
ISSN 1686-0209

Thai Journal of Mathematics
Volume 20 Number 1 (2022)
Pages 405–416

http://thaijmath.in.cmu.ac.th

A Study of Generalized Clones of Rank k and

Generalized k-Hypersubstitutions

Nareupanat Lekkoksung1,∗ and Prakit Jampachon2

1Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen
Campus, Khon Kaen 40000, Thailand
e-mail : nareupanat.le@rmuti.ac.th
2Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
e-mail : prajam@kku.ac.th

Abstract The set of all n-ary terms of type τn together with an (n+1)-ary superposition and n nullary
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let k ≥ n, we study an algebraic structure consisting of the set of all k-ary terms of type τn, an (n+1)-ary
generalized superposition and k nullary operation symbols. We call this algebra a generalized clone of
rank k. We show that the generalized clone of rank k is a unitary Menger algebra of rank k. We use this
concept to investigate the properties of a particular generalized hypersubstitution of type τn which maps
each operation symbol of type τn to a k-ary term of the same type.  

MSC: 08B15; 08B25
Keywords: hypersubstitution; generalized hypersubstitution; Menger algebra; clone; generalized super-
position of terms

Submission date: 11.05.2018 / Acceptance date: 06.01.2022

1. Introduction
Let n be a natural number. Let Xn = {x1, . . . , xn} be an n-element set. The set Xn

is called an alphabet and its elements are called variables. Let {fi : i ∈ I} be the set of
operation symbols, indexed by a set I. The sets Xn and {fi : i ∈ I} have to be disjoint.
To every operation symbol fi, we assign a natural number ni ≥ 1, called the arity of fi.
As in the definition of an algebra, the sequence τ = (ni)i∈I of all the arities is called the
type. Classes of algebras can be described by logical expressions. This formal language
is built up by variables from an n-element set. With this notation for operation symbols
and variables, we can define terms of type τ , (see [1–3]).

An n-ary term of type τ , for simply an n-ary term, is defined in the following inductive
way.

(i) Every variable xi ∈ Xn is an n-ary term.
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(ii) If t1, . . . , tni
are n-ary terms and fi is an ni-ary operation symbol, then the term

fi(t1, . . . , tni
) is an n-ary term.

The set Wτ (Xn) = Wτ ({x1, . . . , xn}) of all n-ary terms is the smallest set which
contains x1, . . . , xn and is closed under finite application of (ii). We denote the set of all
terms of type τ by

Wτ (X) :=

∞∪
m=1

Wτ (Xm).

A type of algebras is called n-ary if all operation symbols of the type are n-ary, for
some fixed natural number n. We let τn be such a fixed type with operation symbols
(fi)i∈I , indexed by a nonempty set I.

For every n ≥ 1. The (n + 1)-ary superposition operation S̄n on the set of all n-ary
terms of type τn is defined in the following inductive way.

(i) If t = xj ∈ Xn, then Sn(xj , t1, . . . , tn) := tj .
(ii) If t = fi(s1, . . . , sn), then

Sn(fi(s1, . . . , sn), t1, . . . , tn)

:= fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)).

On the set Wτn(Xn) of all n-ary terms of type τn together with the (n + 1)-ary su-
perposition operation S̄n and the nullary operation symbols x1, . . . , xn, one obtains an
algebra

n-clone(τn) := (Wτn(Xn); S̄
n, x1, . . . , xn).

This algebra is an example of a unitary Menger algebra of rank n, (see [4, 5]). That is,
the algebra n-clone(τn) satisfies the following identities.

(C1) S̃n(Z̃, S̃n(Ỹ1, X̃1, . . . , X̃n), . . . , S̃
n(Ỹn, X̃1, . . . , X̃n))

≈ S̃n(S̃n(Z̃, Ỹ1, . . . , Ỹn)X̃1, . . . , X̃n).
(C2) S̃n(λi, X̃1, . . . , X̃n) ≈ X̃i for all 1 ≤ i ≤ n.
(C3) S̃n(Ỹ , λ1, . . . , λn) ≈ Ỹ .

Here Z̃, Ỹi, X̃i are variables for terms for each 1 ≤ i ≤ n, S̃n is an operation symbol, and
λi is a variable for all 1 ≤ i ≤ n.

