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1. INTRODUCTION

Let n be a natural number. Let X,, = {z1,...,2,} be an n-element set. The set X,
is called an alphabet and its elements are called variables. Let {f; : i € I} be the set of
operation symbols, indexed by a set I. The sets X,, and {f; : ¢ € I} have to be disjoint.
To every operation symbol f;, we assign a natural number n; > 1, called the arity of f;.
As in the definition of an algebra, the sequence 7 = (n;);er of all the arities is called the
type. Classes of algebras can be described by logical expressions. This formal language
is built up by variables from an n-element set. With this notation for operation symbols
and variables, we can define terms of type 7, (see [1-3]).

An n-ary term of type 7, for simply an n-ary term, is defined in the following inductive
way.

(i) Every variable z; € X, is an n-ary term.
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(ii) If tq,...,t,, are n-ary terms and f; is an n;-ary operation symbol, then the term
fi(t1,...,ty,) is an n-ary term.

The set W, (X,) = W ({x1,...,2,}) of all n-ary terms is the smallest set which

contains 1, ..., x, and is closed under finite application of (ii). We denote the set of all

terms of type 7 by
oo
Wo(X) = | W (Xom).
m=1

A type of algebras is called n-ary if all operation symbols of the type are n-ary, for
some fixed natural number n. We let 7,, be such a fixed type with operation symbols
(fi)icr, indexed by a nonempty set I.

For every n > 1. The (n + 1)-ary superposition operation S™ on the set of all n-ary
terms of type 7, is defined in the following inductive way.

(i) If t = xz; € X,, then S™(zj,t1,...,t,) :=1;.
(ll) Ift = fi(Sl, ey 3n)7 then

Sn(fi(sl, .. .7Sn),t17 . ,tn)
= fi(Sn(Sl,th e ,tn), .. .,Sn(Sn,tl, e ,tn))

On the set W, (X,,) of all n-ary terms of type 7, together with the (n + 1)-ary su-
perposition operation S™ and the nullary operation symbols x4, ..., x,, one obtains an
algebra

n-clone(r,,) := (W, (X,); 8™, x1, ..., T).

This algebra is an example of a unitary Menger algebra of rank n, (see [4, 5]). That is,
the algebra n-clone(r,) satisfies the following identities.

(C1) 8™(Z,5"(YV1,X1,..., Xp), ..., 8"(YVy, X1, ..., X))
~ 8M(S™(Z, Y1, ..., Y) X1, ..., Xn).

(C2) §*(A\i, X1,...,Xp) ~ X, forall 1 <i<n.

(C3) S™(Y,A1,..., ) =Y.

Here Z , 5?;-, X; are variables for terms for each 1 < i < n, S™ is an operation symbol, and
\; is a variable for all 1 <i < n.

Let V' be a variety of some type 7 := (n;);cs.- An identity s & ¢ satisfied in V is a
hyperidentity of V if the identity s =~ ¢ holds also for all possible n;-ary terms of the
variety not only for the n;-ary fundamental operations which occur in s ~ t. The study
of hyperidentities was introduced by Taylor [6].

The hypersubstitution theory (of arbitrary type 7) was first initialed by Denecke et al.
[7]. The concept of the superpositions is used to define the extension of a hypersubstitu-
tion. The authors used hypersubstitutions to make precise the concept of hyperidentities.

In 2000, the concept of hypersubstitutions was extended to generalized hypersubsti-
tutions. This notion can be used to study strong hyperidentities [3]. The generalized
hypersubstitutions are intensively investigated in the past decade, (see [9-12]).

In this paper, we generalize the study of the algebra n-clone(r,,) by using a gener-
alized superposition. The properties of this new algebra are investigated. Moreover, we
introduce a particular kind of generalized hypersubstitutions of type 7, and study their
properties. Finally, the well-known connection between strong hyperidentities of a variety
and identities satisfied by algebras in this variety is given in a restricted way.
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2. GENERALIZED CLONE OF RANK k

Leeratanavalee and Denecke [3] defined mappings from the set of all operation symbols
to the set of all terms which may not preserve arities. These mappings are called gen-
eralized hypersubstitutions. To define their extensions, the authors defined the concept
of a generalized superposition as follows. Let m > 1. Let W, (X) be the set of all terms
of type 7. The generalized superposition operation S™ is an (m + 1)-ary operation on
W, (X) defined inductively by the following.

