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1. Introduction
The fixed point problem is a very useful tool for studying physics, chemistry, engineer-

ing, and economics in different mathematical models. Besides, the fixed point problem
has many important applications, such as null point problem, variational inequality prob-
lem, equilibrium problem, optimization problem, see [1–5], and the references therein.
The fixed point problem is a problem of finding a point x ∈ H such that Tx = x, where
H is a real Hilbert space and T : H → H is a mapping. The set of fixed points of the
mapping T will be represented by F (T ).
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One of the most popular methods for finding fixed points of a nonexpansive mapping
T : C → C was proposed by Mann [6] as followed:{

x0 ∈ C,

xk+1 = (1− αk)xk + αkTxk,
(1.1)

where {αk} ⊂ (0, 1) and C is a nonempty closed convex subset of a real Hilbert space
H. In [7], the author proved that if T has a fixed point and

∑∞
k=0 αk(1 − αk) = ∞,

then the sequence {xk} generated by (1.1) converges weakly to a fixed point of T . In
order to obtain a strong convergence result for Mann iterative method (1.1), Takahashi
et al. [8] proposed the following so-called shrinking method for finding fixed points of a
nonexpansive mapping T :

u0 ∈ H,C1 = C,

x1 = PC1
(u0),

yk = αkxk + (1− αk)Txk,

Ck+1 = {x ∈ Ck : ∥yk − x∥ ≤ ∥xk − x∥} ,
xk+1 = PCk+1

(x0),

(1.2)

where {αk} ⊂ [α, α] with 0 ≤ α ≤ α < 1. They proved that the sequence {xk} generated
by (1.2) converges strongly to PF (T )(x0).

On the other hand, the equilibrium problem started to gain interest after the publi-
cation of a paper by Blum and Oettli [9] which has been used for studying a variety of
mathematical problems, such as optimization problems, variational inequality problems,
minimax problems, Nash equilibrium problems, saddle point problems, see [9–12], and
the references therein. The equilibrium problem is a problem of finding a point x∗ ∈ C
such that

f(x∗, y) ≥ 0,∀y ∈ C, (1.3)

where C is a nonempty closed convex subset of a real Hilbert space H, and f : H×H → R
is a bifunction. The solution set of the equilibrium problem (1.3) will be denoted by
EP (f, C).

A famous method for solving the equilibrium problem (1.3), when f is a monotone
bifunction, is the proximal point method, see [13]. However, if f satisfies a weaker as-
sumption such as pseudomonotone, the proximal point method cannot be guaranteed in
this situation. To overcome this drawback, the extragradient method was introduced for
solving pseudomonotone equilibrium problem instead of the proximal point method. By
using the idea of Korpelevich [14], Tran et al. [15] proposed the following extragradient
method for solving the equilibrium problem, when the bifunction f is pseudomonotone
and satisfies Lipschitz-type continuous with positive constants c1 and c2:

x0 ∈ C,

yk = argmin
{
λf(xk, y) +

1
2∥xk − y∥2 : y ∈ C

}
,

xk+1 = argmin
{
λf(yk, y) +

1
2∥xk − y∥2 : y ∈ C

}
,

(1.4)

where 0 < λ < min
{

1
2c1

, 1
2c2

}
. They proved that the sequence {xk} generated by (1.4)

converges weakly to a solution of the equilibrium problem. It points out that the ex-
tragradient method can compute effectively numerically by using the optimization tools.
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Consequently, the extragradient method is the first of our interest for solving the equi-
librium problem.

Second, we focus on the inertial type methods for finding a solution of the equilibrium
problem. This method originates from the heavy ball method (an implicit discretization)
of a second-order-in-time dissipative dynamical system [16, 17] and can be regarded as
a method of speeding up the convergence properties. The inertial techniques have been
proposed for solving the equilibrium problems, for instance, see [18–20], and the refer-
ences therein. In 2020, by using both inertial and extragradient methods together with
the shrinking method, Hieu et al. [21] proposed the following method for solving the equi-
librium problem, when the bifunction f is pseudomonotone and satisfies Lipschitz-type
continuous with positive constants c1 and c2:



x0, x1 ∈ H,C0 = H,

wk = xk + θk(xk − xk−1),

yk = argmin{λkf(wk, y) +
1
2∥y − wk∥2 : y ∈ C},

zk = argmin{λkf(yk, y) +
1
2∥y − wk∥2 : y ∈ C},

λk+1 = min

{
λk,

β(∥wk − yk∥2 + ∥zk − yk∥2)
2 [f(wk, zk)− f(wk, yk)− f(yk, zk)]+

}
,

Hk = {x ∈ H : ∥zk − x∥2 ≤ ∥wk − x∥2},
Ck+1 = Ck ∩Hk,

xk+1 = PCk+1
(x0),

(1.5)

where λ0 > 0, β ∈ (0, 1), θk ⊂ [−θ, θ] for some θ > 0, and [f(wk, zk)−f(wk, yk)−f(yk, zk)]+
:= max {0, f(wk, zk)− f(wk, yk)− f(yk, zk)}. They proved that the sequence {xk} gen-
erated by (1.5) converges strongly to PEP (f,C)(x0).

