Thai Journal of **Math**ematics Volume 20 Number 1 (2022) Pages 337–346

http://thaijmath.in.cmu.ac.th

$S(\bar{n_i}, Y_i)$ -Terms and Their Algebraic Properties

Sarawut Phuapong* and Chollawat Pookpienlert

Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand e-mail : Phuapong.sa@gmail.com (S. Phuapong); chollawat_po@cmu.ac.th (C. Pookpienlert)

Abstract A clone is a set of operations defined on a base set which is closed under composition and contains all projection operations. A special kind of clone satisfies the superassociative law is called a Menger algebra. In this paper, we introduce the new concept of $S(\bar{n}_i, Y_i)$ -terms of type τ . The set of all $S(\bar{n}_i, Y_i)$ -terms of type τ is closed under the superposition operation S^{n_i} and so forms a clone denoted by $clone_{S(\bar{n}_i, Y_i)}(\tau)$. We show that the $clone_{S(\bar{n}_i, Y_i)}(\tau)$ is a Menger algebra of rank n_i and study its algebraic properties. A connection between identities in $clone_{S(\bar{n}_i, Y_i)}(\tau)$ and $S(\bar{n}_i, Y_i)$ -hyperidentities is established.

MSC: 08A05; 08A62; 08B99

Keywords: terms; clones; Menger algebras; hypersubstitutions; hyperidentities; transformations with invariant set

Submission date: 18.05.2020 / Acceptance date: 27.02.2021

1. INTRODUCTION AND PRELIMINARIES

Let $X := \{x_1, x_2, \ldots\}$ be a countably infinite set of symbols called *variables*. We often refer to these variables as letters to X as an alphabet, and also refer to the set $X_n := \{x_1, x_2, \ldots, x_n\}$ as an *n*-element alphabet. Let $(f_i)_{i \in I}$ be an indexed set which is disjoint from X. Each f_i is called an n_i -ary operation symbol, where $n_i \ge 1$ is a natural number. Let τ be a function which assigns to every f_i the number n_i as its arity. The sequence of the values of function τ , written as $(n_i)_{i \in I}$, is called a *type*. An *n*-ary term of type τ is defined inductively as follows:

- (i) Every variable $x_i \in X_n$ is an *n*-ary term of type τ .
- (ii) If t_1, \ldots, t_{n_i} are *n*-ary terms of type τ and f_i is an n_i -ary operation symbol, then $f_i(t_1, \ldots, t_{n_i})$ is an *n*-ary term of type τ .

The set of all *n*-ary terms of type τ , closed under finite number of applications of (ii), is denoted by $W_{\tau}(X_n)$. We call the set $W_{\tau}(X) := \bigcup_{n=1}^{\infty} W_{\tau}(X_n)$ is the set of all terms of type τ .

^{*}Corresponding author.

Published by The Mathematical Association of Thailand. Copyright © 2022 by TJM. All rights reserved.

Now, we recall the concept of superposition operation of terms. For each natural numbers $m, n \ge 1$, the superposition operation is a many-sorted mapping

$$S_m^n: W_\tau(X_n) \times W_\tau(X_m)^n \to W_\tau(X_m)$$

defined by

(i)
$$S_m^n(x_j, t_1, \dots, t_n) := t_j$$
, if $x_j \in X_n$,
(ii) $S_m^n(f_i(s_1, \dots, s_{n_i}), t_1, \dots, t_n) := f_i(S_m^n(s_1, t_1, \dots, t_n), \dots, S_m^n(s_{n_i}, t_1, \dots, t_n))$.

Then the many-sorted algebra can be defined by

clone
$$\tau := ((W_{\tau}(X_n))_{n \in \mathbb{N}^+}, (S_m^n)_{n,m \in \mathbb{N}^+}, (x_i)_{i \le n \in \mathbb{N}^+}),$$

which is called the *clone of all terms of type* τ .

The set of all terms of type τ can be used as the universe of an algebra of type τ . For every $i \in I$, an n_i -ary operation $\bar{f}_i : W_\tau(X)^{n_i} \longrightarrow W_\tau(X)$ is defined by

$$\bar{f}_i(t_1,\ldots,t_{n_i}) := f_i(t_1,\ldots,t_{n_i}).$$

The algebra $\mathcal{F}_{\tau}(X) := (W_{\tau}(X); (\bar{f}_i)_{i \in I})$ is called the *absolutely free algebra* of type τ over the set X.