(i) ft=x; € X, then S™(xj,t1,...,tm) == t;.
(ii) If t = z; € X \ Xy, then S™ (x5, t1,...,tm) == ;.

(iii) If t = fi(s1,...,Sm), then

Sm(fi(sl, PN .,Sm),tl, e ,tm)
= fi<Sm(Sl,t1, N ,tm), .. .7Sm(5m,t1, e ,tm))

By this definition, we generalize the algebra n-clone(7,,) in this way. Let k be a natural
number such that & > n. We will use the set W, (Xj) of all k-ary terms of type 7, as
universe and a generalized superposition S™ as an operation on this carrier set. Together
with nullary operation symbols x1,. ..z, we obtain an algebra

k-cloneg () = (W, (Xk); 8™, 21,..., k)

n

of type (n+1,0,...,0). This algebra is called a generalized clone of rank k. Observe that
if n =k, then

k-cloneg(7,) = n-clone(r,).

By this motivation, we call an algebra (M; §”,el, ...,€ek), where S" s an (n+ 1)-ary
operation and nullary operation ey, . .., e, a unitary Menger algebra of rank k if it satisfies
the following identties.

(CG1) S™(T,S8™(Fy,Ty,...,T,),...,S8"(Fy,Ty,...,T,))
~ S"(S™(T,F,...,F,),Th,...,Ty).
(CG2) S™(T A1y, An) =~ T.

(CG3) S™(\,T1,...,Ty) = T; for 1 <i<n.

(CG4> Sn()\i,Tl, ce 7Tn) ~ \; for i > n.

Here T, T}, F; are variables for terms for each 1 < i < n, S™ is an operation symbol, and
A; is a variable for all 1 < ¢ < k.

Theorem 2.1. The algebra k-cloneg(7,) is a unitary Menger algebra of rank k.

Proof. (CG1): We replace the variables by arbitrary ¢,t1,...,tn,81,...,8, € W, (Xi)
and the operation symbol by the generalized superposition S™. Then we have

STty S™(t1, 8153 Sn)s e s S (tny Sty vy Sn)) R ST(S™(t t1y . tn)y STy -y Sn)-
We give a proof by induction on the complexity of the k-ary term ¢ of type 7,. If
t=ux; € X,, then
S™(@iy S™(t1, 815y 8n)y ooy S (ny S14 -+, 8n))
= S"(ti,sh N ,Sn)
= Sn(Sn(a?i,tl, .o ,tn), S1yee-y Sn).
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Ift=2 € X; X, then
S™(x, 8™ (t1,81, -y Sn)y -, S (tny S15- -+, Sn))

=z
=5"(x,81,...,5n)

= S"(S™(x,t1, .. tn)y S1ye vy Sn)-
Ift = fi(u,...,u,) and assume that

S”(ui,S"(tl,sl, N .,Sn), . .,Sn(tn,sl, .. .,Sn))
= Sn(S”(ui,tl, e ,tn),sl, .. .,Sn)

for all 1 < i < n, then

S™(filuy .o un), S™(t1,81, -, Sn)s ey S (tny S15- -+ Sn))
= fi(S™(u1, S™(t1,81,- -y 8n),y -y S (tn, S15- -5 5n))s
ey ST (U, ST (E1, 815 oy )y e s S (Eny S15 -+ Sn)))
= fi(S™(S™(u1,t1,- -y tn), 815+, 8n),
cy S8 (U by eyt )y STy e ey Sn))
= S"(fi(S™(ur,t1, .oy tn)y e S (Unytry e ooy TR)), STy - vy Sn)
= S"(S"(fi(ury .. un) iy ey tn)y 81y ey Sn).
Thus, k-cloneg (7, ) satisfies (CG1).

