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1. Introduction
We are interested in the following Ginzburg-Landau-type (GL) equation{

−div(a(x, |∇u|)∇u) + α(x)
[
|u|q(x)

q(x) − β(x)
]
|u|q(x)−2u = f(x, u) in Ω,

u = 0 on ∂Ω,

(1.1)
where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω; u : Ω → R de-
notes primal field; q ∈ C(Ω) with minx∈Ω q(x) ≥ 2; α, β ∈ L∞(Ω) with minx∈Ω α(x), β(x) >

0; f : Ω × R → R is a Carathéodory function, and the function φ(x, t) := a(x, |t|)t is an
increasing homeomorphism from Ω× R onto R such that Φ(x, t) =

∫ t
0
φ(x, s)ds.

The corresponding variational formulation given by the functional E : W 1,Φ
0 (Ω) → R

(called the Ginzburg-Landau energy) to the equation (1.1) is the following energy func-
tional

E(u) =
∫
Ω

Φ(x, |∇u|)dx+

∫
Ω

α(x)

2

[
|u|q(x)

q(x)
− β(x)

]2
dx−

∫
Ω

F (x, u)dx. (1.2)
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Then the problem will be to find some u0 ∈ W 1,Φ
0 (Ω), which satisfies the equation

(1.1), such that
E(u0) = min

u∈W 1,Φ
0 (Ω)

{E(u)}.

We want to remark that if we let a(x, t) = |t|p(x)−2, where p(x) is a continuous function
on Ω, β(x) = 1, α(x) = α = const > 0, f(x, t) = f(t), and p(x) = q(x) = 2, equation
(1.1) turns into the well-known the GL equation{

−∇2ψ + α( |ψ|
2

2 − 1)ψ = f(ψ) in Ω,

ψ = 0 on ∂Ω.
(1.3)

Equation (1.3) is the Euler equation of the GL energy

E∗(ψ) =
1

2

∫
Ω

|∇ψ|2dx+
α

2

∫
Ω

[
|ψ|2

2
− 1

]2
dx−

∫
Ω

F (ψ)dx.

In the field of superconductivity, the GL equation has been playing an important role
for the understanding of macroscopic superconducting phenomena. This equation was
originally proposed in [22], where the magnetic effect caused by the current of supercon-
ducting electrons is taken account into the equation. In the Ginzburg-Landau theory, ψ
denotes the macrowave function describing a superconducting state and |ψ|2 is the density
of superconducting electrons. Therefore, |ψ| = 0 corresponds to the normal state and a
solution with zeros physically represents a mixed state of superconducting and normal
ones. Then the zero of ψ is called a vortex. We refer the reader to [2, 6–8, 14, 26–
28, 31, 32, 34, 36, 41–44] and the references therein for detailed background regarding the
GL equations.
We also want to mention that equations like (1.1) particularly generalize the problems
involving variable exponent. This kind of equations has been intensively studied by many
authors over the past twenty years due to its significant role in many fields of mathe-
matics, such as calculus of variations, non-linear potential theory, non-Newtonian fluids,
image processing (see, e.g., [4, 5, 9, 10, 13, 19, 21, 25, 33, 35, 40, 45, 46]). Therefore,
equations of type (1.1) may represent a variety of mathematical models corresponding to
certain phenomenons.
For φ(x, t) := φ(t) = |t|p−2t, we have:

• Nonlinear elasticity: φ(t) =
(
1 + t2

)α − 1, α > 1
2 ,

• Plasticity: φ(t) = tα (log (1 + t))
β
, α ≥ 1, β > 0,

• Generalized Newtonian fluids: φ(t) =
∫ t
0
s1−α

(
sinh−1 s

)β
ds,

0 ≤ α ≤ 1, β > 0.

For φ(x, t) := |t|p(x)−2t, we have another example, which is a new model for image
restoration given in [11]. In this model, main aim is to recover an image, u, from an
observed, noisy image, I, where the two are related by I = u + v. The proposed model
incorporates the strengths of the various types of diffusion arising from the minimization
problem

min
I=u+v, u∈BV ∩L2(Ω)

∫
Ω

φ(x,∇u)dx+ λ∥u∥L2(Ω),
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where Ω ⊂ R2 is an open domain,

φ(x, t) =

{
1

p(x) |t|
p(x), for |t| ≤ β,

|t| − βp(x)−βp(x)

p(x) , for |t| > β,

where β > 0 is fixed and 1 < α ≤ p(x) ≤ 2, where the function p(x) depends on the
location of x in the model. For instance, p(x) can be chosen as

p(x) = 1 +
1

1 + k|∇Gσ ∗ I|2
,

where Gσ(x) = 1
σ exp(−|x|2/4σ2) is the Gaussian filter and k > 0 and σ > 0 are fixed

parameters.
To the best of the author knowledge, problem (1.1) of the present paper has not been

included in the related literature so far, and therefore, has a potential to contribute
to it in some way. The main challenge regarding to problem (1.1) was to obtain the
smoothness properties of the corresponding Ginzburg-Landau energy functional E because
it contains the term

[
|u|q(x)

q(x) − β(x)
]2

which does not appear usually in such problems.
Additionally, we use the theory of Musielak-Orlicz spaces since problem (1.1) contains
a nonhomogeneous function φ in the differential operator, namely, −div(a(x, |∇ · |)∇·),
which makes equation (1.1) to be particularized to some well-known equations such as
p(x)-Laplace equations in case we let a(x, t) = |t|p(x)−2.