Let V be a variety of some type τ := (ni)i∈I . An identity s ≈ t satisfied in V is a
hyperidentity of V if the identity s ≈ t holds also for all possible ni-ary terms of the
variety not only for the ni-ary fundamental operations which occur in s ≈ t. The study
of hyperidentities was introduced by Taylor [6].

The hypersubstitution theory (of arbitrary type τ) was first initialed by Denecke et al.
[7]. The concept of the superpositions is used to define the extension of a hypersubstitu-
tion. The authors used hypersubstitutions to make precise the concept of hyperidentities.

In 2000, the concept of hypersubstitutions was extended to generalized hypersubsti-
tutions. This notion can be used to study strong hyperidentities [8]. The generalized
hypersubstitutions are intensively investigated in the past decade, (see [9–12]).

In this paper, we generalize the study of the algebra n-clone(τn) by using a gener-
alized superposition. The properties of this new algebra are investigated. Moreover, we
introduce a particular kind of generalized hypersubstitutions of type τn and study their
properties. Finally, the well-known connection between strong hyperidentities of a variety
and identities satisfied by algebras in this variety is given in a restricted way.
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2. Generalized Clone of Rank k

Leeratanavalee and Denecke [8] defined mappings from the set of all operation symbols
to the set of all terms which may not preserve arities. These mappings are called gen-
eralized hypersubstitutions. To define their extensions, the authors defined the concept
of a generalized superposition as follows. Let m ≥ 1. Let Wτ (X) be the set of all terms
of type τ . The generalized superposition operation Sm is an (m + 1)-ary operation on
Wτ (X) defined inductively by the following.

(i) If t = xj ∈ Xm, then Sm(xj , t1, . . . , tm) := tj .
(ii) If t = xj ∈ X ∖Xm, then Sm(xj , t1, . . . , tm) := xj .
(iii) If t = fi(s1, . . . , sm), then

Sm(fi(s1, . . . , sm), t1, . . . , tm)

:= fi(S
m(s1, t1, . . . , tm), . . . , Sm(sm, t1, . . . , tm)).

By this definition, we generalize the algebra n-clone(τn) in this way. Let k be a natural
number such that k ≥ n. We will use the set Wτn(Xk) of all k-ary terms of type τn as
universe and a generalized superposition Sn as an operation on this carrier set. Together
with nullary operation symbols x1, . . . , xk, we obtain an algebra

k-cloneG(τn) := (Wτn(Xk);S
n, x1, . . . , xk)

of type (n+1, 0, . . . , 0). This algebra is called a generalized clone of rank k. Observe that
if n = k, then

k-cloneG(τn) = n-clone(τn).

By this motivation, we call an algebra (M ; Ŝn, e1, . . . , ek), where Ŝn is an (n+ 1)-ary
operation and nullary operation e1, . . . , ek, a unitary Menger algebra of rank k if it satisfies
the following identties.
(CG1) S̃n(T, S̃n(F1, T1, . . . , Tn), . . . , S̃

n(Fn, T1, . . . , Tn))

≈ S̃n(S̃n(T, F1, . . . , Fn), T1, . . . , Tn).
(CG2) S̃n(T, λ1, . . . , λn) ≈ T .
(CG3) S̃n(λi, T1, . . . , Tn) ≈ Ti for 1 ≤ i ≤ n.
(CG4) S̃n(λi, T1, . . . , Tn) ≈ λi for i > n.
Here T, Ti, Fi are variables for terms for each 1 ≤ i ≤ n, S̃n is an operation symbol, and
λi is a variable for all 1 ≤ i ≤ k.

Theorem 2.1. The algebra k-cloneG(τn) is a unitary Menger algebra of rank k.

Proof. (CG1): We replace the variables by arbitrary t, t1, . . . , tn, s1, . . . , sn ∈ Wτn(Xk)
and the operation symbol by the generalized superposition Sn. Then we have

Sn(t, Sn(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn)) ≈ Sn(Sn(t, t1, . . . , tn), s1, . . . , sn).