(CG2): We replace the variable T' by an arbitrary k-ary term ¢ of type 7, S™ by S™
and \; by z; € X,, for all 1 <4 <n. Then we have

St x1,. .., xn) L

We give a proof by induction on the complexity of the k-ary term ¢ of type 7,. If
t =uz; € Xp, then S™(z;, z1,...,2,) = ;. Ift =2 € XX, then S™(z,21,...,2,) = x.
If t = fi(t1,...,t,) and assume that S™(t;,21,...,2,) = t; for all 1 <i < n, then

Sn(fi(th . ,tn)7$1, . ,xn) = fi(S"(thl‘l, .. .,xn), .. .,Sn(tn7l‘1, .. ,l‘n))
= fi(t1, ... tn).

This implies that k-cloneg(7,,) satisfies (CG2).
Equations (CG3) and (CG4) correspond to the definition of S™. Therefore, the algebra
k-cloneg (7,,) is a unitary Menger algebra of rank k. [ ]

Since (CG1), (CG2), (CG3) and (CG4) are identities, the class of all unitary Menger
algebras of rank k forms a variety which is denoted by V4, . Let ]:VMk (Y) be the free
algebra with respect to V4, , freely generated by Y = {y; : ¢ € I} where y; is a new
alphabet of individual variables indexed by a nonempty set I of the operation symbol f;.
We denote the (n + 1)-ary operation and nullary operations defined on Fv,,, (Y) by S
and A1, ..., Ak, respectively.

Let F, :={fi(x1,...,@,) :i € I}. Observe that F,, C W, (X;). Then we have:

Lemma 2.2. The set ﬁm is a generating system of k-cloneg(7,).
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Proof. We show by induction on the complexity of the k-ary term t of type 7, that
W, (Xk) is generated by F, . Let x; € Xi. It is clear that z; is generated since it

n

belongs to the type of k-cloneg(7,,). Assume that ¢t = f;(t1,...,t,) € W, (Xj) and ¢; is
generated for all 1 <7 < n. Then

Sn(fi(dfl, ce ,xn),tl, cee ,tn) = fi(tla ce ,tn).

This shows that f;(t1,...,t,) is generated. Therefore, we obtain our result. n

Theorem 2.3. The algebra k-cloneg(r,) is free with respect to the variety Vg, of
unitary Menger algebras of rank k.

Proof. We prove that k-cloneg(7,) is isomorphic with Fy,, (V). Define ¢ : W (Xy) —
Fva, ({y; i €1}) by

(i) p(x;) =N foralll <i <k,

(i) o(filtr,- - sta)) = 5" (yar p(t1), - o(tn)).

We prove the homomorphism property by induction on the complexity of the k-ary term
t of type 7,. If x; € X,,, then we have

©(S™ (i, t1, ... tn)) = p(ts)
= 5" (i, @(t1), .-, (tn))
= 5™(p(xi), o(t1), - -, p(tn))-
If 2; € X N X,,, then
DS (250t b)) = Ay

Assume that t = f;(s1,...,s,) and

P(S"(sist1, -5 tn)) = S™(p(s1), @(t1), - -, p(tn))
for all 1 <¢ <n. Then
O(S™(fi(S1y. -y 8n) sty tn))
= O(fi(S™(s1,t1s - s tn)s e 8™ (Snstrs - tn)))
= 5™ (yi, 2(S™ (51,11, -y tn))s - oy 2(S™(Smy s 1))
S™(yis S™(@(51),9(t1); s @)y - -5 8™ ((sn), (t1) -+, (tn)))
S™(8™(yir#(51), -+ @(50)), 0(t1); - -, p(En))
S™(@(fils1,-- v 8n)s0(t), -, o(tn))).

This shows that ¢ is a homomorphism. Let y; € Y. Then there exists f;(z1,...,z,) € ﬁTn
such that ¢(f;(z1,...,2,)) = y;- That is, ¢ is surjective. Moreover, ¢ is injective since
{yi : i € I'} is free independent, we have

Yi = Yj :>’L':j:>fi(l‘1,...,l‘n) :fj(xl,...,xn).