A hypersubstitution of type τ is a map $\sigma : \{f_i \mid i \in I\} \longrightarrow W_{\tau}(X)$ which maps each operation symbol f_i to an n_i -ary term $\sigma(f_i)$ of type τ . Any hypersubstitutions $\sigma : \{f_i \mid i \in I\} \longrightarrow W_{\tau}(X)$ can be uniquely extended to a map $\hat{\sigma} : W_{\tau}(X) \longrightarrow W_{\tau}(X)$ as follows:

(i)
$$\hat{\sigma}[t] := t$$
 if $t \in X$; and

(ii) $\hat{\sigma}[t] := S^{n_i}(\sigma(f_i), \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}])$ if $t = f_i(t_1, \dots, t_{n_i})$.

The set $Hyp(\tau)$ of all hypersubstitutions of type τ forms a monoid under the binary associative operation, denoted by \circ_h :

$$\sigma_1 \circ_h \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$$

where \circ is the usual composition of functions, together with the identity σ_{id} : $\{f_i \mid i \in I\} \longrightarrow W_{\tau}(X)$ such that $\sigma_{id}(f_i) = f_i(x_1, \ldots, x_{n_i})$.

Let τ_n be the sequence of operation symbols having the same arity n, i.e., $\tau_n = (n_i)_{i \in I}$ with $n_i = n$ for all $i \in I$. In 2004, Denecke and Jampachon [1], inductively defined *n*-ary full terms of type τ_n by

(i) If f_i is an *n*-ary operation symbol and $\alpha \in T_n$ where T_n is the set of all full transformation on $\{1, 2, \ldots, n\}$, then $f_i(x_{\alpha(1)}, \ldots, x_{\alpha(n)})$ is an *n*-ary full term of type τ_n .

(ii) If f_i is an *n*-ary operation symbol and t_1, \ldots, t_n are *n*-ary full terms of type τ_n , then $f_i(t_1, \ldots, t_n)$ is an *n*-ary full term of type τ_n .

Let $W_{\tau_n}^F(X_n)$ be the set of all *n*-ary full terms of type τ_n . The set $W_{\tau_n}^F(X_n)$ is closed under finite application of (ii). If T_n is replaced by a submonoid $\{1_n\}$, then $W_{\tau_n}^F(X_n)$ is denoted by $W_{\tau_n}^{SF}(X_n)$ called the set of all *strongly full terms* of type τ_n which was studied by Denecke and Freiberg [2]. In 2011, Phuapong and Leeratanavalee [3] were introduced the concept of generalized of full terms and strongly full terms of type τ . In 2015, Phuapong [4] studied some algebraic properties of generalized clone automorphisms.

In 2019, Wattanatripop and Changphas [5] studied the clone of $K^*(n, r)$ -full terms. The result obtained the notion of $K^*(n, r)$ -full closed identities. In this paper, we use idea of $K^*(n, r)$ -full terms of type τ_n to define a new concept of n_i -ary $S(\bar{n}_i, Y_i)$ -terms of type τ induced by transformations with invariant set. We study some algebraic properties of $clone_{S(\bar{n}_i,Y_i)}(\tau)$ and $S(\bar{n}_i,Y_i)$ -hypersubstitutions. The related $S(\bar{n}_i,Y_i)$ -hyperidentities and $S(\bar{n}_i,Y_i)$ -solid varieties is also mentioned.

2. The Menger Algebra of $S(\bar{n}_i, Y_i)$ -Terms

The first of our main results is a new concept of a specific term, based on full transformation mappings and the original notions of terms.

Let X be a nonempty set and let T(X) be the semigroup of full transformations from X into itself under composition of mappings. This semigroup has an important role in semigroup theory, combinatorics, many-valued logic, etc.

For a fixed nonempty subset Y of X, let

$$S(X,Y) := \{ \alpha \in T(X) \mid Y \alpha \subseteq Y \}.$$

Then S(X, Y) is a semigroup of full transformations on X which leave Y invariant. In 1966, Magill [6] introduced and studied this semigroup. In fact, if Y = X, then S(X, Y) = T(X). So we may regard S(X, Y) as a generalization of T(X). The full transformation semigroup T_{n_i} consists of the set of all maps $\alpha_i : \{1, 2, \ldots, n_i\} \longrightarrow \{1, 2, \ldots, n_i\}$ and the usual composition of mappings. Indeed, T_{n_i} is a monoid and identity map 1_{n_i} acts as its identity. For a fixed nonempty subset Y_i of $\bar{n_i} := \{1, 2, \ldots, n_i\}$, it is well-known that the set

$$S(\bar{n_i}, Y_i) := \{ \alpha_i \in T_{n_i} \mid Y_i \alpha_i \subseteq Y_i \}$$

is a submonoid of T_{n_i} where 1_{n_i} is an identity element.

Then we define the definition of n_i -ary $S(\bar{n_i}, Y_i)$ -term of type τ .