We give a proof by induction on the complexity of the k-ary term t of type τn. If
t = xi ∈ Xn, then

Sn(xi, S
n(t1, s1, . . . , sn), . . . , S

n(tn, s1, . . . , sn))

= Sn(ti, s1, . . . , sn)

= Sn(Sn(xi, t1, . . . , tn), s1, . . . , sn).
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If t = x ∈ Xk ∖Xn, then

Sn(x, Sn(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn))

= x

= Sn(x, s1, . . . , sn)

= Sn(Sn(x, t1, . . . , tn), s1, . . . , sn).

If t = fi(u1, . . . , un) and assume that

Sn(ui, S
n(t1, s1, . . . , sn), . . . , S

n(tn, s1, . . . , sn))

= Sn(Sn(ui, t1, . . . , tn), s1, . . . , sn)

for all 1 ≤ i ≤ n, then

Sn(fi(u1, . . . , un), S
n(t1, s1, . . . , sn), . . . , S

n(tn, s1, . . . , sn))

= fi(S
n(u1, S

n(t1, s1, . . . , sn), . . . , S
n(tn, s1, . . . , sn)),

. . . , Sn(un, S
n(t1, s1, . . . , sn), . . . , S

n(tn, s1, . . . , sn)))

= fi(S
n(Sn(u1, t1, . . . , tn), s1, . . . , sn),

. . . , Sn(Sn(un, t1, . . . , tn), s1, . . . , sn))

= Sn(fi(S
n(u1, t1, . . . , tn), . . . , S

n(un, t1, . . . , tn)), s1, . . . , sn)

= Sn(Sn(fi(u1, . . . , un), t1, . . . , tn), s1, . . . , sn).

Thus, k-cloneG(τn) satisfies (CG1).
(CG2): We replace the variable T by an arbitrary k-ary term t of type τn, S̃n by Sn

and λi by xi ∈ Xn for all 1 ≤ i ≤ n. Then we have

Sn(t, x1, . . . , xn) ≈ t.

We give a proof by induction on the complexity of the k-ary term t of type τn. If
t = xi ∈ Xn, then Sn(xi, x1, . . . , xn) = xi. If t = x ∈ Xk∖Xn, then Sn(x, x1, . . . , xn) = x.
If t = fi(t1, . . . , tn) and assume that Sn(ti, x1, . . . , xn) = ti for all 1 ≤ i ≤ n, then

Sn(fi(t1, . . . , tn), x1, . . . , xn) = fi(S
n(t1, x1, . . . , xn), . . . , S

n(tn, x1, . . . , xn))

= fi(t1, . . . , tn).

This implies that k-cloneG(τn) satisfies (CG2).
Equations (CG3) and (CG4) correspond to the definition of Sn. Therefore, the algebra

k-cloneG(τn) is a unitary Menger algebra of rank k.

Since (CG1), (CG2), (CG3) and (CG4) are identities, the class of all unitary Menger
algebras of rank k forms a variety which is denoted by VMk

. Let FVMk
(Y ) be the free

algebra with respect to VMk
, freely generated by Y = {yi : i ∈ I} where yi is a new

alphabet of individual variables indexed by a nonempty set I of the operation symbol fi.
We denote the (n + 1)-ary operation and nullary operations defined on FVMk

(Y ) by S̃n

and λ1, . . . , λk, respectively.
Let F̂τn := {fi(x1, . . . , xn) : i ∈ I}. Observe that F̂τn ⊆ Wτn(Xk). Then we have:

Lemma 2.2. The set F̂τn is a generating system of k-cloneG(τn).



A Study of Generalized Clones of Rank k and Generalized k-Hypersubstitutions 409

Proof. We show by induction on the complexity of the k-ary term t of type τn that
Wτn(Xk) is generated by F̂τn . Let xi ∈ Xk. It is clear that xi is generated since it
belongs to the type of k-cloneG(τn). Assume that t = fi(t1, . . . , tn) ∈ Wτn(Xk) and ti is
generated for all 1 ≤ i ≤ n. Then

Sn(fi(x1, . . . , xn), t1, . . . , tn) = fi(t1, . . . , tn).

This shows that fi(t1, . . . , tn) is generated. Therefore, we obtain our result.

Theorem 2.3. The algebra k-cloneG(τn) is free with respect to the variety VMk
of

unitary Menger algebras of rank k.