In 2016, Dinh et al. [22] introduced the split equilibrium and fixed point problems as
follows:

{
Find x∗ ∈ C such that Tx∗ = x∗, f(x∗, y) ≥ 0,∀y ∈ C,

and u∗ = Ax∗ ∈ Q solves Su∗ = u∗, g(u∗, v) ≥ 0,∀v ∈ Q,
(1.6)

where C and Q are two nonempty closed convex subsets of the real Hilbert spaces H1

and H2, respectively, f : C × C → R and g : Q×Q → R are bifunctions, T : C → C and
S : Q → Q are mappings, and A : H1 → H2 is a bounded linear operator. By using the
ideas of proximal point and extragradient methods together with the shrinking method,
Dinh et al. [22] proposed the following algorithm for solving the split equilibrium and
fixed point problems (1.6), when S and T are nonexpansive mappings, g is monotone
bifunction, f is pseudomonotone bifunction and satisfies Lipschitz-type continuous with
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positive constants c1 and c2:

x1 ∈ C1 = C,

yk = argmin
{
λkf(xk, y) +

1
2∥xk − y∥2 : y ∈ C

}
,

zk = argmin
{
λkf(yk, y) +

1
2∥xk − y∥2 : y ∈ C

}
,

sk = (1− α)zk + αTzk,

uk = T g
rk
Ask,

tk = PC(sk + δA∗(Suk −Ask)),

Ck+1 = {x ∈ Ck : ∥x− tk∥ ≤ ∥x− sk∥ ≤ ∥x− xk∥} ,
xk+1 = PCk+1

(x1),

(1.7)

where A∗ is the adjoint operator of A, {λk} ⊂ [λ, λ] with 0 < λ ≤ λ < min
{

1
2c1

, 1
2c2

}
,

{rk} ⊂ (0,∞) such that lim inf
k→∞

rk > 0, α ∈ (0, 1), δ ∈
(
0, 1

∥A∥2

)
, and T g

rk
Ask :={

u ∈ Q : g(u, v) + 1
rk
⟨v − u, u−Ask⟩ ≥ 0,∀v ∈ Q

}
. They proved that the sequence {xk}

generated by (1.7) converges strongly to a solution of the split equilibrium and fixed point
problems (1.6). Here, the algorithm (1.7) will be called SEPM Algorithm.

In 2019, by using the extragradient method, Petrot et al. [23] proposed the following
algorithm for finding a solution of the split equilibrium and fixed point problems (1.6),
when the mappings S and T are nonexpansive, and the bifunctions f and g are pseu-
domonotone and satisfy Lipschitz-type continuous with some positive constants {c1, c2}
and {d1, d2}, respectively:

x1 ∈ H1,

uk = argmin
{
µkg(PQ(Axk), u) +

1
2∥PQ(Axk)− u∥2 : u ∈ Q

}
,

vk = argmin
{
µkg(uk, u) +

1
2∥PQ(Axk)− u∥2 : u ∈ Q

}
,

yk = PC (xk + δkA
∗(Svk −Axk)) ,

tk = argmin
{
λkf(yk, y) +

1
2∥yk − y∥2 : y ∈ C

}
,

zk = argmin
{
λkf(tk, y) +

1
2∥yk − y∥2 : y ∈ C

}
,

xk+1 = αkh(xk) + (1− αk) (βkxk + (1− βk)Tzk) ,

(1.8)

where h is a ρ-contraction mapping, {λk} ⊂ [λ, λ] with 0 < λ ≤ λ < min
{

1
2c1

, 1
2c2

}
,

{µk} ⊂ [µ, µ] with 0 < µ ≤ µ < min
{

1
2d1

, 1
2d2

}
, {δk} ⊂ [δ, δ] with 0 < δ ≤ δ <

1
∥A∥2 , {βk} ⊂ (0, 1) with 0 < lim inf

k→∞
βk ≤ lim sup

k→∞
βk < 1, {αk} ⊂

(
0, 1

2−ρ

)
such that

∞∑
k=1

αk = ∞, and lim
k→∞

αk = 0. They proved that the sequence {xk} generated by (1.8)

converges strongly to a solution of the split equilibrium and fixed point problems (1.6).
Here, the algorithm (1.8) will be called NEM Algorithm. We emphasize that the SEPM
and NEM algorithms need to have prior knowledge of the Lipschitz-type constants of
the bifunctions. This means that the SEPM and NEM algorithms used the stepsizes
which depend on the Lipschitz-type constants of the bifunctions. This fact may give
some restrictions in applications because the Lipschitz-type constants are often unknown
or difficult to approximate.
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In this paper, we will still focus on the methods for solving the split equilibrium and
fixed point problems (1.6). That is, we will present a new iterative algorithm without the
prior knowledge of the Lipschitz-type constants of the bifunctions for finding the solutions
of the split equilibrium and fixed point problems, when the mappings are nonexpansive
and the bifunctions are pseudomonotone and satisfy Lipschitz-type continuous. Some
numerical examples and comparisons of the introduced algorithm with some appeared
algorithms will be discussed.

This paper is organized as follows: In Section 2, some necessary definitions and prop-
erties will be reviewed for further use. In Section 3, we will present the shrinking inertial
extragradient algorithm and prove the strong convergence theorem. In Section 4, we will
discuss the performance of the introduced algorithm by comparing it to the aforesaid
algorithms via numerical experiments.

2. Preliminaries
This section will present some definitions and properties that will be used in this paper.

Let H be a real Hilbert space with inner product ⟨· , · ⟩, and its corresponding ∥ · ∥. The
symbols → and ⇀ will be denoted for the strong convergence and the weak convergence
in H, respectively.

First, we will recall some definitions and facts which are related to nonlinear mappings.

Definition 2.1. A mapping T : H → H is said to be nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥,∀x, y ∈ H.

Remark 2.2. It is well-known that F (T ) is closed and convex, when T is a nonexpansive
mapping, see [24].

Definition 2.3. A mapping T : H → H is said to be demiclosed at y ∈ H if for any
sequence {xk} ⊂ H with xk ⇀ x∗ ∈ H and Txk → y imply Tx∗ = y.

Lemma 2.4. (see [24]) Let T : H → H be a nonexpansive mapping with F (T ) ̸= ∅.
Then, I − T demiclosed at 0.

Next, we will provide some definitions and results for concerning the equilibrium prob-
lems.

Definition 2.5. [9, 12, 25] Let C be a nonempty closed convex subset of H. A bifunction
f : H ×H → R is said to be:

(i) monotone on C if
f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(ii) pseudomonotone on C if
f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) Lipshitz-type continuous on H with constants c1 > 0 and c2 > 0 if
f(x, y) + f(y, z) ≥ f(x, z)− c1∥x− y∥2 − c2∥y − z∥2,∀x, y, z ∈ H.

