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1. Introduction
There are many research articles about sequence of integers and applications thereof

(see [1–4]). In 2016, Srisawat and Sriprad[5] studied some identities involving Pell and
Pell-Lucas numbers by using matrix methods and they presented the solutions of some
Diophantine equations by employing these identities. The above articles were the moti-
vation to apply matrix methods to k-Fibonacci and k-Lucas numbers, and in this work
we are thus interested in discovering k-Fibonacci and k-Lucas identities, together with
some applications.

The k-Fibonacci sequence {Fk,n} is an additive sequence similar to the Fibonacci
sequence, defined by the recurrence relation Fk,n = kFk,n−1 + Fk,n−2 for all n ≥ 2 with
initial values Fk,0 = 0 and Fk,1 = 1. The first few terms of {Fk,n} are 0, 1, k, k2 + 1, k3 +
2k, . . .. A number in the sequence is called a k-Fibonacci number and we denote the
nth k-Fibonacci number by Fk,n. The k-Fibonacci numbers for negative subscripts are
defined as Fk,−n = (−1)

−n+1
Fk,n, similarly, the k-Lucas sequence {Lk,n} is defined by

the same recurrence relation as the k-Fibonacci sequence, but with different initial values:
Lk,n = kLk,n−1 +Lk,n−2, for all n ≥ 2 while the initial values are Lk,0 = 2 and Lk,1 = k.
The first few terms of {Lk,n} are 2, k, k2+2, k3+3k, k4+4k2+2, . . .. The numbers in this
sequence are called k-Lucas numbers and we denote the nth k-Lucas number by Lk,n. The
k-Lucas numbers for negative subscripts are defined as Lk,−n = (−1)

−n
Lk,n. It can be
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seen that Lk,n = Fk,n+1 +Fk,n−1 for all n ∈ Z. For {Fk,n} and {Lk,n}, the characteristic
equation is x2 − kx − 1 = 0 with roots α = k+

√
k2+4
2 and β = k−

√
k2+4
2 , while the Binet

formulae are Fk,n = αn−βn

α−β and Lk,n = αn+βn, respectively, for all n ≥ 0. (see [4, 6, 7]).

2. Main Results
In this section, we will derive some identities for the k-Fibonacci and k-Lucas numbers

by using the matrix approach. We begin with the following lemma:

Lemma 2.1. Let Xbe a square matrix satisfying X2 = kX + I. Then Xn = Fk,nX +
Fk,n−1I for all n ∈ Z.

Proof. If n = 0, then the assertion is obvious. Next, we will use mathematical induction
to show that Xn = Fk,nX + Fk,n−1I for all n ∈ N.

When n = 1, we have X = (1)X + (0)I = Fk,1X +Fk,0I, so the assertion is seen to be
true. Now assume that it is true for some positive n = m. We will show that it is true
for n = m+ 1 as follows:

Xm+1 = XmX

= (Fk,mX + Fk,m−1I)X

= Fk,mX2 + Fk,m−1X

= Fk,m (kX + I) + Fk,m−1X

= Fk,m+1X + Fk.mI.

Hence, Xn = Fk,nX+Fk,n−1I for all n ∈ N. Finally, we will show that X−n = Fk,−nX+
Fk,−n−1I for all n ∈ N. Let us consider

(Fk,nX + Fk,n−1I)
(
Fk,−nX + Fk,−(n+1)I

)
= Fk,nFk,−nX

2 + Fk,n−1Fk,−nX + Fk,nFk,−(n+1)X + Fk,n−1Fk,−(n+1)I

= (−1)
−n+1

F 2
k,n (kX + I) + Fk,n−1(−1)

−n+1
Fk,nX

+ Fk,n(−1)
−n

Fk,n+1X + Fk,n−1(−1)
−n

Fk,n+1I

= (−1)
−n+1

kF 2
k,nX + (−1)

−n+1
F 2
k,nI + (−1)

−n+1
Fk,n−1Fk,nX

+ (−1)
−n

Fk,nFk,n+1X + (−1)
−n

Fk,n−1Fk,n+1I

= (−1)
−n (−kF 2

k,n − Fk,n−1Fk,n + Fk,nFk,n+1

)
X

+ (−1)
−n (−F 2

k,n + Fk,n−1Fk,n+1

)
I

= (−1)
−n

(−Fk,n (kFk,n + Fk,n−1) + Fk,nFk,n+1)X

+ (−1)
−n

(
−
(
αn − βn

α− β

)2

+

(
αn−1 − βn−1

α− β

)(
αn+1 − βn+1

α− β

))
I

= (−1)
−n

(−Fk,nFk,n+1 + Fk,nFk,n+1)X

+ (−1)
−n

(
2(αβ)

n − αn−1βn+1 − αn+1βn−1

(α− β)
2

)
I
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= (0)X+(−1)
−n

(
− (αβ)

n−1 (
α2 − 2αβ + β2

)
(α− β)

2

)
I

= −(−1)
−n

(−1)
n−1 (α− β)

2

(α− β)
2 I = I.