Proof. We prove that k-cloneG(τn) is isomorphic with FVMk
(Y ). Define φ : Wτn(Xk) →

FVMk
({yi : i ∈ I}) by

(i) φ(xi) = λi for all 1 ≤ i ≤ k,
(ii) φ(fi(t1, . . . , tn)) = S̃n(yi, φ(t1), . . . , φ(tn)).

We prove the homomorphism property by induction on the complexity of the k-ary term
t of type τn. If xi ∈ Xn, then we have

φ(Sn(xi, t1, . . . , tn)) = φ(ti)

= S̃n(λi, φ(t1), . . . , φ(tn))

= S̃n(φ(xi), φ(t1), . . . , φ(tn)).

If xj ∈ Xk ∖Xn, then

φ(Sn(xj , t1, . . . , tn)) = λj

= S̃n(λj , φ(t1), . . . , φ(tn))

= S̃n(φ(xj), φ(t1), . . . , φ(tn)).

Assume that t = fi(s1, . . . , sn) and

φ(Sn(si, t1, . . . , tn)) = S̃n(φ(si), φ(t1), . . . , φ(tn))

for all 1 ≤ i ≤ n. Then

φ(Sn(fi(s1, . . . , sn), t1, . . . , tn))

= φ(fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)))

= S̃n(yi, φ(S
n(s1, t1, . . . , tn)), . . . , φ(S

n(sn, t1, . . . , tn)))

= S̃n(yi, S̃
n(φ(s1), φ(t1), . . . , φ(tn)), . . . , S̃

n(φ(sn), φ(t1), . . . , φ(tn)))

= S̃n(S̃n(yi, φ(s1), . . . , φ(sn)), φ(t1), . . . , φ(tn))

= S̃n(φ(fi(s1, . . . , sn), φ(t1), . . . , φ(tn))).

This shows that φ is a homomorphism. Let yi ∈ Y . Then there exists fi(x1, . . . , xn) ∈ F̂τn

such that φ(fi(x1, . . . , xn)) = yi. That is, φ is surjective. Moreover, φ is injective since
{yi : i ∈ I} is free independent, we have

yi = yj ⇒ i = j ⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn).

Therefore, φ is an isomorphism.
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On the set Wτn(Xk) of all k-ary terms of type τn with the set of all n-ary operation
symbols Fn := {fi : i ∈ I}, we can define an n-ary operation f i : (Wτn(Xk))

n → Wτn(Xk)
by

f i(t1, . . . , tn) := fi(t1, . . . , tn).

Then we obtain the absolutely free algebra Fτn(Xk) := (Wτn(Xk); (f i)i∈I) of type τn.
Let V be a variety of type τn. The equation s ≈ t ∈ Wτn(X) × Wτn(X) is satisfied

in the variety V if the term operations induced by s and t on every algebra from V are
equal. We call the equation s ≈ t an identity in the variety V if s ≈ t is satisfied in V ,
denoted by s ≈ t ∈ IdV . We define

Idk V := {s ≈ t : s, t ∈ Wτn(Xk) and s ≈ t ∈ IdV }.

That is, Idk V = (Wτn(Xk))
2 ∩ IdV . It is clear that Idk V is an equivalence relation

on Wτn(Xk). If V is a variety of type τn, then Idk V forms a fully invariant congruence
relation on Fτn(Xk). Then we obtain the following lemma.

Proposition 2.4. Let V be a variety of type τn. Then Idk V is a congruence relation on
k-cloneG(τn).

Proof. Assume that s1 ≈ t1, . . . , sn ≈ tn ∈ Idk V . We show by induction on the complex-
ity of the k-ary term t of type τn that

Sn(t, s1, . . . , sn) ≈ Sn(t, t1, . . . , tn) ∈ Idk V.

If xi ∈ Xn, then

Sn(t, s1, . . . , sn) = si ≈ ti = Sn(t, t1, . . . , tn) ∈ Idk V.