Remark 2.6. We note that a monotone bifunction is a pseudomonotone bifunction.
However, the converse may not be true in general, for instance, see [26].
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Let C be a nonempty closed convex subset of H. For a bifunction f : H ×H → R, the
following assumptions will be considered in this paper:
(A1) f is weakly continuous on C × C in the sense that, if x ∈ C, y ∈ C, and {xk} ⊂

C, {yk} ⊂ C are two sequences converge weakly to x and y respectively, then
f(xk, yk) converges to f(x, y);

(A2) f(x, · ) is convex and subdifferentiable on C, for each fixed x ∈ C;
(A3) f is psuedomonotone on C and f(x, x) = 0, for each x ∈ C;
(A4) f is Lipshitz-type continuous on H with constants c1 > 0 and c2 > 0.

Remark 2.7. It is well-known that the solution set EP (f, C) is closed and convex, when
the bifunction f satisfies the assumptions (A1)− (A3), see [15, 27, 28], for more detail.

We end this section by recalling the projection mapping and calculus concepts in Hilbert
space.

Let C be a nonempty closed convex subset of H. For each x ∈ H, we denote the metric
projection of x onto C by PC(x), that is

∥x− PC(x)∥ ≤ ∥y − x∥,∀y ∈ C.

Lemma 2.8. (see [29, 30]) Let C be a nonempty closed convex subset of H. Then,
(i) PC(x) is singleton and well-defined for each x ∈ H;

(ii) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C;
(iii) ∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2 − ∥PC(x)− x+ y − PC(y)∥2, ∀x, y ∈ C;
(iv) PC is a nonexpansive mapping.

For a function f : H → R, the subdifferential of f at z ∈ H is defined by
∂f(z) = {w ∈ H : f(y)− f(z) ≥ ⟨w, y − z⟩,∀y ∈ H}.

The function f is said to be subdifferentiable at z if ∂f(z) ̸= ∅.

Lemma 2.9. (see [29]) For any z ∈ H, the subdifferentiable ∂f(z) of a continuous convex
function f is a weakly closed and bounded convex set.

Lemma 2.10. [11] Let C be a convex subset of H and f : C → R be subdifferentiable on
C. Then, x∗ is a solution to the following convex problem:

min {f(x) : x ∈ C}
if and only if 0 ∈ ∂f(x∗) +NC(x

∗), where NC(x
∗) := {y ∈ H : ⟨y, z− x∗⟩ ≤ 0,∀z ∈ C}

is the normal cone of C at x∗.

3. Main Results
Let H1 and H2 be two real Hilbert spaces and C and Q be nonempty closed convex

subsets of H1 and H2, respectively. Let us recall the split equilibrium and fixed point
problems:{

Find x∗ ∈ C such that Tx∗ = x∗, f(x∗, y) ≥ 0,∀y ∈ C,

and u∗ = Ax∗ ∈ Q solves Su∗ = u∗, g(u∗, v) ≥ 0,∀v ∈ Q,
(3.1)

where f : H1 ×H1 → R and g : H2 ×H2 → R are bifunctions, T : H1 → H1 and S : H2 →
H2 are mappings, and A : H1 → H2 is a bounded linear operator with its adjoint operator
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A∗. From now on, the solution set of problem (3.1) will be denoted by Ω. That is,

Ω := {p ∈ EP (f, C) ∩ F (T ) : Ap ∈ EP (g,Q) ∩ F (S)} .

Now, we introduce the algorithm for solving the split equilibrium and fixed point
problems (3.1).

Algorithm 1: Shrinking Inertial Extragradient Method (SIEM)
Initialization. Choose parameters λ1 > 0, µ1 > 0, β ∈ (0, 1), γ ∈ (0, 1), η ∈(

0, 1
∥A∥2

)
, {αk} ⊂ (0, 1), and {θk} ⊂ [−1, 1]. Pick x0, x1 ∈ C =: C1 and set k = 1.

Step 1. Compute

wk = xk + θk(xk − xk−1).

Step 2. Solve the strongly convex program

yk = argmin

{
λkf(wk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 3. Solve the strongly convex program

zk = argmin

{
λkf(yk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 4. Compute

sk = αkzk + (1− αk)Tzk.

Step 5. Solve the strongly convex program

uk = argmin

{
µkg(Ask, u) +

1

2
∥u−Ask∥2 : u ∈ Q

}
.

Step 6. Solve the strongly convex program

vk = argmin

{
µkg(uk, u) +

1

2
∥u−Ask∥2 : u ∈ Q

}
.

Step 7. Compute

tk = PC (sk + ηA∗(Svk −Ask)) .

Step 8. Construct closed convex subsets of C:

Ck+1 = {x ∈ Ck : ∥x− tk∥ ≤ ∥x− sk∥ ≤ ∥x− wk∥} .

Step 9. Compute

λk+1 =


min

{
λk,

β(∥wk − yk∥2 + ∥zk − yk∥2)
2 [f(wk, zk)− f(wk, yk)− f(yk, zk)]

}
,

if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

λk, otherwise,
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and

µk+1 =


min

{
µk,

γ(∥Ask − uk∥2 + ∥vk − uk∥2)
2 [g(Ask, vk)− g(Ask, uk)− g(uk, vk)]

}
,

if g(Ask, vk)− g(Ask, uk)− g(uk, vk) > 0,

µk, otherwise.
Step 10. The next approximation xk+1 is defined as the projection of x1 onto Ck+1,

i.e.,
xk+1 = PCk+1

(x1).

Step 11. Put k := k + 1 and go to Step 1.

Remark 3.1. We point out that the stepsizes of the SIEM Algorithm are independent
of the Lipschitz-type constants of the bifunctions. This means that the SIEM Algorithm
is constructed without prior knowledge of the Lipschitz-type constants of the bifunctions.
We emphasize that the Lipschitz-type constants of the bifunctions are often unknown
or difficult to estimate. Furthermore, the term θk(xk − xk−1), which is included in the
SIEM Algorithm, is called the inertial effect and intended to speed up the convergence
properties. We observe that the parameter θk in the SIEM Algorithm can take negative
values.