Therefore, ¢ is an isomorphism. [ ]
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On the set W, (Xj) of all k-ary terms of type 7, with the set of all n-ary operation
symbols F™ := {f; : i € I'}, we can define an n-ary operation f, : (W,, (Xy))" — W, (Xk)
by

fi(tla cee atn) = fi(tla s 7tn)‘
Then we obtain the absolutely free algebra F, (Xi) :== (W, (Xy); (fi)icr) of type 7.

n

Let V be a variety of type 7,,. The equation s =t € W, (X) x W, (X) is satisfied
in the variety V if the term operations induced by s and ¢ on every algebra from V are
equal. We call the equation s ~ t an identity in the variety V if s = ¢ is satisfied in V,
denoted by s =t € Id V. We define

Idy Vi={s~t:s,t € W, (Xi) and s~ te€IdV}.

That is, Id;, V = (W,, (X3))2 NIdV. It is clear that Id; V is an equivalence relation
on W, (Xg). If V is a variety of type 7,,, then Id; V forms a fully invariant congruence
relation on F; (Xj). Then we obtain the following lemma.

Proposition 2.4. Let V be a variety of type 7,,. Then 1d, V' is a congruence relation on
k-cloneg ().

Proof. Assume that s; = t1,...,s, ~t, € Idy V. We show by induction on the complex-
ity of the k-ary term t of type 7, that

S™(t, 81,y 8n) RSt ty, ... ty) € 1dg V.
If z; € X,,, then
S™M(t, 81,y Sn) =8 =t = S"(tt1,. .., ty) € Idp V.
Ift =x; € X N X,,, then
S™(t, 81,5 8n) =z = x; = S"(tt1,...,t,) €1di V,
since Idy V' is an equivalence relation on W, (Xj). If t = f;(uy,...,u,) and assume that
S™(Uiy 81,5y 8n) &S (g, b1, .. ty) €I,V
for all 1 <4 < n, then
S™(filury ..y un)y 814y 8n) = fi(S™(U1,81, -+, 8n) -, S (Un, S1,- -+, Sn))
~ fi(S™(u1, b1,y tn)se ey S (Unyt1, .oy tn))

S’IL
= S"(fz(ul, .. ,un),tl, . ,tn)
eld,V

by the fact that Id, V is a fully invariant congruence relation on the algebra F, (Xj).
Next, we prove that if t &= s € Idx V, then

S™(tur, .. up) & S"(s, U, uy,) € Id VL

This assertion holds since Idg V' is a fully invariant congruence relation of the absolutely
free algebra F. (X}). Finally, assume that ¢ & s,t; = $1,...,t, & 8, € Id; V. Then

Syt ey tn) A S (S 1, ) = ST(8, 81, .., 8,) € Id, V.

Therefore, Id, V' is a congruence relation on k-cloneg(7,). n
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Now, we can form the quotient algebra
k-clone, V := k-cloneg(r,)/1d; V,
with the (n + 1)-ary operation
S (W, (Xi)/1d, V)™ = W, (X)) /1d V

on k-clone, V defined by

S™([thay v [tltae v - [t v) := [S™ (bt iy v
The quotient algebra

k-clone,, V := (W, (X3)/1d, V; 5", [z1]1a, v, - - - » [2k]1a, v)

n

satisfies also (CG1) — (CG4). Thus, k-clone, V is a unitary Menger algebra of rank k as
homomorphic image of k-cloneg (7).

Let ﬁ;gk Vo= {[fi(z1,...,2n)|a, v : i € I'}. Then we prove the following.
Lemma 2.5. The set ﬁiﬁk V' is a generating system of k-clone, V.

Proof. Tt is clear that [z;]1q, v is generated for all 1 <4 < k since it belongs to the type

of k-clone, V. Assume that ¢t = f;(¢1,...,t,) and [t;]1a, v is generated for all 1 < i <mn.
Then
S ([Hhiag v [E1lidg v - - s [Eniag v)
= §n([fl(x17 B xn)]ldk Vs [tl]ldk Voo [tn]ldk V)

=[S"(fi(x1,. s zn),t1, -y t)]ia, v
= [filtr, - tn)]1a, v

Hence, the algebra k-clone, V is generated by ﬁTISk v, u

3. GENERALIZED k-HYPERSUBSTITUTIONS

A generalized hypersubstitution of type T is a mapping o : {f; : 4 € [} — W, (X) which
maps each operation symbol of type 7 to a term of the same type which may not preserve
arity. We denote the set of all generalized hypersubstitutions of type 7 by Hypg (7).