2. Preliminaries
We start with some basic concepts of Orlicz spaces. For more details we refer the

readers to the monographs [1, 29, 30, 37, 39], and the papers [18, 19, 23, 24, 33].
The function a(x, t) : Ω×R → R is a function such that the mapping φ(x, t) : Ω×R →

R, defined by

φ(x, t) =

{
a(x, |t|)t, for t ̸= 0,

0, for t = 0,
(2.1)

and for all x ∈ Ω, φ(x, ·) : R → R is an odd, increasing homeomorphism. For the function
φ above, if we define

Φ(x, t) =

∫ t

0

φ(x, s)ds, ∀x ∈ Ω, t ≥ 0, (2.2)

then the function Φ : Ω × [0,+∞) → [0,+∞) is called a generalized N -function if it
satisfies the following conditions (see e.g., [1, 37, 39]):

(Φ0) for almost all x ∈ Ω, Φ(x, ·) is a N -function, i.e., convex, nondecreasing and
continuous function of t such that, Φ(x, 0) = 0, Φ(x, t) > 0 for all t > 0, and

lim
t→0

Φ(x, t)

t
= 0, lim

t→∞

Φ(x, t)

t
= +∞.

(Φ1) Φ(·, t) is a measurable function on Ω for all t ≥ 0.
The set of all generalized N -functions is denoted by N(Ω). The function Φ̄ defined by

Φ̄(x, t) =

∫ t

0

φ−1(x, s)ds, ∀x ∈ Ω, t ≥ 0 (2.3)
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is called the complementary (or conjugate) function to Φ, where Φ̄ satisfies the following
Φ̄(x, t) = sup

s>0
{st− Φ(x, s) : s ∈ R}, ∀x ∈ Ω, t ≥ 0.

It is well known that Φ̄ ∈ N(Ω), and then the following Young inequality holds
st ≤ Φ(x, t) + Φ̄(x, s) for x ∈ Ω and t, s ∈ R. (2.4)

The function Φ allow us to define the Musielak-Orlicz spaces, also called the generalized
Orlicz spaces, by

LΦ(Ω) = {u : Ω → R is measurable;∃λ > 0 such that
∫
Ω

Φ(x, |u(x)|/λ)dx < +∞}.

Moreover, by ∆2-condition (see below), LΦ̄(Ω) is the dual space of LΦ(Ω), i.e.,
(LΦ(Ω))∗ = LΦ̄(Ω).
In the sequel, we also use the following assumptions for Φ:

1 < φ0 := inf
t>0

tφ(x, t)

Φ(x, t)
≤ tφ(x, t)

Φ(x, t)
≤ φ0 := sup

t>0

tφ(x, t)

Φ(x, t)
<∞, ∀x ∈ Ω, t ≥ 0; (2.5)

inf
x∈Ω

Φ(x, t) > 0, ∀t > 0; (2.6)

the function t→ Φ(x,
√
t) is convex, ∀x ∈ Ω, t ≥ 0. (2.7)

By help of assumption (2.5), the Musielak-Orlicz spaces coincides with the equivalence
classes of measurable functions u : Ω → R such that∫

Ω

Φ(x, |u(x)|)dx <∞, (2.8)

and is equipped with the Luxembourg norm

|u|Φ := inf

{
µ > 0 :

∫
Ω

Φ

(
x,

|u(x)|
µ

)
dx ≤ 1

}
. (2.9)

For the Musielak-Orlicz spaces, Hölder inequality reads as follows (see [1],[39])∫
Ω

uv dx ≤ 2∥u∥LΦ(Ω)∥v∥LΦ̄(Ω) for all u ∈ LΦ(Ω) and v ∈ LΦ̄(Ω).

The Musielak-Sobolev spaces W 1,Φ(Ω) is the space defined by

W 1,Φ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, 2, . . . , N

}
under the norm

∥u∥1,Φ := |u|Φ + |∇u|Φ. (2.10)

Now we introduce Musielak-Sobolev spaces with zero boundary traces W 1,Φ
0 (Ω) as the

closure of C∞
0 (Ω) in W 1,Φ(Ω) under the norm ∥u∥1,Φ. Moreover, by help of the well-

known Poincaré inequality (see [23]), we can define an equivalent norm ∥ · ∥Φ on W 1,Φ
0 (Ω)

by
∥u∥Φ := |∇u|Φ. (2.11)

Remark 2.1. (1) For the case Φ(x, t) := Φ(t), we obtain LΦ(Ω) and W 1,Φ(Ω)
called Orlicz spaces and Orlicz-Sobolev spaces, respectively (see [29, 30, 37, 39]).
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(2) For the case Φ(x, t) := |t|p(x), where p(x) is a continuous function on Ω with
p(x) > 1, we replace LΦ(Ω) by Lp(x)(Ω) and W 1,Φ(Ω) by W 1,p(x)(Ω) and call
them variable exponent Lebesgue spaces and variable exponent Sobolev spaces,
respectively (see [1, 15, 16, 40]).