In a similar way, we have
(
Fk,−nX + Fk,−(n+1)I

)
(Fk,nX + Fk,n−1I) = I.

Thus, X−n = Fk,−nX + Fk,−n−1I. This completes the proof of the lemma.

From this lemma, we can easily derive Corollary 2.2. More details about the matrix F
can be seen in [9].

Corollary 2.2. Let F =

[
k 1
1 0

]
. Then Fn =

[
Fk,n+1 Fk,n

Fk,n Fk,n−1

]
for all n ∈ Z.

The matrix Z considered in the following lemma will be used to obtain some identities
for k-Fibonacci and k-Lucas numbers further below.

Lemma 2.3. Let Z =

[
k
2

√
k2+4
2√

k2+4
2

k
2

]
. Then Zn =

[
Lk,n

2

√
k2+4Fk,n

2√
k2+4Fk,n

2
Lk,n

2

]
for all

n ∈ Z.

Proof. Note that Z2 =

[
k2

2 + 1 k
√
k2+4
2

k
√
k2+4
2

k2

2 + 1

]
= kZ + I. By Lemma 2.1, we have Zn =

Fk,nZ + Fk,n−1I. It follows that

Zn =

[
k
2Fk,n + Fk,n−1

√
k2+4
2 Fk,n√

k2+4
2 Fk,n

k
2Fk,n + Fk,n−1

]

=

[
kFk,n+2Fk,n−1

2

√
k2+4
2 Fk,n√

k2+4
2 Fk,n

kFk,n+2Fk,n−1

2

]

=

[
Fk,n+1+Fk,n−1

2

√
k2+4
2 Fk,n√

k2+4
2 Fk,n

Fk,n+1+Fk,n−1

2

]

=

[
Lk,n

2

√
k2+4Fk,n

2√
k2+4Fk,n

2
Lk,n

2

]
.

This completes the proof of the lemma.

By using the matrix Z, we obtain the next two lemmas.

Lemma 2.4. For any integer n, the following equality holds:
L2
k,n −

(
k2 + 4

)
F 2
k,n = 4(−1)

n
.

Proof. Since det(Z) = −1 and det (Zn) =
L2

k,n

4 − (k2+4)F 2
k,n

4 , it follows that L2
k,n −(

k2 + 4
)
F 2
n = 4(−1)

n, and the proof is complete.

Lemma 2.5. Let m and n be any integers. Then the following equalities hold:
(1) 2Lk,m+n = Lk,mLk,n +

(
k2 + 4

)
Fk,mFk,n,

(2) 2Fk,m+n = Lk,nFk,m + Lk,mFk,n.
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Proof. Since Zm+n = ZmZn, by Lemma 2.3, we have[
Lk,m+n

2

√
k2+4Fk,m+n

2√
k2+4Fk,m+n

2
Lk,m+n

2

]
=

[
Lk,m

2

√
k2+4Fk,m

2√
k2+4Fk,m

2
Lk,m

2

][
Lk,n

2

√
k2+4Fk,n

2√
k2+4Fk,n

2
Lk,n

2

]
.

Therefore
2Lk,m+n = Lk,mLk,n +

(
k2 + 4

)
Fk,mFk,n,

2Fk,m+n = Lk,nFk,m + Lk,mFk,n.

This completes the proof of the lemma.

Lemma 2.6. For any integer n, the following equalities hold:
(1) αn = αFk,n + Fk,n−1,
(2) βn = βFk,n + Fk,n−1.

Proof. Let A =
[
α 0
0 β

]
, so that A2 = kA + I. By Lemma 2.1, we then have that An =

Fk,nA+ Fk,n−1I. It follows that[
αn 0
0 βn

]
=

[
αFk,n + Fk,n−1 0

0 βFk,n + Fk,n−1

]
,

which implies that αn = αFk,n + Fk,n−1 and βn = βFk,n + Fk,n−1, and thus completes
the proof.

By using Lemma 2.1 and Lemma 2.6, we obtain the following lemma.