Theorem 3.2. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively. Let f : H1 × H1 → R and g : H2 × H2 → R be bifunctions which
satisfy (A1) − (A4) with some positive constants {c1, c2} and {d1, d2}, respectively. Let
T : H1 → H1 and S : H2 → H2 be nonexpansive mappings, and A : H1 → H2 be a bounded
linear operator with its adjoint operator A∗. Suppose that the solution set Ω is nonempty.
Then, the sequence {xk} which is generated by the SIEM Algorithm converges strongly to
PΩ(x1).

Proof. The proof of Theorem 3.2 is divided into 3 steps.

Claim 1. The following hold:
∥zk − p∥2 ≤ ∥wk − p∥2 − ϵ1∥wk − yk∥2 − ϵ1∥yk − zk∥2, for each fixed ϵ1 ∈ (0, 1− β),

and
∥vk−Ap∥2 ≤ ∥Ask−Ap∥2−ϵ2∥Ask−uk∥2−ϵ2∥uk−vk∥2, for each fixed ϵ2 ∈ (0, 1−γ).

The proof of Claim 1. Let p ∈ Ω. That is, p ∈ F (T ), p ∈ EP (f, C), and Ap ∈ F (S),
Ap ∈ EP (g,Q). By the definition of zk and Lemma 2.10, we have

0 ∈ ∂2

{
λkf(yk, zk) +

1

2
∥zk − wk∥2

}
+NC(zk).

Thus, there exists q ∈ ∂2f(yk, zk) and q ∈ NC(zk) such that
0 = λkq + zk − wk + q. (3.2)

So, it follows from the subdifferentiability of f that
f(yk, y)− f(yk, zk) ≥ ⟨q, y − zk⟩,∀y ∈ C. (3.3)
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Moreover, from q ∈ NC(zk), we have
⟨q, zk − y⟩ ≥ 0,∀y ∈ C.

Using this one together with (3.2), we get
⟨zk − wk, y − zk⟩ ≥ λk⟨q, zk − y⟩,∀y ∈ C. (3.4)

Thus, the relations (3.3) and (3.4) imply that
⟨zk − wk, y − zk⟩ ≥ λk[f(yk, zk)− f(yk, y)],∀y ∈ C. (3.5)

Now, from p ∈ C, we see that
⟨zk − wk, p− zk⟩ ≥ λk[f(yk, zk)− f(yk, p)].

So, it follows from the pseudomonotonic of f that
⟨zk − wk, p− zk⟩ ≥ λkf(yk, zk). (3.6)

Similarly, by the definition of yk and Lemma 2.10, we can show that
λk[f(wk, y)− f(wk, yk)] ≥ ⟨yk − wk, yk − y⟩,∀y ∈ C. (3.7)

Note that, since zk ∈ C, we have
λk[f(wk, zk)− f(wk, yk)] ≥ ⟨yk − wk, yk − zk⟩. (3.8)

Thus, in view of (3.6) and (3.8), we obtain
λk[f(wk, zk)−f(wk, yk)−f(yk, zk)] ≥ ⟨wk− zk, p− zk⟩+ ⟨yk−wk, yk− zk⟩. (3.9)

On the other hand, by the definition of λk+1, we see that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤
β(∥wk − yk∥2 + ∥zk − yk∥2)

2λk+1
.

Combining with (3.9) implies that

⟨zk − wk, p− zk⟩ ≥ ⟨yk − wk, yk − zk⟩ −
βλk(∥wk − yk∥2 + ∥zk − yk∥2)

2λk+1
.

Due to the above inequality, we observe that
∥wk − p∥2 − ∥zk − wk∥2 − ∥p− zk∥2 = 2⟨zk − wk, p− zk⟩

≥ 2⟨yk − wk, yk − zk⟩

−βλk(∥wk − yk∥2 + ∥zk − yk∥2)
λk+1

.

This implies that
∥zk − p∥2 ≤ ∥wk − p∥2 − ∥zk − wk∥2 − 2⟨yk − wk, yk − zk⟩

+
βλk(∥wk − yk∥2 + ∥zk − yk∥2)

λk+1

= ∥wk − p∥2 − ∥zk − yk∥2 − ∥yk − wk∥2 − 2⟨zk − yk, yk − wk⟩

−2⟨yk − wk, yk − zk⟩+
βλk(∥wk − yk∥2 + ∥zk − yk∥2)

λk+1

= ∥wk − p∥2 −
(
1− βλk

λk+1

)
∥wk − yk∥2
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−
(
1− βλk

λk+1

)
∥yk − zk∥2. (3.10)

Now, let us consider the definition of λk+1. We observe that λk+1 ≤ λk, for each
k ∈ N. This means that {λk} is a nonincreasing sequence. In addition, by the Lipschitz-
type continuity of f , we have

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤ c1∥wk − yk∥2 + c2∥zk − yk∥2

≤ max {c1, c2} (∥wk − yk∥2 + ∥zk − yk∥2).

Using this one together with the definition of λk+1, we see that

λk+1 ≥ min

{
λk,

β

2max {c1, c2}

}
≥ . . . ≥ min

{
λ1,

β

2max {c1, c2}

}
.

This means that {λk} is bounded from below. Consequently, we have the limit of {λk}
exists. Next, let ϵ1 ∈ (0, 1− β) be fixed. These imply that

lim
k→∞

(
1− βλk

λk+1

)
= 1− β > ϵ1 > 0.

Thus, there exists k1 ∈ N such that

1− βλk

λk+1
≥ ϵ1 > 0,∀k ≥ k1. (3.11)

Similarly, we can show that
µk[g(Ask, u)− g(Ask, uk)] ≥ ⟨uk −Ask, uk − u⟩,∀u ∈ Q, (3.12)

and

∥vk −Ap∥2 ≤ ∥Ask −Ap∥2 −
(
1− γµk

µk+1

)
∥Ask − uk∥2

−
(
1− γµk

µk+1

)
∥uk − vk∥2. (3.13)

Moreover, we also have the limit of {µk} exists. Let ϵ2 ∈ (0, 1− γ) be fixed. These imply
that

lim
k→∞

(
1− γµk

µk+1

)
= 1− γ > ϵ2 > 0.