Proposition 2.2 ([1, 19]). If (2.5)-(2.7) hold then the spaces LΦ(Ω) and W 1,Φ(Ω) are
separable and reflexive Banach spaces.

Proposition 2.3 ([18, 33]). Let define the modular ρ(u) :=
∫
Ω
Φ(x, |∇u|)dx :W 1,Φ

0 (Ω) →
R. Then for every un, u ∈W 1,φ

0 (Ω), we have

(i) ∥u∥φ
0

Φ ≤ ρ(u) ≤ ∥u∥φ0

Φ if ∥u∥Φ < 1.

(ii) ∥u∥φ0

Φ ≤ ρ(u) ≤ ∥u∥φ
0

Φ if ∥u∥Φ > 1.
(iii) ∥u∥Φ ≤ ρ(u) + 1.
(iv) ∥un − u∥Φ → 0 ⇔ ρ(un − u) → 0.
(v) ∥un − u∥Φ → ∞ ⇔ ρ(un − u) → ∞.

In Proposition 2.3, the statements (iv) − (v) mean that norm and modular topology
coincide on LΦ(Ω) provided Φ satisfies (2.5), which enables that well-known ∆2-condition
holds (see below).

Remark 2.4. The functional ρ is from C1(W 1,Φ
0 (Ω),R) with the derivative

⟨ρ′(u), v⟩ =
∫
Ω

a(x, |∇u|)∇u · ∇vdx,

where ⟨·, ·⟩ is the dual pairing between W 1,Φ
0 (Ω) and its dual (W 1,Φ

0 (Ω))∗. Moreover, the
operator ρ′ is of type (S+), that is, un ⇀ u in W 1,Φ

0 (Ω) and lim sup⟨ρ′(un), un − u⟩ ≤ 0

imply un → u in W 1,Φ
0 (Ω) (see [33]).

It is said that Φ satisfies the ∆2-condition if there is a positive constant M such that

Φ(x, 2t) ≤MΦ(x, t), for all x ∈ Ω, t ≥ 0. (2.12)

If Ψ,Φ ∈ N(Ω) and

Ψ(x, t) ≤ k1Φ(x, k2t) + h(x), for all x ∈ Ω, t ≥ 0, (2.13)

holds, where h ∈ L1(Ω) with h(x) ≥ 0 a.e. x ∈ Ω, k1, k2 are positive constants, then we
have the following continuous embeddings (see [37]):

(i) LΦ(Ω) ↪→ LΨ(Ω).
(ii) W 1,Φ(Ω) ↪→W 1,Ψ(Ω).

We also assume that the following condition hold for function Φ.
For every t > 0 there exists a constant Ct > 0 such that

(Φ2) Ct ≤ Φ(x, t) ≤ C−1
t ,

for a.e. x ∈ Ω.

Proposition 2.5 ([17]). Assume that Ω is a bounded domain with smooth boundary ∂Ω.
Then the embedding W 1,p(x)(Ω) ↪→ Lr(x)(Ω) is compact provided r, p ∈ C(Ω) such that
p− > 1, 1 ≤ r(x) < p∗(x), where p∗(x) := Np(x)

N−p(x) if p(x) < N and p∗(x) := +∞ if
p(x) ≥ N .
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Remark 2.6. First, we note that for t > 1 and s > 0 it holds tφ0Φ(x, s) ≤ Φ(x, ts) ≤
tφ

0

Φ(x, s). Indeed, from the assumption (2.5), we have

φ0 ≤ zφ(x, z)

Φ(x, z)
≤ φ0, ∀x ∈ Ω, z ≥ 0.

Considering that for almost all x ∈ Ω, Φ(x, z) is a convex, nondecreasing and continuous
function of z, we can proceed as follows∫ ts

s

φ0

z
dz ≤

∫ ts

s

φ(x, z)

Φ(x, z)
≤
∫ ts

s

φ0

z
dz,

log tφ0 ≤ log Φ(x, ts)− log Φ(x, s) ≤ log tφ
0

,

and hence
tφ0Φ(x, s) ≤ Φ(x, ts) ≤ tφ

0

Φ(x, s). (2.14)
Now, if we consider (Φ2) and the inequality (2.14) together, we can obtain

Ctt
φ0 ≤ Φ(x, st) + C, C ≥ 0. (2.15)

Hence, if we consider (2.15) along with (2.13) where 1
k1

= Ct, k2 = s and h(x) = C ≥ 0,
the Musielak-Sobolev space W 1,Φ(Ω) is continuously embedded in the variable exponent
Sobolev space W 1,φ0(Ω). On the other hand, W 1,φ0(Ω) is compactly embedded in the
variable exponent Lebesgue space Lr(x)(Ω) for all 1 ≤ r(x) < φ∗

0 := Nφ0

N−φ0
with r ∈ C(Ω).