Lemma 2.7. Let B =
[
α 0
1 β

]
. Then Bn =

[
αn 0
Fk,n βn

]
for all n ∈ Z.

Proof. Since B2 = kB + I, by Lemma 2.1 and Lemma 2.6 it follows that
Bn = Fk,nB + Fk,n−1I

=

[
αFk,n + Fk,n−1 0

Fk,n βFk,n + Fk,n−1

]
=

[
αn 0
Fk,n βn

]
.

This completes the proof of the lemma.

Remark 2.8. For any integer n,

Fk,n+2 + 2Fk,n + Fk,n−2 = kFk,n+1 + 4Fk,n − kFk,n−1

= kFk,n+1 + 4Fk,n − k (Fk,n+1 − kFk,n) =
(
k2 + 4

)
Fk,n.

Next, using Lemma 2.7 and Remark 2.8 we obtain the following theorem:

Theorem 2.9. Let m and n be arbitrary integers. Then the following equality holds:
(−1)

m+n
L2
k,m+n + (−1)

m
L2
k,m + (−1)

n
L2
k,n = (−1)

m+n
Lk,mLk,nLk,m+n + 4.

Proof. Let B be the matrix of Lemma 2.7. Then

Bn+1 +Bn−1 =

[√
k2 + 4αn 0

Lk,n −
√
k2 + 4βn

]
.

Since
(
Bm+1 +Bm−1

) (
Bn+1 +Bn−1

)
= Bm+n+2 + 2Bm+n + Bm+n−2, we obtain by

Remark 2.8 that√
k2 + 4Fk,m+n = αnLk,m − βmLk,n.
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Hence, (
k2 + 4

)
F 2
k,m+n =

(√
k2 + 4Fk,m+n

)(√
k2 + 4Fk,n+m

)
= (αnLk,m − βmLk,n) (α

mLk,n − βnLk,m)

=
(
αm+n + βm+n

)
Lk,mLk,n − (αβ)

n
L2
k,m − (αβ)

m
L2
k,n

= Lk,mLk,nLk,m+n − (−1)
n
L2
k,m − (−1)

m
L2
k,n.

Then by Lemma 2.4,

L2
k,m+n − 4(−1)

m+n
= Lk,mLk,nLk,m+n − (−1)

n
L2
k,m − (−1)

m
L2
k,n. (2.1)

Hence, we can rewrite the above equation as follows:

(−1)
m+n

L2
k,m+n + (−1)

m
L2
k,m + (−1)

n
L2
k,n = (−1)

m+n
Lk,mLk,nLk,m+n + 4.

This completes the proof of the theorem.

Theorem 2.10. Let m and n be arbitrary integers. Then the following equality holds:

(−1)
m+n

L2
k,m+n + (−1)

m+1
F 2
k,m + (−1)

n+1 (
k2 + 4

)
F 2
k,n

= (−1)
m+n (

k2 + 4
)
Fk,mFk,nLk,m+n + 4.

Proof. By (2.1), Lemma 2.4 and Lemma 2.5, we obtain

L2
k,m+n − 4(−1)

m+n
=
(
2Lk,m+n −

(
k2 + 4

)
Fk,mFk,n

)
Lk,m+n

− (−1)
n ((

k2 + 4
)
F 2
k,m + 4(−1)

m)− (−1)
m ((

k2 + 4
)
F 2
k,n + 4(−1)

n)
which may be rewritten as

L2
k,m+n − (−1)

m (
k2 + 4

)
Lk,m − (−1)

n (
k2 + 4

)
Lk,n

= (−1)
m+n (

k2 + 4
)
Fk,mFk,nLk,m+n + 4(−1)

m+n
.

Thus we have

(−1)
m+n

L2
k,m+n + (−1)

m+1
F 2
k,m + (−1)

n+1 (
k2 + 4

)
F 2
k,n

= (−1)
m+n (

k2 + 4
)
Fk,mFk,nLk,m+n + 4.

This completes the proof of the theorem.

Theorem 2.11. Let m and n be arbitrary integers. Then the following equality holds:

(−1)
m+n (

k2 + 4
)
F 2
k,m+n + (−1)

n+1
L2
k,n + (−1)

m (
k2 + 4

)
F 2
k,m

= (−1)
m+n (

k2 + 4
)
Lk,nFk,mFk,m+n − 4.

