}(r)+u^{2}(r) \\
& \geq x^{1}(r)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f_{4} x^{1}\right)(r) & =\int_{C} g_{2}\left(r, s, x^{1}(s)\right) d s+u^{2}(r) \\
& \geq x^{1}(r)+u^{2}(r) \\
& \geq x^{1}(r)
\end{aligned}
$$

Hence f_{1} and f_{4} are mappings on X. Now, for all comparable $x^{1}, x^{2} \in X$, we have

$$
\begin{aligned}
\mho\left(f_{1} x^{1}, f_{1} x^{2}\right)= & \left(\left|f_{1} x^{1}(r)-f_{1} x^{2}(r)\right|,\left|f_{1} x^{1}(r)-f_{1} x^{2}(r)\right|\right) \\
= & \left(\left|\int_{C} g_{1}\left(r, s, x^{1}(s)\right) d s-\int_{C} g_{1}\left(r, s, x^{2}(s)\right) d s\right|\right. \\
& \left.\left|\int_{C} g_{1}\left(r, s, x^{1}(s)\right) d s-\int_{C} g_{1}\left(r, s, x^{2}(s)\right) d s\right|\right) \\
\leq & \left(\int_{C}\left|g_{1}\left(r, s, x^{1}(s)\right) d s-g_{1}\left(r, s, x^{2}(s)\right)\right| d s,\right. \\
& \left.\int_{C}\left|g_{1}\left(r, s, x^{1}(s)\right) d s-g_{1}\left(r, s, x^{2}(s)\right)\right| d s\right) \\
\leq & \left(\rho(r)\left|f_{4} x^{1}(r)-f_{4} x^{2}(r)\right|, \rho(t)\left|f_{4} x^{1}(r)-f_{4} x^{2}(r)\right|\right) \\
\leq & A\left(\left|f_{4} x^{1}(r)-f_{4} x^{2}(r)\right|,\left|f_{4} x^{1}(r)-f_{4} x^{2}(r)\right|\right) \\
= & A \mho\left(f_{4} x^{1}, f_{4} x^{2}\right) \\
= & A u_{x^{1}, x^{2}}\left(f_{1}, f_{4}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
u_{x^{1}, x^{2}}^{1}\left(f_{1}, f_{4}\right)=\mho\left(f_{4} x^{1}, f_{4} x^{2}\right) \in\{ & \left\{\mho\left(f_{4} x^{1}, f_{4} x^{2}\right), \mho\left(f_{1} x^{1}, f_{4} x^{1}\right), \mho\left(f_{1} x^{2}, f_{4} x^{2}\right),\right. \\
& \left.\frac{\mho\left(f_{1} x^{1}, f_{4} x^{2}\right)+\mho\left(f_{1} x^{2}, f_{4} x^{1}\right)}{2}\right\} .
\end{aligned}
$$

Thus equation (2.10) is hold. Now, by apply Corollary 2.6 we can get the answer of common of integral equations (3.1) in $L^{2}(C)$.

Acknowledgements

The authors would like to thank the referees for their comments and suggestions.

References

[1] G. Allaire and S. M. Kaber, Numerical linear algebra, Springer-New York, 2008.
[2] R. P. Agarwal and M. A. Khamsi, Extension of caristis fixed point theorem to vector valued metric spaces, Nonlin. Anal. 2010.
[3] A. D. Filip and Petruşel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory Appl. (2010) 15 pages.
[4] S. Hadi Bonab, R. Abazari, A. Bagheri Vakilabad and H. Hosseinzadeh, Generalized metric spaces endowed with vector-valued metrics and matrix equations by tripled fixed point theorems, J. Inequal. Appl. (2020) 16 pages.
[5] H. Hosseinzadeh, A. Jabbari and A. Razani, Fixed point theorems and common fixed point theorems on spaces equipped with vector-valued metrics, Ukrainian Math. J. 65 (5) (2013) 734-740.
[6] V. Parvaneh, S. Hadi Bonab, H. Hosseinzadeh and H. Aydi, A Tripled Fixed Point Theorem in C^{*}-Algebra-Valued Metric Spaces and Application in Integral Equations, Adv. Math. Phys. 2021 (2021) 1-6.
[7] A. I. Perov, On the Cauchy problemma for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964) 115-134.
[8] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math Comp. Modell. 49 (2009) 703-708.
[9] H. Rahimi, M. Abbas and Gh. Soleimani Rad, Common fixed point results for four mappings on ordered vector metric spaces, Faculty of Science and Mathematics, Universiry of Niš, Serbia (2015) 865-878.
[10] K. P. R. Rao, Sk. Sadik and S. Manro, Presic type fixed point theorem for four maps in metric spaces, Hindawi Publishing Corporation, J. Math. (2016) 4 pages.
[11] I. A. Rus, Principles and applications of the fixed point theory, Dacia, Cluj-Napoca, Romania, 1979.
[12] R. S. Varga, Matrix iterative analysis, Springer-Berlin, 2000.

[^0]: *Corresponding author.