As a result, W 1,Φ(Ω) is continuously and compactly embedded in the variable exponent
Lebesgue space Lr(x)(Ω) (see also Remark 2.1, [5]).

3. Main Results
First, we will give the variational framework of the problem.

Definition 3.1. We say that u ∈W 1,Φ
0 (Ω) is a weak solution of problem (1.1) iff

⟨ρ′(u), v⟩+
∫
Ω

α(x)

[
|u|q(x)

q(x)
− β(x)

]
|u|q(x)−2uvdx =

∫
Ω

f(x, u)vdx,

for all v ∈W 1,Φ
0 (Ω).

The Ginzburg-Landau energy functional corresponding to problem (1.1) is defined as
E :W 1,Φ

0 (Ω) → R,

E(u) = ρ(u) +

∫
Ω

α(x)

2

[
|u|q(x)

q(x)
− β(x)

]2
dx−

∫
Ω

F (x, u)dx,

where F (x, t) :=
∫ t
0
f(x, s)ds. We will study problem (1.1) under the following assump-

tions.We set
r− = min

x∈Ω
r(x) and r+ = max

x∈Ω
r(x).

Throughout the paper we always assume that
2 ≤ q− ≤ q(x) ≤ q+ ≤ p− ≤ p(x) ≤ p+ <∞.

(f1) f : Ω× R → R is a Carathéodory function and there exists c1 > 0 such that
|f(x, t)| ≤ c1|t|s(x)−1

where s ∈ C(Ω) such that s(x) ≤ s+ < φ0.
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(f2) There exist constants M, θ > 0 with 2q+ < φ0 < θ < φ∗
0 such that

0 < θF (x, t) ≤ f(x, t)t, |t| ≥M, ∀x ∈ Ω.

(f3) f(x, t) = o
(
|t|q

+−1
)

as t→ 0 uniformly, for x ∈ Ω.
(f4) f(x,−t) = −f(x, t).

Remark 3.2. The function f(x, t) = |t|σ(x)−2
t, where σ− > q+, satisfies assumptions

(f1)-(f4).

Remark 3.3. By assumption (f2) there exists a constant c > 0 such that F (x, t) ≥ c|t|θ
for all x ∈ Ω and |t| ≥M .

The main results of the present paper are the following.

Theorem 3.4. Assume that (f1)-(f3) hold. Then problem (1.1) has a nontrivial solution
in W 1,Φ

0 (Ω).

Theorem 3.5. Suppose that in addition to the assumptions of Theorem 3.4, (f4) holds.
Then problem (1.1) has infinitely many solutions with arbitrary large action in W 1,Φ

0 (Ω).

First, we need to show that functional E satisfies the main smoothness properties which
are the essential part of the main proofs of the paper.

Lemma 3.6. The functional E is well-defined on W 1,Φ
0 (Ω) and Fréchet differentiable,

i.e., E ∈ C1(W 1,Φ
0 (Ω),R) whose derivative is

⟨E ′(u), v⟩ = ⟨ρ′(u), v⟩+
∫
Ω

α(x)

[
|u|q(x)

q(x)
− β(x)

]
|u|q(x)−2uvdx−

∫
Ω

f(x, u)vdx.

Proof. From the embeddings W 1,Φ
0 (Ω) ↪→ L2q(x)(Ω) ↪→ Lq(x)(Ω), for any u ∈ W 1,Φ

0 (Ω) it
is easy to see that[

|u|q(x)

q(x)
− β(x)

]2
∈ L1(Ω). (3.1)

By condition (f1), we have |F (x, u)| ≤ c1
s− |u|s(x). Therefore, considering the continuous

embedding W 1,Φ
0 (Ω) ↪→ Ls(x)(Ω), it follows

|E(u)| ≤ ρ(u) +

∫
Ω

α(x)

2

[
|u|q(x)

q(x)
− β(x)

]2
dx+

∫
Ω

|F (x, u)|dx <∞,

which means that E is well-defined on W 1,Φ
0 (Ω).