If t = xj ∈ Xk ∖Xn, then

Sn(t, s1, . . . , sn) = xj ≈ xj = Sn(t, t1, . . . , tn) ∈ Idk V,

since Idk V is an equivalence relation on Wτn(Xk). If t = fi(u1, . . . , un) and assume that

Sn(ui, s1, . . . , sn) ≈ Sn(ui, t1, . . . , tn) ∈ Idk V

for all 1 ≤ i ≤ n, then

Sn(fi(u1, . . . , un), s1, . . . , sn) = fi(S
n(u1, s1, . . . , sn), . . . , S

n(un, s1, . . . , sn))

≈ fi(S
n(u1, t1, . . . , tn), . . . , S

n(un, t1, . . . , tn))

= Sn(fi(u1, . . . , un), t1, . . . , tn)

∈ Idk V

by the fact that Idk V is a fully invariant congruence relation on the algebra Fτn(Xk).
Next, we prove that if t ≈ s ∈ Idk V , then

Sn(t, u1, . . . , un) ≈ Sn(s, u1, . . . , un) ∈ Idk V.

This assertion holds since Idk V is a fully invariant congruence relation of the absolutely
free algebra Fτn(Xk). Finally, assume that t ≈ s, t1 ≈ s1, . . . , tn ≈ sn ∈ Idk V . Then

Sn(t, t1, . . . , tn) ≈ Sn(s, t1, . . . , tn) ≈ Sn(s, s1, . . . , sn) ∈ Idk V.

Therefore, Idk V is a congruence relation on k-cloneG(τn).
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Now, we can form the quotient algebra
k-cloneτnV := k-cloneG(τn)/Idk V,

with the (n+ 1)-ary operation

Ŝn : (Wτn(Xk)/Idk V )n+1 → Wτn(Xk)/Idk V

on k-cloneτnV defined by

Ŝn([t]Idk V , [t1]Idk V , . . . , [tn]Idk V ) := [Sn(t, t1, . . . , tn)]Idk V .

The quotient algebra
k-cloneτnV := (Wτn(Xk)/Idk V ; Ŝn, [x1]Idk V , . . . , [xk]Idk V )

satisfies also (CG1) – (CG4). Thus, k-cloneτnV is a unitary Menger algebra of rank k as
homomorphic image of k-cloneG(τn).

Let F̂ Idk V
τn := {[fi(x1, . . . , xn)]Idk V : i ∈ I}. Then we prove the following.

Lemma 2.5. The set F̂ Idk V
τn is a generating system of k-cloneτnV .

Proof. It is clear that [xi]Idk V is generated for all 1 ≤ i ≤ k since it belongs to the type
of k-cloneτnV . Assume that t = fi(t1, . . . , tn) and [ti]Idk V is generated for all 1 ≤ i ≤ n.
Then

Ŝn([t]Idk V , [t1]Idk V , . . . , [tn]Idk V )

= Ŝn([fi(x1, . . . , xn)]Idk V , [t1]Idk V , . . . , [tn]Idk V )

= [Sn(fi(x1, . . . , xn), t1, . . . , tn)]Idk V

= [fi(t1, . . . , tn)]Idk V .

Hence, the algebra k-cloneτnV is generated by F̂ Idk V
τn .

3. Generalized k-hypersubstitutions

A generalized hypersubstitution of type τ is a mapping σ : {fi : i ∈ I} → Wτ (X) which
maps each operation symbol of type τ to a term of the same type which may not preserve
arity. We denote the set of all generalized hypersubstitutions of type τ by HypG(τ).

The generalized hypersubstitution σ can be extended to a mapping σ̂ : Wτ (X) →
Wτ (X) on the set of all terms of type τ inductively defined as follows:

(i) σ̂[x] := x for any variable x ∈ X;
(ii) σ̂[fi(t1, . . . , tni

)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni
]) for every ni-ary operation symbol

fi, assumed that σ̂[tj ] is already defined for all 1 ≤ j ≤ ni.
More detail about generalized hypersubstitutions of arbitrary type τ can be found in [8].

Denecke [13] studied a particular type τn of generalized hypersubstitutions. The author
defined a binary operation ◦G on HypG(τn) by

σ1 ◦G σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of functions, and the identity generalized hyper-
substitution of type τn which maps the operation symbol fi to the term fi(x1, . . . , xn)
is denoted by σid, (see also [8]). As a consequence, we obtain the following interesting
results.
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Theorem 3.1. [13] The algebra HypG(τn) is a monoid.

The theory of strong hyperidentities is based on the monoid (HypG(τ); ◦G, σid), denoted
by HypG(τ), of a fixed type τ . These reasons demonstrate the importance of studying
the monoid properties of HypG(τ) and its submonoids of a fixed type τ , (see [8]).