The generalized hypersubstitution o can be extended to a mapping ¢ : W.(X) —
W..(X) on the set of all terms of type 7 inductively defined as follows:

(i) olz] := « for any variable z € X;
(ii) o[fi(tr,.. ., tn,)] :=S™(0(f),[t1], - .., 0[tn,]) for every n;-ary operation symbol
i, assumed that o[t;] is already defined for all 1 < j < n;.
More detail about generalized hypersubstitutions of arbitrary type 7 can be found in [8].

Denecke [13] studied a particular type 7, of generalized hypersubstitutions. The author

defined a binary operation og on Hypq(7,) by

010G 09 := 01 0 0

where o denotes the usual composition of functions, and the identity generalized hyper-
substitution of type 7, which maps the operation symbol f; to the term f;(x1,...,2,)
is denoted by oiq4, (see also [3]). As a consequence, we obtain the following interesting
results.
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Theorem 3.1. [13] The algebra Hypg () is a monoid.

The theory of strong hyperidentities is based on the monoid (Hyps(7); og, 0ia), denoted
by Hypg(7), of a fixed type 7. These reasons demonstrate the importance of studying
the monoid properties of Hypg (7) and its submonoids of a fixed type 7, (see [8]).

A generalized k-hypersubstitution o of type 7, is a generalized hypersubstitution of
type 7, which maps every operation symbol of type n to W.. (X). We denote the set of
all generalized k-hypersubstitutions of type 7, by Hyplé (7). We observe that if k = n,
then o is a usual hypersubstitution of type 7,.

It is clear that Hyp’é(Tn) C Hypg (7). The product o1 og o2 of two generalized k-
hypersubstitutions of type 7, is again a generalized k-hypersubstitution of type 7,, and oiq
is a generalized k-hypersubstitution of type 7,,. Thus, we obtain the following proposition
immediately.

Proposition 3.2. The algebra Hypl (1) = (Hypk(7,);0a,05a) is a submonoid of
Hypg (7).

To study the properties of strong hyperidentities of a fixed type 7, by using variables
only from X, k > n we will develop the theory of generalized k-hypersubstitutions of
type Tn.

Lemma 3.3. Let o € Hypf, (). Then
alS™(t,t1, ... tn)] = S"(G[t],T[t1], - - -, Tltn])-
That is, o is an endomorphism on k-cloneg (7).

Proof. We will give a proof by induction on the complexity of the k-ary term ¢ of type
Tn. If t = 2; € X,,, then

a[S™(mi,t1, ... tn)] = Tlts]) = S (xs,0[t1], . . ., Tltn]) = S"(Txs],T[t1], - - ., T[tn])-
Ift =2 € X; ~ X, then

a[S™(z,t1,. .. ty)] = = S™(x,0[t1],...,0[tn]) = S™(C[z],T[t1], - .., T[tn])-
Ift = fi(s1,...,s,) and assume that

a[S™(siyt1, ... tn)] = S™(T[si], Tlt1], - .-, O[tn])
for all 1 <i < n, then

A[ n(fZ(Sh ) tl,...7tn)]

=0[fi(S"(s1,t1, - stn)y oo s S (Sny 1y ey tn))]
= S"(0(fi),0[S™(s1,t1s - tn)], -, O[S (Snyt1y -y tn)])
= S"(o(f:),S"(a[s1],0[t1],- .-, Tltn])s. .., S™(T[sn], O[t1], - .., O[tn]))
= S"(S8™(o(fi),0ls1],..,Tlsn]), Olta], . ., Ttn])
= S"(@[fi(s1y- .-, 8n)],Olt1]s - -, Oltn]).
Therefore, we have as desire. ]