Since ρ ∈ C1(W 1,Φ
0 (Ω),R), it is enough to show that the operator Λ given by

Λ(u) =

∫
Ω

α(x)

2

[
|u|q(x)

q(x)
− β(x)

]2
dx−

∫
Ω

F (x, u)dx

is of class C1(W 1,Φ
0 (Ω),R). To this end, first, it must be shown that for all v ∈W 1,Φ

0 (Ω)

⟨Λ′(u), v⟩ = lim
t→0

Λ(u+ tv)− Λ(u)

t
=

∫
Ω

α(x)

[
|u|q(x)

q(x)
− β(x)

]
|u|q(x)−2uvdx−

∫
Ω

f(x, u)vdx,
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and then it must be obtained that Λ′ :W 1,Φ
0 (Ω) → (W 1,Φ

0 (Ω))∗ is continuous.
The continuity properties of | · | and f along with the definition of F allow us to apply
the mean value theorem, that is,

⟨Λ′(u), v⟩ = lim
t→0

∫
Ω

α(x)

2t

([
|u+ tv|q(x)

q(x)
− β(x)

]2
−
[
|u|q(x)

q(x)
− β(x)

]2)
dx

− lim
t→0

∫
Ω

F (x, u+ tv)− F (x, u)

t
dx

= lim
t→0

∫
Ω

α(x)

[
|u+ tτv|q(x)

q(x)
− β(x)

]
|u+ tτv|q(x)−2(u+ tτv)vdx

− lim
t→0

∫
Ω

f(u+ tτv)vdx,

where u, v ∈ W 1,Φ
0 (Ω) and 0 ≤ τ ≤ 1. Now, if we apply the Young inequality along with

the inequality |a + b|m ≤ 2m−1(|a|m + |b|m), for all a, b ∈ RN and m ≥ 1, consecutively
to all integrands on the right-hand side of the above expression, and use condition (f1),
it reads ∣∣∣∣α(x) [ |u+ tτv|q(x)

q(x)
− β(x)

]
|u+ tτv|q(x)−2(u+ tτv)v

∣∣∣∣
≤ α(x)

[
|u+ tτv|q(x)

q−
+ β(x)

]
|u+ tτv|q(x)−1||v|

≤ α(x)

[
|u+ tτv|2q(x)−1

q−
|v|+ β(x)|u+ tτv|q(x)−1|v|

]
.

However, by the Young inequality, it reads
|u+ tτv|2q(x)−1

q−
|v| ≤ (2q(x)− 1)22q(x)−1

2q(x)q−

[
|u|2q(x) + |v|2q(x)

]
+

1

2q(x)
|v|2q(x) (3.2)

and

|u+ tτv|q(x)−1|v| ≤ 2q(x)−1(q(x)− 1)

q(x)q−

[
|u|q(x) + |v|q(x)

]
+

1

q(x)
|v|q(x). (3.3)

Similarly,

|f(x, u+ tτv)v| ≤ c

(
2s(x)−1(s(x)− 1)

s(x)
|u|s(x) + (

2s(x)−1(s(x)− 1) + 1

s(x)
)|v|s(x)

)
.

(3.4)
The right-hand sides of the inequalities of (3.2)-(3.4) belong to L1(Ω). Therefore, by the
Lebesgue dominated convergence theorem, which make it possible to change the order of
lim and integral signs, along with the continuity properties of f and | · |, it reads that

⟨Λ′(u), v⟩ =
∫
Ω

α(x) lim
t→0

[
|u+ tτv|q(x)

q(x)
− β(x)

]
|u+ tτv|q(x)−2(u+ tτv)vdx

−
∫
Ω

lim
t→0

f(x, u+ tτv)vdx

=

∫
Ω

α(x)

[
|u|q(x)

q(x)
− β(x)

]
|u|q(x)−2uvdx−

∫
Ω

f(x, u)vdx.
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Since the right-hand side of the above expression, as a function of v, is a continuous linear
functional on W 1,Φ

0 (Ω), it is the Gâteaux differential of Λ.
Next, we proceed to the continuity of Λ′. To this end, we assume, for a sequence (un) ⊂
W 1,Φ

0 (Ω), that un → u ∈W 1,Φ
0 (Ω). Then,

|⟨Λ′(un)− Λ′(u), v⟩| ≤
∣∣∣∣∫

Ω

α(x)Invdx

∣∣∣∣+ ∣∣∣∣∫
Ω

(f(x, u)− f(x, un))vdx

∣∣∣∣ ,
where

In := Θ(un)−Θ(u) =

[(
|un|q(x)

q(x)
− β(x)

)
|un|q(x)−2un −

(
|u|q(x)

q(x)
− β(x)

)
|u|q(x)−2u

]
and

Θ(u) :=

[
|u|q(x)

q(x)
− β(x)

]
|u|q(x)−2u.