Thus, there exists k2 ∈ N such that

1− γµk

µk+1
≥ ϵ2 > 0,∀k ≥ k2. (3.14)

Choose k0 = max{k1, k2}. Then, by using (3.10), (3.11), (3.13), and (3.14), we have
∥zk − p∥2 ≤ ∥wk − p∥2 − ϵ1∥wk − yk∥2 − ϵ1∥yk − zk∥2, (3.15)

and
∥vk −Ap∥2 ≤ ∥Ask −Ap∥2 − ϵ2∥Ask − uk∥2 − ϵ2∥uk − vk∥2, (3.16)

for each k ≥ k0.

Claim 2. The sequence {xk} is well-defined.
The proof of Claim 2. It suffices to show that Ck is a nonempty closed convex subset of
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H, for each k ∈ N. Firstly, we will claim the non-emptiness by showing that Ω ⊂ Ck, for
each k ∈ N. Obviously, Ω ⊂ C1.

Now, by using (3.15) and (3.16), we have
∥zk − p∥ ≤ ∥wk − p∥, (3.17)

and
∥vk −Ap∥ ≤ ∥Ask −Ap∥. (3.18)

By the definition of tk and the nonexpansivity of PC , we have
∥tk − p∥2 ≤ ∥(sk − p) + ηA∗(Svk −Ask)∥2

= ∥sk − p∥2 + η2∥A∥2∥Svk −Ask∥2 + 2η⟨Ask −Ap, Svk −Ask⟩. (3.19)
Consider,

2⟨Ask −Ap, Svk −Ask⟩ = 2⟨Svk −Ap, Svk −Ask⟩ − 2∥Svk −Ask∥2

= ∥Svk −Ap∥2 − ∥Svk −Ask∥2 − ∥Ask −Ap∥2.
Using this one together with (3.19) and the nonexpansivity of S, we get
∥tk − p∥2 ≤ ∥sk − p∥2 − η(1− η∥A∥2)∥Svk −Ask∥2 + η(∥vk −Ap∥2 − ∥Ask −Ap∥2).
Combining with (3.18) implies that

∥tk − p∥2 ≤ ∥sk − p∥2 − η(1− η∥A∥2)∥Svk −Ask∥2. (3.20)
Thus, by the choice of η, we have

∥tk − p∥ ≤ ∥sk − p∥. (3.21)
On the other hand, by the definition of sk and the nonexpansivity of T , we obtain

∥sk − p∥ ≤ αk∥zk − p∥+ (1− αk)∥Tzk − p∥
≤ ∥zk − p∥. (3.22)

So, the relations (3.17), (3.21) and (3.22) imply that
∥tk − p∥ ≤ ∥sk − p∥ ≤ ∥wk − p∥. (3.23)

Now, let k ≥ k0 and suppose that Ω ⊂ Ck. Thus, by using (3.23), we see that Ω ⊂ Ck+1.
Using this one together with the fact that Ck+1 ⊂ Ck, for each k ∈ N, we get Ω ⊂ Ck,
for each k ∈ N. Consequently, from Ω is a nonempty set, we can conclude that Ck is a
nonempty set, for each k ∈ N.

Next, we will claim that Ck is a closed and convex subset, for each k ∈ N, by induction.
Note that we already have that C1 is a closed and convex subset. Now, suppose that Ck is
a closed and convex subset. Let us consider the sets B1

k = {x ∈ H1 : ∥tk−x∥ ≤ ∥sk−x∥},
B2

k = {x ∈ H1 : ∥sk−x∥ ≤ ∥wk−x∥}, and Dk = {x ∈ H1 : ∥tk−x∥ ≤ ∥sk−x∥ ≤ ∥wk−x∥}.
Thus, we see that

B1
k =

{
x ∈ H1 : ⟨sk − tk, x⟩ ≤

1

2
(∥sk∥2 − ∥tk∥2)

}
,

and

B2
k =

{
x ∈ H1 : ⟨wk − sk, x⟩ ≤

1

2
(∥wk∥2 − ∥sk∥2)

}
.

This means that B1
k and B2

k are halfspaces. We observe that Dk = B1
k ∩B2

k and Ck+1 =
Ck ∩ Dk. These imply that Ck+1 is a closed convex subset. Then, by induction, we
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can conclude that Ck is a closed convex subset, for each k ∈ N. Consequently, we can
guarantee that {xk} is well-defined.

Claim 3. The sequence {xk} converges strongly to PΩ(x1).
The proof of Claim 3. By the definition of xk+1, we see that xk+1 ∈ Ck+1 ⊂ Ck, for each
k ∈ N. Since xk = PCk

(x1) and xk+1 ∈ Ck, we have
∥xk − x1∥ ≤ ∥xk+1 − x1∥.

This means that {∥xk − x1∥} is a nondecreasing sequence. Similarly, for each p ∈ Ω ⊂
Ck+1, we get

∥xk+1 − x1∥ ≤ ∥p− x1∥.
Thus, by the above inequalities, we have

∥xk − x1∥ ≤ ∥p− x1∥. (3.24)
Then, {∥xk−x1∥} is a bounded sequence. Consequently, we can conclude that {∥xk−x1∥}
is a convergent sequence. Moreover, we see that {xk} is bounded. Suppose k, j ∈ N such
that k > j. It follows that xk ∈ Ck ⊂ Cj . Then, by Lemma 2.8 (iii), we have

∥PCj
(xk)− PCj

(x1)∥2 ≤ ∥x1 − xk∥2 − ∥PCj
(xk)− xk + x1 − PCj

(x1)∥2.
This implies that

∥xk − xj∥2 ≤ ∥x1 − xk∥2 − ∥xj − x1∥2.
Thus, by using the existence of lim

k→∞
∥xk − x1∥, we get

lim
k,j→∞

∥xk − xj∥ = 0.