Proposition 3.4. Let 01,09 € Hyp&(7,). Then (61 0 02]'= 1 0 65.
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Proof. Tt is not difficult to see that oy 0 oy € Hyp’é(Tn). We give a proof by induction
on the complexity of the k-ary term ¢ of type 7, that (71 o 02][t] = (61 0 72)(¢). It is
clear that this equality holds if ¢ is a variable. If ¢ = f;(¢1,...,t,) and assume that
(01 0 09)[ti] = (61 0 72)(t;) for all 1 <4 <mn, then

(61 002 fi(t1, .- tn)]
= 5"((61002)(fi), (@10 02)[ta], ..., (01 0 02][ts])
= 5"(1]o2(fi)], 1[o2[t1]], - - -, 1 [02[tn]])
= 01[S"(02(fi), Oalt1], - - -, Ta[tn])]
= (01 002)(fi(t1, .- ))

Therefore, the extension of the composition of any two elements in Hypg (7,,) is a com-
position of their extensions. ]

Proposition 3.5. Every endomorphism on k-cloneg (7,) is the extension of a generalized
k-hypersubstitution of type T,.

Proof. Let ¢ : W, (Xi) — W, (Xk) be an endomorphism. We observe that ¢ o o4 €
Hyp& (7). Thus, we claim that ¢ = (poaiq). Let t be a k-ary term of type 7,,. We give a
proof by induction on the complexity of the k-ary term ¢ of type 7, that ¢(t) = (pooiq)t].
Since every endomorphism fixed constants, we have that ¢(t) = ( o 0iq)[t] whenever ¢ is
a variable. If t = f;(¢1,...,t,) and assume that ¢(t;) = (¢ o g1a)[t;] for all 1 < i < n,
then

(poaa)lfi(ti,... tn)]
= 5"((p o 0ia)(fi), (pooiaflt],- .., (¢ o oia)ltn])
= S"(p(fi(z1,- .- 2n))sp(t1), - - -5 p(tn))
=(S"(fi(z1,...,Tn),t1,...,ZTn))
= @(fi(tr, -, tn)).

Thus, the proof is completed. ]

By Lemma 2.2 and Theorem 2.3, ﬁm is a generating set of k-cloneg(7,) and the
algebra k-cloneg(7,) is free with respect to the variety Vi, . Since k-cloneg (7,,) belongs
to the variety Vi, , we have that any mapping n from ﬁm into W, (Xy) can be uniquely
extended to an endomorphism 7 of k-cloneg (7,,). We call such mapping generalized clone
k-substitutions of type 7,. We denote the set of all generalized clone k-substitutions of
type 7, by Subst’é(Tn). Define a binary operation ®g on Subst’é (T) by 1 @12 := 10M2,
where o is the usual composition of functions. An identity generalized k-substitution of
type T, is defined by id(f;(x1,...,2)) = fi(z1,...,2,). By this setting, we see that the
algebra Substf, (7,,) := (Substf, (7,,); ©g,id) is a monoid.

Lemma 3.6. Lett be a k-ary term of type 1, and n a generalized k-substitution of type
Tn. Then (n o oiqa)[t] = 1(t).

Proof. We prove this equation by induction on the complexity of the k-ary term ¢ of type
Tn. It is clear that (n o oiq)[t] = 7(t) if ¢ is a variable since the endomorphism 7 fixes
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constants. Assume that t = f;(t1,...,t,) and (no ow)[t:;] = 7(t;) for all 1 < ¢ <n. Then
(moaa)lfi(ti,.. . ta)] = S™((noaia)(fi); (o aa)lta], - - ., (00 gia)[tn])
= S"n(fi(wr, - wn)), (), - 7(En))
= S"(0(fi(wr, - wn)), (), - 7(En))
=0(S"(fi(x1,-- s 2n),t1,. .., tn))
=0(fi(t1, ... tn)).

Therefore, (n o oiqJ[t] = P(t). L]

Theorem 3.7. The monoids Hyp’é(Tn) and Substé(Tn) are isomorphic.