Proof. By a similar argument as in Theorem 2.9, and since(
Bn+1 +Bn−1

)
Bm = Bm+n+1 +Bm+n−1 = Bm

(
Bn+1 +Bn−1

)
we obtain

Lk,m+n = αmLk,n −
√
k2 + 4βnFk,m and

Lk,m+n =
√
k2 + 4αnFk,m + βmLk,n.
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Hence,

L2
k,m+n =

(
αmLk,n −

√
k2 + 4βnFk,m

)(√
k2 + 4αnFk,m + βmLk,n

)
=
√
k2 + 4

(
αm+n − βm+n

)
Lk,nFk,m + (αβ)

m
L2
k,n −

(
k2 + 4

)
(αβ)

n
F 2
k,m

=
(
k2 + 4

)(αm+n − βm+n

α− β

)
Lk,nFk,m + (αβ)

m
L2
k,n −

(
k2 + 4

)
(αβ)

n
F 2
k,m

=
(
k2 + 4

)
Lk,nFk,mFk,m+n + (−1)

m
L2
k,n − (−1)

n (
k2 + 4

)
F 2
k,m.

Then by Lemma 2.4,(
k2 + 4

)
F 2
k,m+n + 4(−1)

m+n

=
(
k2 + 4

)
Lk,nFk,mFk,m+n + (−1)

m
L2
k,n − (−1)

n (
k2 + 4

)
F 2
k,m,

and we can write

(−1)
m+n (

k2 + 4
)
F 2
k,m+n + (−1)

n+1
L2
k,n + (−1)

m (
k2 + 4

)
F 2
k,m

= (−1)
m+n (

k2 + 4
)
Lk,nFk,mFk,m+n − 4.

This completes the proof of the theorem.

3. Applications
In this section we give the solutions of some Diophantine equations by applying the

identities of Theorems 2.9–2.11.

Theorem 3.1. Let m and n be integers.
(1) If m and n are both even, then (x, y, z) = (Lk,m, Lk,n, Lk,m+n) is a solution of

the equation z2 + x2 + y2 = xyz + 4.
(2) If m and n are both odd, then (x, y, z) = (Lk,m, Lk,n, Lk,m+n) is a solution of the

equation z2 − x2 − y2 = xyz + 4.
(3) If m is even and n is odd, then (x, y, z) = (Lk,m, Lk,n, Lk,m+n) is a solution of

the equation z2 − x2 + y2 = xyz − 4.
(4) If m is odd and n is even, then (x, y, z) = (Lk,m, Lk,n, Lk,m+n) is a solution of

the equation z2 + x2 − y2 = xyz − 4.

Proof. The assertion follows from Theorem 2.9.

Theorem 3.2. Let m and n be integers.
(1) If m and n are both even, then (x, y, z) = (Fk,m, Fk,n, Lk,m+n) is a solution of

the equation z2 − x2 −
(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz + 4.

(2) If m and n are both odd, then (x, y, z) = (Fk,m, Fk,n, Lk,m+n) is a solution of the
equation z2 + x2 +

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz + 4.

(3) If m is even and n is odd, then (x, y, z) = (Fk,m, Fk,n, Lk,m+n) is a solution of
the equation z2 + x2 −

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz − 4.

(4) If m is odd and n is even, then (x, y, z) = (Fk,m, Fk,n, Lk,m+n) is a solution of
the equation z2 − x2 +

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz − 4.

Proof. The assertion follows from Theorem 2.10.

Theorem 3.3. Let m and n be integers.
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(1) If m and n are both even, then (x, y, z) = (Lk,n, Fk,m, Fk,m+n) is a solution of
the equation

(
k2 + 4

)
z2 − x2 +

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz − 4.

(2) If m and n are both odd, then (x, y, z) = (Lk,n, Fk,m, Fk,m+n) is a solution of the
equation

(
k2 + 4

)
z2 + x2 −

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz − 4.

(3) If m is even and n is odd, then (x, y, z) = (Lk,n, Fk,m, Fk,m+n) is a solution of
the equation

(
k2 + 4

)
z2 − x2 −

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz + 4.

(4) If m is odd and n is even, then (x, y, z) = (Lk,n, Fk,m, Fk,m+n) is a solution of
the equation

(
k2 + 4

)
z2 + x2 +

(
k2 + 4

)
y2 =

(
k2 + 4

)
xyz + 4.

Proof. The assertion follows from Theorem 2.11.

4. Conclusions
In this research, some identities for k-Fibonacci and k-Lucas numbers were studied

and discovered by using a matrix approach. Furthermore, these identities were applied
to present the solutions of some Diophantine equations.
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