That is {xk} is a Cauchy sequence in C. Since C is closed, there exists x∗ ∈ C such that
lim
k→∞

xk = x∗. (3.25)

So, it follows from the definition of wk that
lim
k→∞

∥wk − xk∥ = 0. (3.26)

Additionally, by the definition of Ck+1 and xk+1 ∈ Ck, we see that
∥xk+1 − tk∥ ≤ ∥xk+1 − sk∥ ≤ ∥xk+1 − wk∥. (3.27)

This implies that
∥tk − wk∥ ≤ ∥tk − xk+1∥+ ∥xk+1 − wk∥

≤ 2∥xk+1 − wk∥
≤ 2(∥xk+1 − xk∥+ ∥xk − wk∥).

Thus, in view of (3.25) and (3.26), we get
lim
k→∞

∥tk − wk∥ = 0. (3.28)

Similarly, from (3.27), we have
∥sk − wk∥ ≤ ∥sk − xk+1∥+ ∥xk+1 − wk∥

≤ 2∥xk+1 − wk∥
≤ 2(∥xk+1 − xk∥+ ∥xk − wk∥).
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Thus, by using (3.25) and (3.26), we obtain
lim
k→∞

∥sk − wk∥ = 0. (3.29)

Combining with (3.28) implies that
lim
k→∞

∥sk − tk∥ = 0. (3.30)

On the other hand, in view of (3.15) and (3.22), we get that
ϵ1∥wk − yk∥2 + ϵ1∥yk − zk∥2 ≤ ∥wk − p∥2 − ∥zk − p∥2

≤ ∥wk − p∥2 − ∥sk − p∥2

= ∥wk − sk∥(∥wk − p∥+ ∥sk − p∥).
Thus, by applying (3.29) to the above inequality, we have

lim
k→∞

∥wk − yk∥ = 0, (3.31)

and
lim
k→∞

∥yk − zk∥ = 0. (3.32)

These imply that
lim
k→∞

∥wk − zk∥ = 0. (3.33)

So, it follows from (3.29) that
lim
k→∞

∥sk − zk∥ = 0. (3.34)

Moreover, in view of (3.26) and (3.31), we obtain
lim
k→∞

∥xk − yk∥ = 0. (3.35)

Combining with (3.32) implies that
lim
k→∞

∥xk − zk∥ = 0. (3.36)

Using this one together with (3.34), we get
lim
k→∞

∥xk − sk∥ = 0. (3.37)

Due to the definition of sk, we observe that
(1− αk)∥Tzk − zk∥ = ∥sk − zk∥.

Thus, by using (3.34), we have
lim
k→∞

∥Tzk − zk∥ = 0. (3.38)

On the other hand, in view of (3.20), we see that
η(1− η∥A∥2)∥Svk −Ask∥2 ≤ ∥sk − p∥2 − ∥tk − p∥2

≤ ∥sk − tk∥(∥sk − p∥+ ∥tk − p∥).
Thus, by applying (3.30) to the above inequality, we get

lim
k→∞

∥Svk −Ask∥ = 0. (3.39)

Furthermore, the relation (3.16) and the nonexpansivity of S, we have
ϵ2∥Ask − uk∥2 + ϵ2∥uk − vk∥2 ≤ ∥Ask −Ap∥2 − ∥vk −Ap∥2
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≤ (∥Ask − Svk∥+ ∥Svk −Ap∥ − ∥vk −Ap∥)(∥Ask −Ap∥
+∥vk −Ap∥)

≤ ∥Ask − Svk∥(∥Ask −Ap∥+ ∥vk −Ap∥).

Using this one together with (3.39), we have

lim
k→∞

∥Ask − uk∥ = 0, (3.40)

and

lim
k→∞

∥uk − vk∥ = 0. (3.41)

These imply that

lim
k→∞

∥Ask − vk∥ = 0. (3.42)

Thus, it follows from (3.39) that

lim
k→∞

∥Svk − vk∥ = 0. (3.43)

Next, we will claim that x∗ ∈ Ω. Since xk → x∗, as k → ∞, by using (3.26), (3.35),
(3.36) and (3.37), we also have wk → x∗, yk → x∗, zk → x∗, and sk → x∗, as k → ∞.
The latter fact implies that Ask → Ax∗, as k → ∞. Using this one together with (3.40)
and (3.42), we also have uk → Ax∗, and vk → Ax∗, as k → ∞. Since Q is closed and
{vk} is a sequence in Q, we have Ax∗ ∈ Q. Moreover, from (3.7) and (3.12), we get that

f(wk, y)− f(wk, yk) ≥ − 1

λk
∥yk − wk∥∥yk − y∥,∀y ∈ C,

and

g(Ask, u)− g(Ask, uk) ≥ − 1

µk
∥uk −Ask∥∥uk − u∥,∀u ∈ Q.

Thus, by using (3.31), (3.40), and the weak continuity of f and g, we have

f(x∗, y) ≥ 0,∀y ∈ C,

and

g(Ax∗, u) ≥ 0,∀u ∈ Q.

On the other hand, since zk → x∗, as k → ∞, and (3.38), then by the demiclosedness
at 0 of I − T , we have x∗ ∈ F (T ). Similarly, since vk → Ax∗, as k → ∞, and (3.43), it
follows from the demiclosedness at 0 of I−S that Ax∗ ∈ F (S). Then, we had shown that
x∗ ∈ Ω.

Finally, we will show that x∗ = PΩ(x1). In fact, since PΩ(x1) ∈ Ω, it follows from
(3.24) that

∥xk − x1∥ ≤ ∥PΩ(x1)− x1∥.

Thus, by using the continuity of norm and xk → x∗, as k → ∞, we get

∥x∗ − x1∥ = lim
k→∞

∥xk − x1∥ ≤ ∥PΩ(x1)− x1∥.