A generalized k-hypersubstitution σ of type τn is a generalized hypersubstitution of
type τn which maps every operation symbol of type n to Wτn(Xk). We denote the set of
all generalized k-hypersubstitutions of type τn by HypkG(τn). We observe that if k = n,
then σ is a usual hypersubstitution of type τn.

It is clear that HypkG(τn) ⊆ HypG(τn). The product σ1 ◦G σ2 of two generalized k-
hypersubstitutions of type τn is again a generalized k-hypersubstitution of type τn and σid

is a generalized k-hypersubstitution of type τn. Thus, we obtain the following proposition
immediately.

Proposition 3.2. The algebra Hypk
G(τn) := (HypkG(τn); ◦G, σid) is a submonoid of

HypG(τn).

To study the properties of strong hyperidentities of a fixed type τn by using variables
only from Xk, k ≥ n we will develop the theory of generalized k-hypersubstitutions of
type τn.

Lemma 3.3. Let σ ∈ HypkG(τn). Then

σ̂[Sn(t, t1, . . . , tn)] = Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]).

That is, σ̂ is an endomorphism on k-cloneG(τn).

Proof. We will give a proof by induction on the complexity of the k-ary term t of type
τn. If t = xi ∈ Xn, then

σ̂[Sn(xi, t1, . . . , tn)] = σ̂[ti] = Sn(xi, σ̂[t1], . . . , σ̂[tn]) = Sn(σ̂[xi], σ̂[t1], . . . , σ̂[tn]).

If t = x ∈ Xk ∖Xn, then

σ̂[Sn(x, t1, . . . , tn)] = x = Sn(x, σ̂[t1], . . . , σ̂[tn]) = Sn(σ̂[x], σ̂[t1], . . . , σ̂[tn]).

If t = fi(s1, . . . , sn) and assume that

σ̂[Sn(si, t1, . . . , tn)] = Sn(σ̂[si], σ̂[t1], . . . , σ̂[tn])

for all 1 ≤ i ≤ n, then

σ̂[Sn(fi(s1, . . . , sn), t1, . . . , tn)]

= σ̂[fi(S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn))]

= Sn(σ(fi), σ̂[S
n(s1, t1, . . . , tn)], . . . , σ̂[S

n(sn, t1, . . . , tn)])

= Sn(σ(fi), S
n(σ̂[s1], σ̂[t1], . . . , σ̂[tn]), . . . , S

n(σ̂[sn], σ̂[t1], . . . , σ̂[tn]))

= Sn(Sn(σ(fi), σ̂[s1], . . . , σ̂[sn]), σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[fi(s1, . . . , sn)], σ̂[t1], . . . , σ̂[tn]).

Therefore, we have as desire.

Proposition 3.4. Let σ1, σ2 ∈ HypkG(τn). Then (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.
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Proof. It is not difficult to see that σ̂1 ◦ σ2 ∈ HypkG(τn). We give a proof by induction
on the complexity of the k-ary term t of type τn that (σ̂1 ◦ σ2)̂[t] = (σ̂1 ◦ σ̂2)(t). It is
clear that this equality holds if t is a variable. If t = fi(t1, . . . , tn) and assume that
(σ̂1 ◦ σ2)̂[ti] = (σ̂1 ◦ σ̂2)(ti) for all 1 ≤ i ≤ n, then

(σ̂1 ◦ σ2)̂[fi(t1, . . . , tn)]

= Sn((σ̂1 ◦ σ2)(fi), (σ̂1 ◦ σ2)̂[t1], . . . , (σ̂1 ◦ σ2)̂[tn])

= Sn(σ̂1[σ2(fi)], σ̂1[σ̂2[t1]], . . . , σ̂1[σ̂2[tn]])

= σ̂1[S
n(σ2(fi), σ̂2[t1], . . . , σ̂2[tn])]

= (σ̂1 ◦ σ̂2)(fi(t1, . . . , tn)).

Therefore, the extension of the composition of any two elements in Hypk
G(τn) is a com-

position of their extensions.

Proposition 3.5. Every endomorphism on k-cloneG(τn) is the extension of a generalized
k-hypersubstitution of type τn.