By the Hölder inequality, it reads∣∣∣∣∫
Ω

α(x)Invdx

∣∣∣∣ ≤ c|In| q−
q−−1

|v|q− . (3.5)

Note that because of the embeddings W 1,Φ
0 (Ω) ↪→ Lq

−
(Ω) ↪→ L

q−

q−−1 (Ω), we can apply
un → u ∈W 1,Φ

0 (Ω) to (3.5).
On the other hand, we can write

|In| = |Θ(un)−Θ(u)|

≤ β(x)
(
|un|q(x)−1 + |u|q(x)−1

)
+

1

q(x)

(
|un|2q(x)−1 + |u|2q(x)−1

)
≤ C

(
|un|q(x)−1 + |u|q(x)−1 + |un|2q(x)−1 + |u|2q(x)−1

)
, (3.6)

where C := max( 1
p− ,maxx∈Ω β(x)). Since un → u ∈ W 1,Φ

0 (Ω), by the compact embed-

dings W 1,Φ
0 (Ω) ↪→ L

(q(x)−1)q−

q−−1 (Ω), W 1,Φ
0 (Ω) ↪→ L

(2q(x)−1)q−

q−−1 (Ω) and W 1,Φ
0 (Ω) ↪→ Ls(x)(Ω),

up to a subsequence still denoted by (un), we have

un → u in L
(q(x)−1)q−

q−−1 (Ω),

un → u in L
(2q(x)−1)q−

q−−1 (Ω),
un → u in Ls(x)(Ω),
un(x) → u(x) a.e.x ∈ Ω,

and there exist w1 ∈ L
(q(x)−1)q−

q−−1 (Ω), w2 ∈ L
(2q(x)−1)q−

q−−1 (Ω) and w3 ∈ Ls(x)(Ω) such that
|un(x)| ≤ w1(x), |un(x)| ≤ w2(x), and |un(x)| ≤ w3(x), a.e. x ∈ Ω, respectively, for all
n ∈ N. Therefore, using this information in (3.6), we obtain

|In| q−
q−−1

= |Θ(un)−Θ(u)| q−
q−−1

=

(∫
Ω

|Θ(un)−Θ(u)|
q−

q−−1 dx

) q−−1

q−
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and

|Θ(un)−Θ(u)|
q−

q−−1

≤ c
(
1 + |un|q(x)−1 + |u|q(x)−1 + |un|2q(x)−1 + |u|2q(x)−1

) q−

q−−1

≤ c

(
1 + |w1|

(q(x)−1)q−

q−−1 + |u|
(q(x)−1)q−

q−−1 + |w2|
(2q(x)−1)q−

q−−1 + |u|
(2q(x)−1)q−

q−−1

)
∈ L1(Ω).

Now, we show that |Θ(un(x))−Θ(u(x))| → 0 as n→ ∞. Indeed,
|Θ(un)−Θ(u)|

=

∣∣∣∣( |un|q(x)

q(x)
− β(x)

)
|un|q(x)−2un −

(
|u|q(x)

q(x)
− β(x)

)
|u|q(x)−2u

∣∣∣∣
≤ 1

q−

∣∣∣|un|2q(x)−2un − |u|2q(x)−2u
∣∣∣+ β(x)

∣∣∣|un|q(x)−2un − |u|q(x)−2u
∣∣∣ .

Next, we apply the following inequality given in [12]: for 1 < k <∞ there exist constants
Ck > 0 such that

||ξ|k−2ξ − |ζ|k−2ζ|| ≤ Ck|ξ − ζ|(|ξ|+ |ζ|)k−2, ∀ξ, ζ ∈ RN .

Therefore, since un → u ∈W 1,Φ
0 (Ω), we obtain that

lim
n→∞

|Θ(un(x))−Θ(u(x))| = 0.

As for the term
∣∣∫

Ω
(f(x, u)− f(x, un))vdx

∣∣, using (f1), the Hölder inequality and the
continuous embeddings W 1,Φ

0 (Ω) ↪→ Ls(x)(Ω) ↪→ Ls(x)−1(Ω), we have∣∣∣∣∫
Ω

(f(x, u)− f(x, un))vdx

∣∣∣∣
≤ c2

∫
Ω

(|w3|s(x)−1 + |u|s(x)−1)|v|dx

≤ c3

(
||w3|s(x)−1| s(x)

s(x)−1

+ ||u|s(x)−1| s(x)
s(x)−1

)
|v|s(x) ∈ L1(Ω).

Moreover, considering that un(x) → u(x) a.e.x ∈ Ω and f is continuous, we obtain that
lim
n→∞

|f(x, un(x))− f(x, u(x))| = 0.

If we take into account all information obtained above and apply the Lebesgue dominated
convergence theorem, it reads

lim
n→∞

∫
Ω

|f(x, un)− f(x, u)|dx = 0

and

lim
n→∞

∫
Ω

|Θ(un)−Θ(u)|
q−

q−−1 dx = 0,

where these two results together mean, as a conclusion, that
lim
n→∞

sup ∥Λ′(un)− Λ′(u)∥(W 1,Φ
0 (Ω))∗ = lim

n→∞
sup

∥v∥Φ≤1

|⟨Λ′(un)− Λ′(u), v⟩| = 0.

Therefore, Λ′ :W 1,Φ
0 (Ω) → (W 1,Φ

0 (Ω))∗ is continuous.
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Lemma 3.7. Assume that (f1) and (f3) hold. Then,
(i) there exist two positive real numbers η and µ such that E(u) ≥ µ > 0, for all u ∈
W 1,Φ

0 (Ω) with ∥u∥Φ = η < 1;
(ii) there exists e ∈W 1,Φ

0 (Ω) such that ∥e∥Φ > η, E(e) < 0.