Then, by the definition of PΩ(x1) and x∗ ∈ Ω, we have x∗ = PΩ(x1). This completes the
proof.
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4. Numerical Experiments
This section will consider some examples and numerical results to illustrate the conver-

gence of the introduced algorithm. We will compare the SIEM Algorithm with the SEPM
Algorithm (1.7) in Example 4.1, the algorithm that was presented in [31] in Example 4.2,
and the NEM Algorithm (1.8) in Example 4.3. The numerical experiments are written
in Matlab R2015b and performed on a Laptop with AMD Dual Core R3-2200U CPU @
2.50GHz and RAM 4.00 GB. In Examples 4.1, 4.2 and 4.3, for each considered matrix,
the ∥ · ∥ means the spectral norm.
Example 4.1. Let H1 = Rn and H2 = Rm be two real Hilbert spaces with the Euclidean
norm. We consider a classical form of the bifunction which is given by the Cournot-Nash
models, see [32],

f̃(x, y) = ⟨P1x+ qn1 (y + x), y − x⟩, ∀x, y ∈ Rn,

where P1 =


0 q1 q1 · · · q1
q1 0 q1 · · · q1
q1 q1 0 · · · q1
· · · · · · ·
q1 q1 · · · · 0


n×n

is matrix with the positive real number q1.

We know that the bifunction f̃ is pseudomonotone and it is not monotone, see [33].
Next, we consider the bifunction g̃ which is generated from Nash-Cournot oligopolistic

equilibrium models of electricity markets, see [27, 34],
g̃(u, v) = ⟨Mu+Nv, v − u⟩, ∀u, v ∈ Rm,

where M , N ∈ Rm×m are matrices such that N is symmetric positive semidefinite and
N − M is negative semidefinite. We see that g̃(u, v) + g̃(v, u) = (u − v)t(N − M)(u −
v),∀u, v ∈ Rm. Thus, by the property of N −M , we have g̃ is a monotone bifunction.

To be considered here are the bifunctions f and g, which are defined by

f(x, y) =

{
f̃(x, y), if (x, y) ∈ C × C,

0, otherwise,
and

g(u, v) =

{
g̃(u, v), if (u, v) ∈ Q×Q,

0, otherwise,

where C =
∏n

i=1[−5, 5] and Q =
∏m

j=1[−20, 20] are the constrained boxes. We observe
that f and g satisfy Lipschitz-type continuous with constants c1 = c2 = 1

2∥P1∥ and
d1 = d2 = 1

2∥M −N∥, respectively, see [15, 35].
On the other hand, for the functions h1 : Rn → R and h2 : Rm → R, which are given

by h1(x) =
1
2x

tUx, where U ∈ Rn×n is invertible symmetric positive semidefinite matrix
and h2(x) = ∥x∥, respectively, we consider the proximal mappings T : Rn → Rn and
S : Rm → Rm associated with the functions h1 and h2, respectively, which are defined by

T (x) = (In + U)−1(x),

and

S(x) =

{(
1− 1

∥x∥

)
x, if ∥x∥ ≥ 1,

0, otherwise,
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where In is the identity matrix. We know that the proximal mappings T and S are
nonexpansive and F (T ) = argminh1 and F (S) = argminh2, see [36]. In this case, the
fixed point problems can be converted to the minimization problems.

Here, the following setting is taken from Kim and Dinh [31]. Let A1 =

(
In
−In

)
be the

2n× n matrix and b1 = (5, 5, . . . , 5)t ∈ R2n. The sets Ãk and b̃k are constructed by

Ãk =

(
(sk − tk)

t

(wk − sk)
t

)
, and b̃k =

(
1
2 (∥sk∥

2 − ∥tk∥2)
1
2 (∥wk∥2 − ∥sk∥2)

)
.

Therefore, we can compute the sets Ck+1 as follows:

Ck+1 = {x ∈ Rn : Ak+1x ≤ bk+1},

where Ak+1 =

(
Ak

Ãk

)
, and bk+1 =

(
bk
b̃k

)
.

The numerical experiment is considered under the following setting: the matrices M ,
N , and U are randomly chosen from the interval [−5, 5] such that they satisfy above
required properties and the positive real number q1 is randomly chosen from the interval
(1, 1.5). In addition, the linear operator A : Rn → Rm is a m × n matrix, which is
randomly chosen from the interval [−2, 2]. Note that the solution set Ω is nonempty
because of 0 ∈ Ω. We will concern with these control parameters: η = 1

2∥A∥2 , αk = 1
k+2 ,

λ1 = µ1 = 1, and β = γ = 0.9. The following five cases of the parameter θk are considered:
Case 1. θk = 0.
Case 2. θk = 0.59− 1

k+1 .
Case 3. θk = 0.99− 1

k+1 .
Case 4. θk = −

(
0.59− 1

k+1

)
.

Case 5. θk = −
(
0.99− 1

k+1

)
.

We use the function quadprog in Matlab Optimization Toolbox to solve vectors yk, zk,
uk, and vk. The starting points x0 = x1 ∈ Rn are randomly chosen from the interval
[−5, 5]. The SIEM Algorithm was tested along with the SEPM Algorithm (1.7) by using
the stopping criteria ∥xk+1 −xk∥ < 10−4. We randomly 10 starting points and presented
results are in average, where n = 5 and m = 10.

Table 1. The numerical results for the split equilibrium and fixed point
problems in Example 4.1

Average CPU times (sec) Average iterations
Cases SIEM SEPM SIEM SEPM

1 2.6109 50.2
2 1.7125 35.1
3 0.4500 4.6031 12.8 77.8
4 1.9563 36.9
5 0.4594 15.0

Table 1 shows that the parameter θk = 0.99 − 1
k+1 yields better both the CPU times

and the number of iterations than other cases. Moreover, we see that the CPU times
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and the number of iterations of the SIEM Algorithm are better than those of the SEPM
Algorithm in all considered cases.