Proof. Let φ : Wτn(Xk) → Wτn(Xk) be an endomorphism. We observe that φ ◦ σid ∈
HypkG(τn). Thus, we claim that φ = (φ◦σid)̂. Let t be a k-ary term of type τn. We give a
proof by induction on the complexity of the k-ary term t of type τn that φ(t) = (φ◦σid)̂[t].
Since every endomorphism fixed constants, we have that φ(t) = (φ ◦ σid)̂[t] whenever t is
a variable. If t = fi(t1, . . . , tn) and assume that φ(ti) = (φ ◦ σid)̂[ti] for all 1 ≤ i ≤ n,
then

(φ ◦ σid)̂[fi(t1, . . . , tn)]

= Sn((φ ◦ σid)(fi), (φ ◦ σid)̂[t1], . . . , (φ ◦ σid)̂[tn])

= Sn(φ(fi(x1, . . . , xn)), φ(t1), . . . , φ(tn))

= φ(Sn(fi(x1, . . . , xn), t1, . . . , xn))

= φ(fi(t1, . . . , tn)).

Thus, the proof is completed.

By Lemma 2.2 and Theorem 2.3, F̂τn is a generating set of k-cloneG(τn) and the
algebra k-cloneG(τn) is free with respect to the variety VMk

. Since k-cloneG(τn) belongs
to the variety VMk

, we have that any mapping η from F̂τn into Wτn(Xk) can be uniquely
extended to an endomorphism η̂ of k-cloneG(τn). We call such mapping generalized clone
k-substitutions of type τn. We denote the set of all generalized clone k-substitutions of
type τn by SubstkG(τn). Define a binary operation ⊙G on SubstkG(τn) by η1⊙Gη2 := η̂1◦η2,
where ◦ is the usual composition of functions. An identity generalized k-substitution of
type τn is defined by id(fi(x1, . . . , xn)) = fi(x1, . . . , xn). By this setting, we see that the
algebra SubstkG(τn) := (SubstkG(τn);⊙G, id) is a monoid.

Lemma 3.6. Let t be a k-ary term of type τn and η a generalized k-substitution of type
τn. Then (η ◦ σid)̂[t] = η̂(t).

Proof. We prove this equation by induction on the complexity of the k-ary term t of type
τn. It is clear that (η ◦ σid)̂[t] = η̂(t) if t is a variable since the endomorphism η̂ fixes
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constants. Assume that t = fi(t1, . . . , tn) and (η ◦ σid)̂[ti] = η̂(ti) for all 1 ≤ i ≤ n. Then

(η ◦ σid)̂[fi(t1, . . . , tn)] = Sn((η ◦ σid)(fi), (η ◦ σid)̂[t1], . . . , (η ◦ σid)̂[tn])

= Sn(η(fi(x1, . . . , xn)), η̂(t1), . . . , η̂(tn))

= Sn(η̂(fi(x1, . . . , xn)), η̂(t1), . . . , η̂(tn))

= η̂(Sn(fi(x1, . . . , xn), t1, . . . , tn))

= η̂(fi(t1, . . . , tn)).

Therefore, (η ◦ σid)̂[t] = φ̂(t).

Theorem 3.7. The monoids Hypk
G(τn) and SubstkG(τn) are isomorphic.

Proof. Define φ : SubstkG(τn) → HypkG(τn) by η 7→ η ◦ σid. It is clear that η ◦ σid ∈
HypkG(τn) and φ is well-defined. Let σ ∈ HypkG(τn). Then σ ◦ σ−1

id ∈ SubstkG(τn) and
φ(σ ◦ σ−1

id ) = σ. This shows that φ is surjective. Injectivity is clear since

φ(η1) = φ(η2) ⇒ η1 ◦ σid = η2 ◦ σid ⇒ η1 = η2.

Finally, we show that φ is a homomorphism. Let η1, η2 ∈ SubstkG(τn). Then

φ(η1) ◦G φ(η2) = (η1 ◦ σid) ◦G (η2 ◦ σid)

= (η1 ◦ σid)̂ ◦ (η2 ◦ σid)

= η̂1 ◦ (η2 ◦ σid)

= (η̂1 ◦ η2) ◦ σid

= (η1 ⊙G η2) ◦ σid

= φ(η1 ⊙G η2).