Proof. (i) By assumption (f3), given ϵ ∈
(
0, δ

φ0

2cq
+

0

)
, with δ ∈ (0, 1), we can write

|F (x, t)| ≤ ϵ |t|q
+

q+
, ∀x ∈ Ω, |t| ≤ δ.

Let u ∈W 1,Φ
0 (Ω) be such that

∥u∥Φ = η :=

(
1

q+

)1/φ0−q+

δφ
0/(φ0−q+) < 1.

Then, by Proposition 2.3 and the continuous embedding W 1,Φ
0 (Ω) ↪→ Lq

+

(Ω), i.e., ∃ c0 =

c(|Ω|) > 0 such that |u|q+ ≤ c0∥u∥Φ ∀u ∈W 1,Φ
0 (Ω), it follows

E(u) ≥
∫
Ω

Φ(x, |∇u|)dx− ϵ

q+

∫
Ω

|u|q
+

dx

≥ ∥u∥φ
0

Φ − ϵ

q+
cq

+

0 ∥u∥q
+

Φ

≥ (∥u∥φ
0−q+

Φ − ϵ

q+
cq

+

0 )∥u∥q
+

Φ =

(
1

q+
δφ

0

− ϵ

q+
cq

+

0

)
ηq

+

= µ

i.e., we obtain that E(u) ≥ µ > 0.
(ii) Let 0 ≠ ϕ ∈W 1,Φ(Ω) and 1 < t ∈ R. By Remark 3.3 and Remark 2.6, we have

E(tϕ) ≤ tφ
0

∫
Ω

Φ(x, |∇ϕ|)dx+
t2q

+

2(q−)2

∫
Ω

α(x)|ϕ|2q(x)dx+ tq
+

∫
Ω

α(x)β(x)|ϕ|q(x)dx

+

∫
Ω

α(x)β2(x)dx− ctθ
∫
Ω

|ϕ|θdx.

Since θ > φ0 > 2q+, we obtain that E(tϕ) → −∞ as t → +∞. Then, for t > 1 large
enough, if we set tϕ = e with ∥e∥Φ > η we obtain that E(e) < 0.

Definition 3.8. Let X be a Banach space and I : X → R be a C1-functional. We
say that a functional I satisfies the Palais-Smale condition (shortly, (PS)-condition), if
any Palais-Smale sequence, i.e., a sequence {un} ⊂ X such that I(un) is bounded and
I ′(un) → 0, contains a convergent subsequence.

Lemma 3.9. Assume that (f1) and (f2) hold. Then, E satisfies the (PS)-condition.

Proof. From the proof of Lemma 3.7, E satisfies the Mountain-Pass geometry which as-
sures the existence of a Palais-Smale sequence (un) ⊂W 1,Φ

0 (Ω) such that

E(un) → ĉ and ∥E ′(un)∥(W 1,Φ
0 (Ω))∗ → 0, (3.7)

where ĉ > 0 is a critical value of E and characterized in Theorem 3.10 (ii).
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First, let us show that (un) is bounded in W 1,Φ
0 (Ω). Assume the contrary. Then, along

a subsequence, ∥un∥Φ → ∞ and, in addition, we may assume that ∥un∥Φ > 1. Then,
from (3.7) and Proposition 2.3, there exists a real number C > 0 such that

C + ∥un∥ ≥ E(un) = ρ(un) +

∫
Ω

α(x)

2

[
|un|q(x)

q(x)
− β(x)

]2
dx−

∫
Ω

F (x, un)dx

≥ ∥un∥φ0

Φ − c1
s−

∫
Ω

|un|s(x)dx

≥ ∥un∥φ0

Φ − c∥un∥s
+

Φ .

Since φ0 > s+ > 1, if we divide above inequality by ∥un∥s
+

Φ and take the limit as
n → +∞, we obtain a contradiction. Therefore, (un) is bounded in W 1,Φ

0 (Ω). Since
W 1,Φ

0 (Ω) is reflexive, there exists a subsequence, still denoted by (un), which converges
weakly to a u ∈W 1,Φ

0 (Ω). Then, by (3.7) it reads

⟨E ′(un), un − u⟩

= ⟨ρ′(un), un − u⟩+
∫
Ω

α(x)

[
|un|q(x)

q(x)
− β(x)

]
|un|q(x)−2un(un − u)dx

−
∫
Ω

f(x, un)(un − u)dx→ 0.

By (f1), the compact embedding W 1,Φ
0 (Ω) ↪→ Ls(x)(Ω) and Hölder inequality we have∣∣∣∣∫

Ω

f(x, un)(un − u)dx

∣∣∣∣ ≤ ∫
Ω

|un|s(x)−1|un−u|dx ≤ ||un|s(x)−1| s(x)
s(x)−1

|un−u|s(x) → 0.