Proof. Define ¢ : Subst (,) — Hypk(r,) by n — nooi. It is clear that 5o oyq €
Hypg(7,) and ¢ is well-defined. Let o € Hypg (7). Then o o 0,3 € Substf(7,,) and
p(oo U;il) = o. This shows that ¢ is surjective. Injectivity is clear since

o(m) = ¢(m2) = m oo =200 =M = N2

Finally, we show that ¢ is a homomorphism. Let 71,7, € Substty(7,,). Then

@(m) o ¢(n2) = (m © 0ia) oG (N2 © ia)
= (m ooia)o (2 00iq)
= 7/7\1 o (nQ o Uid)
= (M on2) © 0iq
= (m ©g n2) © oia
= p(m Oc 12)-

Therefore, we obtain our result. [ ]

Let V be a variety of type 7,,. An identity s ~ t € IdV is said to be a strong
hyperidentity [8] in V if 5[t] = &[s] € IdV for s,t € W, (X) and o € Hypg(7,). The
set of all strong hyperidentities in V' is denoted by H-Id V. A variety in which each of its
identities holds as a strong hyperidentity is called a strongly solid variety. We define

H-Id, V= {s~t:s,te W, (X;),0[t] = 7[s] € IdV for all ¢ € Hyp& ()}
Then H-Id, V' is an equivalence relation on W, (Xy).

Proposition 3.8. Let V' be a variety of type 1,. Then H-Idy V is a congruence relation
on k-cloneg (7).

Proof. Assume that s =~ t,s1 ~ t1,...,8, =~ t, € H-Idy V. Let o € Hyp’é(Tn). Then

ols] =~ o[t],o[s1] =~ O[t1],...,0[sn] = O[tn] € Idp V. By Proposition 2.4, we have
that S”(E[s] o[s1],...,0[sn]) = S™(@[t],o[t1],...,0[tn]) € IdxV. This implies that
a[S™ (s, s1,-- )] ~ 3[5” t,t1,...,tn)] € Ide by Lemma 3.3. Therefore, we obtain
that S™(s, 51, ceey 8p) & S™(t,t1,. .., ty) € H-Idg V. This shows our claim. n

Lemma 3.9. Let V be a variety of type 1, and s,t € W, (Xy). If s~t € H-Id, V, then
o(s) = ¢(t) € H-1d, V for all endomorphism ¢ on W, (Xy).
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Proof. Assume that s ~ ¢t € H-Id, V. Let ¢ be an endomorphism ¢ on W, (X;). By
Proposition 3.5, we have that ¢ = (¢ 0 01q). Now, we let o € Hypk (). Then

= G[(¢p o 0ia][s]]

= (00 (poai))[s]

(8 (p o oia))[t]
(p o 0ia)]t]]

Therefore, p(s) =~ p(t) € H-Id; V. (]
By above two results, we obtain the following theorem.

Theorem 3.10. Let V' be a wvariety of type 7,. Then H-Idx V' is a fully invariant
congruence relation on k-cloneg (7).

Next, we give a connection between strong hyperidentities of a variety of type 7, and
identities satisfied in V.

Theorem 3.11. Let V be a variety of type 7,,. Then V is strongly solid if and only if
Idx V is a fully invariant congruence relation on k-cloneg ().

Proof. We assume that Id; V' is a fully invariant congruence relation on k-cloneg(7,).
Let s ~ t € Id, V. We show that &[s] ~ &[t] € 1d,V for all o € Hypf (). Let
s Hyp’é (n). By Lemma 3.3, the extension of o is an endomorphism on k-cloneg (7).
This implies that o[s] = o[t] € Id; V since Id; V is preserved by every endomorphism
on k-cloneg(7,). Conversely, assume that V' is strongly solid. It is clear that Idg V is
a congruence relation on k-cloneg(7,) by Proposition 2.4. Assume that s ~ ¢ € Id, V.
Let ¢ is an endomorphism on k-cloneg (7). By Proposition 3.5, ¢ = (pooiq). It is clear
that ¢ o iq € Hypg (7). Then

©(s) = (pooia)ls] = (poaiallt] = p(t) € Id; V.

Therefore, Id, V is a fully invariant congruence relation on k-cloneg (7). =
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