Therefore, we obtain our result.

Let V be a variety of type τn. An identity s ≈ t ∈ IdV is said to be a strong
hyperidentity [8] in V if σ̂[t] ≈ σ̂[s] ∈ IdV for s, t ∈ Wτn(X) and σ ∈ HypG(τn). The
set of all strong hyperidentities in V is denoted by H-IdV . A variety in which each of its
identities holds as a strong hyperidentity is called a strongly solid variety. We define

H-Idk V := {s ≈ t : s, t ∈ Wτn(Xk), σ̂[t] ≈ σ̂[s] ∈ IdV for all σ ∈ HypkG(τn)}.

Then H-Idk V is an equivalence relation on Wτn(Xk).

Proposition 3.8. Let V be a variety of type τn. Then H-Idk V is a congruence relation
on k-cloneG(τn).

Proof. Assume that s ≈ t, s1 ≈ t1, . . . , sn ≈ tn ∈ H-Idk V . Let σ ∈ HypkG(τn). Then
σ̂[s] ≈ σ̂[t], σ̂[s1] ≈ σ̂[t1], . . . , σ̂[sn] ≈ σ̂[tn] ∈ Idk V . By Proposition 2.4, we have
that Sn(σ̂[s], σ̂[s1], . . . , σ̂[sn]) ≈ Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) ∈ Idk V . This implies that
σ̂[Sn(s, s1, . . . , sn)] ≈ σ̂[Sn(t, t1, . . . , tn)] ∈ Idk V by Lemma 3.3. Therefore, we obtain
that Sn(s, s1, . . . , sn) ≈ Sn(t, t1, . . . , tn) ∈ H-Idk V . This shows our claim.

Lemma 3.9. Let V be a variety of type τn and s, t ∈ Wτn(Xk). If s ≈ t ∈ H-Idk V , then
φ(s) ≈ φ(t) ∈ H-Idk V for all endomorphism φ on Wτn(Xk).
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Proof. Assume that s ≈ t ∈ H-Idk V . Let φ be an endomorphism φ on Wτn(Xk). By
Proposition 3.5, we have that φ = (φ ◦ σid)̂. Now, we let σ ∈ HypkG(τn). Then

σ̂[φ(s)] = σ̂[(φ ◦ σid)̂[s]]

= (σ̂ ◦ (φ ◦ σid)̂)[s]

≈ (σ̂ ◦ (φ ◦ σid)̂)[t]

= σ̂[(φ ◦ σid)̂[t]]

= σ̂[φ(t)]

∈ Idk V.

Therefore, φ(s) ≈ φ(t) ∈ H-Idk V .

By above two results, we obtain the following theorem.

Theorem 3.10. Let V be a variety of type τn. Then H-Idk V is a fully invariant
congruence relation on k-cloneG(τn).

Next, we give a connection between strong hyperidentities of a variety of type τn and
identities satisfied in V .

Theorem 3.11. Let V be a variety of type τn. Then V is strongly solid if and only if
Idk V is a fully invariant congruence relation on k-cloneG(τn).

Proof. We assume that Idk V is a fully invariant congruence relation on k-cloneG(τn).
Let s ≈ t ∈ Idk V . We show that σ̂[s] ≈ σ̂[t] ∈ Idk V for all σ ∈ HypkG(τn). Let
σ ∈ HypkG(τn). By Lemma 3.3, the extension of σ is an endomorphism on k-cloneG(τn).
This implies that σ̂[s] ≈ σ̂[t] ∈ Idk V since Idk V is preserved by every endomorphism
on k-cloneG(τn). Conversely, assume that V is strongly solid. It is clear that Idk V is
a congruence relation on k-cloneG(τn) by Proposition 2.4. Assume that s ≈ t ∈ Idk V .
Let φ is an endomorphism on k-cloneG(τn). By Proposition 3.5, φ = (φ◦σid)̂. It is clear
that φ ◦ σid ∈ HypkG(τn). Then

φ(s) = (φ ◦ σid)̂[s] ≈ (φ ◦ σid)̂[t] = φ(t) ∈ Idk V.

Therefore, Idk V is a fully invariant congruence relation on k-cloneG(τn).
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