Example 4.2. We consider the split equilibrium and fixed point problems (3.1), when
T = IH1 and S = IH2 are identity mappings on H1 and H2, respectively. It follows
that the split equilibrium and fixed point problems (3.1) become the split equilibrium
problems. In this case, we compare the SIEM Algorithm with the following algorithm
(4.1), which was presented by Kim and Dinh [31], when the bifunctions f and g are
pseudomonotone and satisfy Lipschitz-type continuous with positive constants p1 and p2:

x0 ∈ C0 = C,

yk = argmin{λkf(xk, y) +
1
2∥y − xk∥2 : y ∈ C},

zk = argmin{λkf(yk, y) +
1
2∥y − xk∥2 : y ∈ C},

uk = argmin{µkg(Azk, u) +
1
2∥u−Azk∥2 : u ∈ Q},

vk = argmin{µkg(uk, u) +
1
2∥u−Azk∥2 : u ∈ Q},

tk = PC(zk + ηA∗(vk −Azk)),

Ck+1 = {x ∈ Ck : ∥x− tk∥ ≤ ∥x− zk∥ ≤ ∥x− xk∥},
xk+1 = PCk+1

(x0),

(4.1)

where A : H1 → H2 is a bounded linear operator with its adjoint operator A∗, η ∈(
0, 1

∥A∥2

)
, and {λk}, {µk} ⊂ [ρ, ρ] with 0 < ρ ≤ ρ < min

{
1

2p1
, 1
2p2

}
. They proved

that the sequence {xk} generated by (4.1) converges strongly to a solution of the split
equilibrium problems. Here, the algorithm (4.1) will be called SEM Algorithm.

This numerical experiment is considered under the problem setting and the control
parameters as in Example 4.1, but the bifunction g̃ is given by

g̃(u, v) = ⟨P2u+ qm2 (v + u), v − u⟩, ∀u, v ∈ Rm,

where P2 =


0 q2 q2 · · · q2
q2 0 q2 · · · q2
q2 q2 0 · · · q2
· · · · · · ·
q2 q2 · · · · 0


m×m

is matrix with the positive real number q2.

Thus, the bifunction g is pseudomonotone and it is not monotone. Moreover, the bifunc-
tion g satisfies Lipschitz-type continuous with constants d1 = d2 = 1

2∥P2∥. The following
four cases of the parameter θk are considered:

Case 1. θk = 0.59− 1
k+1 .

Case 2. θk = 0.99− 1
k+1 .

Case 3. θk = −
(
0.59− 1

k+1

)
.

Case 4. θk = −
(
0.99− 1

k+1

)
.

The function quadprog in Matlab Optimization Toolbox was used to solve vectors yk,
zk, uk, and vk. The positive real number q2 is randomly chosen from the interval (2, 2.5).
Notice that the solution set Ω is nonempty because of 0 ∈ Ω. The starting point x0 =
x1 ∈ Rn are randomly chosen from the interval [−5, 5]. The SIEM Algorithm was tested
along with the SEM Algorithm (4.1) by using the stopping criteria ∥xk+1 − xk∥ < 10−4.
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We randomly 10 starting points and presented results are in average, where n = 5 and
m = 10.

Table 2. The numerical results for the split equilibrium problems in
Example 4.2

Average CPU times (sec) Average iterations
Cases SIEM SEM SIEM SEM

1 1.7344 54.5
2 0.2375 8.4406 10.3 175.7
3 2.0344 64.8
4 0.2891 12.9

From Table 2, we may suggest that the parameter θk = 0.99− 1
k+1 yields better both

the CPU times and the number of iterations than other cases. Besides, the CPU times
and the number of iterations of the SIEM Algorithm are better than those of the SEM
Algorithm in all considered cases.

Example 4.3. For this numerical experiment, we consider under the following setting:
the mappings and the control parameters as in Example 4.1, and the bifunctions as in
Example 4.2. The following five cases of the parameter θk are considered:

Case 1. θk = 0.
Case 2. θk = 0.59− 1

k+1 .
Case 3. θk = 0.99− 1

k+1 .
Case 4. θk = −

(
0.59− 1

k+1

)
.

Case 5. θk = −
(
0.99− 1

k+1

)
.

We use the function quadprog in Matlab Optimization Toolbox to solve vectors yk,
zk, uk, and vk. Notice that the solution set Ω is nonempty because of 0 ∈ Ω. The
starting point x0 = x1 ∈ Rn are randomly chosen from the interval [−5, 5]. The SIEM
Algorithm was tested along with the NEM Algorithm (1.8) by using the stopping criteria
∥xk+1−xk∥ < 10−4. We randomly 10 starting points and presented results are in average,
where n = 5 and m = 10.

Table 3. The numerical results for the split equilibrium and fixed point
problems in Example 4.3

Average CPU times (sec) Average iterations
Cases SIEM NEM SIEM NEM

1 1.4031 44.1
2 1.0813 37.2
3 0.4031 0.4203 17.4 21.1
4 0.8047 28.5
5 0.2688 11.8
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Table 3 shows that the parameter θk = −
(
0.99− 1

k+1

)
yields better both the CPU

times and the number of iterations than other cases. We notice that, in the cases of the
parameter θk = 0.99− 1

k+1 and θk = −(0.99− 1
k+1 ), the CPU times and the number of iter-

ations of the SIEM Algorithm are better than those of the NEM Algorithm. However, we
would like to remind that the SIEM Algorithm is constructed without prior knowledge of
the Lipschitz-type constants of the bifunctions. Meanwhile, the Lipschitz-type constants
of the bifunctions are approximated for the input parameters of the NEM Algorithm.

5. Conclusion
We present an algorithm for finding a solution of the split equilibrium and fixed

point problems for nonexpansive mappings and pseudomonotone bifunctions which satisfy
Lipschitz-type continuous in real Hilbert spaces. We consider both inertial and extragra-
dient methods together with the shrinking method for establishing sequence without the
prior knowledge of the Lipschitz-type constants which is strongly convergent to a solu-
tion of the split equilibrium and fixed point problems. Some experiments are reported to
illustrate the numerical behavior of the introduced algorithm in comparison with other
algorithms. These numerical results are also confirmed that the algorithm with inertial
effects seems to work better than those without inertial effects.
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