(3.8)

Similarly, by the compact embeddings W 1,Φ
0 (Ω) ↪→ L2q(x)(Ω), W 1,Φ

0 (Ω) ↪→ Lq(x)(Ω) and
Hölder inequality we have∣∣∣∣∫

Ω

α(x)

[
|un|q(x)

q(x)
− β(x)

]
|un|q(x)−2un(un − u)dx

∣∣∣∣
≤ c

∫
Ω

(|un|q(x) + 1)|un|q(x)−1|un − u|dx

≤ c

(∫
Ω

|un|2q(x)−1|un − u|dx+

∫
Ω

|un|q(x)−1|un − u|dx
)

≤ c

(
||un|2q(x)−1| 2q(x)

2q(x)−1

|un − u|2q(x) + ||un|q(x)−1| q(x)
q(x)−1

|un − u|q(x)
)

→ 0,

where c := 2max
(
maxx∈Ω α(x)×maxx∈Ω β(x),

1
q−

)
.

From (3.8) and (3.9), we must have

⟨ρ′(un), un − u⟩ → 0.

However, from Remark 2.4, we know that the operator ρ′ is of type (S+), which means that
(un) converges strongly to u ∈W 1,Φ

0 (Ω). As a conclusion, E satisfies the (PS)-condition.
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Proof. (Proof of Theorem 3.4) By Lemmas 3.7 and 3.9, the functional E satisfies the
assumptions of Mountain-Pass theorem ([3]). Hence, there exists a nontrivial critical
point which is a solution of problem (1.1), if we take into account Definition 3.1 and
Lemma 3.6.

In the rest of the paper, we prove Theorem 3.5. To do this, we apply the following
symmetric version of the classical Mountain-Pass Theorem (see, [3, 38]).

Theorem 3.10. Let E be a C1 functional on a Banach space W 1,Φ
0 (Ω) that satisfies the

(PS) condition and E(0) ≤ 0.
(a) Suppose that E(0) ≤ 0 and

(i) There exist η > 0 and τ > 0 such that E(u) ≥ τ for all u ∈ WΦ
0 (Ω) with

∥u∥Φ = η;
(ii) There exists e ∈W 1,Φ

0 (Ω), with ∥e∥Φ > η, such that E(e) ≤ 0.
Then

ĉ = inf
γ∈Γ

max
t∈[0,1]

E(γ(t)) ≥ τ,

where
Γ =

{
γ ∈ C([0, 1],W 1,Φ

0 (Ω)) : γ(0) = 0, γ(1) = e
}
,

is a critical value of E.
(b) Suppose that the functional E is even, E(−u) = E(u), assumption (i) is satisfied,

and
(ii′) For every finite dimensional subspace E ⊂W 1,Φ

0 (Ω) there exists R = R(E) > 0
such that E(u) ≤ 0 for all u ∈ E with ∥u∥Φ ≥ R(E).

Then the functional E possesses an infinite sequence of critical values accumulating to
+∞.
Proof. (Proof of Theorem 3.5) Considering the result of Lemmas 3.7 and 3.9 along
with the facts that E is even and E(0) = 0, it is enough to verify only assumption (ii′) of
Theorem 3.10.
Let E be a finite dimensional subspace of W 1,Φ

0 (Ω). The functional | · |θ : W 1,Φ
0 (Ω) → R

defined by

|u|θ =
(∫

Ω

|u|θdx
)1/θ

is a norm in W 1,Φ
0 (Ω) because of the inclusion W 1,Φ

0 (Ω) ⊂ Lθ(Ω). Since in the finite
dimensional subspace E the norms |u|θ and ∥u∥Φ are equivalent, there exists a constant
C = C(E) > 0 such that

∥u∥Φ ≤ C|u|θ, ∀u ∈ E.

Next, we follow the same steps as we did in the proof of Lemma 3.7 (ii). To this end, for
0 ̸= ϕ ∈ E and 1 < t ∈ R, we obtain that

E(tϕ) ≤ tφ
0

∫
Ω

Φ(x, |∇ϕ|)dx+
t2q

+

2(q−)2

∫
Ω

α(x)|ϕ|2q(x)dx+ tq
+

∫
Ω

α(x)β(x)|ϕ|q(x)dx

+

∫
Ω

α(x)β2(x)dx− ctθ
∫
Ω

|ϕ|θdx

≤ tφ
0

∥ϕ∥φ
0

Φ + c1t
2q+∥ϕ∥2q

+

Φ + c2t
q+∥ϕ∥q

+

Φ + c3|Ω| − c4t
θ∥ϕ∥θΦ,
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where ci > 0, i = 1, 4, are generic constants and independent of ϕ. Since θ > φ0 > 2q+,
we obtain that E(tϕ) → −∞ as t→ ∞. On the other hand, considering that any non-zero
vector u ∈ E has a unique representation u = tϕ, where t = ∥u∥Φ and ϕ is a vector on
the unit sphere S of E, we conclude that E(u) ≤ 0 for all u ∈ E with ∥u∥Φ ≥ R.
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