Definition 2.1. Let $\tau = (n_i)_{i \in I}$ and f_i be an n_i -ary operation symbol and $\alpha_i \in S(\bar{n_i}, Y_i)$. An n_i -ary $S(\bar{n_i}, Y_i)$ -term of type τ is inductively defined by the following steps :

- (i) $f_i(x_{\alpha_i(1)}, \ldots, x_{\alpha_i(n_i)})$ is an n_i -ary $S(\bar{n_i}, Y_i)$ -term of type τ ;
- (ii) if t_1, \ldots, t_{n_i} are n_i -ary $S(\bar{n_i}, Y_i)$ -terms of type τ , then $f_i(t_1, \ldots, t_{n_i})$ is an n_i -ary $S(\bar{n_i}, Y_i)$ -term of type τ .

Let $W^{S(\bar{n}_i,Y_i)}_{\tau}(X_{n_i})$ be the set of all n_i -ary $S(\bar{n}_i,Y_i)$ -terms of type τ .

Example 2.2. Let $I = \{1, 2\}$ and consider a type $\tau = (3, 4)$ with f_1, f_2 are operation symbols having arity 3, 4 respectively.

For i = 1; we fixed subset $Y_1 = \{1, 2\} \subseteq \{1, 2, 3\}$ and $\alpha_1 : \{1, 2, 3\} \longrightarrow \{1, 2, 3\}$, and for i = 2; we fixed subset $Y_2 = \{3, 4\} \subseteq \{1, 2, 3, 4\}$ and $\alpha_2 : \{1, 2, 3, 4\} \longrightarrow \{1, 2, 3, 4\}$.

Then we have $f_1(x_1, x_2, x_3)$, $f_1(x_1, x_1, x_2)$, $f_1(x_1, x_2, x_2)$, $f_1(x_2, x_2, x_3)$ are some examples of $W^{S(\bar{3},Y_1)}_{\tau}(X_3)$ and $f_2(x_1, x_2, x_3, x_4)$, $f_2(x_1, x_1, x_3, x_3)$, $f_2(x_3, x_4, x_4, x_3)$ are some examples of $W^{S(\bar{4},Y_2)}_{\tau}(X_4)$.

It can be seen that $\left(W^{S(\bar{n}_i,Y_i)}_{\tau}(X_{n_i});(\bar{f}_i)_{i\in I}\right)$ is a subalgebra of $\left(W_{\tau}(X);(\bar{f}_i)_{i\in I}\right)$.

Then we define a superposition operation S^{n_i} on the set $W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})$ by the following steps:

Definition 2.3. Let $\alpha_i \in S(\bar{n_i}, Y_i)$ and $s_1, \ldots, s_{n_i}, t_1, \ldots, t_{n_i} \in W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$. Then

$$S^{n_i}: \left(W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})\right)^{n_i+1} \longrightarrow W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})$$

is defined by

(i)
$$S^{n_i} \left(f_i \left(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)} \right), t_1, \dots, t_{n_i} \right) := f_i \left(t_{\alpha_i(1)}, \dots, t_{\alpha_i(n_i)} \right);$$

(ii) $S^{n_i} \left(f_i \left(s_1, \dots, s_{n_i} \right), t_1, \dots, t_{n_i} \right)$
 $:= f_i \left(S^{n_i} \left(s_1, t_1, \dots, t_{n_i} \right), \dots, S^{n_i} \left(s_{n_i}, t_1, \dots, t_{n_i} \right) \right).$

Then we can form the algebra

$$clone_{S(\bar{n_i},Y_i)}(\tau) := \left(W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i}), S^{n_i}\right)$$

which is called the *clone of all* $S(\bar{n}_i, Y_i)$ -terms of type τ . The following theorem shows the fact that the algebra $\left(W^{S(\bar{n}_i, Y_i)}_{\tau}(X_{n_i}), S^{n_i}\right)$ satisfies the superassociative law (SASS):

$$S^{\tilde{n}_{i}}(X_{0}, S^{\tilde{n}_{i}}(Y_{1}, X_{1}, \dots, X_{n_{i}}), \dots, S^{\tilde{n}_{i}}(Y_{n_{i}}, X_{1}, \dots, X_{n_{i}})) \approx S^{\tilde{n}_{i}}(S^{\tilde{n}_{i}}(X_{0}, Y_{1}, \dots, Y_{n_{i}}), X_{1}, \dots, X_{n_{i}}),$$

where \tilde{S}^{n_i} is $(n_i + 1)$ -ary operation symbol and X_i, Y_j are variables.

Theorem 2.4. The algebra $clone_{S(\bar{n}_i,Y_i)}(\tau)$ satisfies the superassociative law (SASS).

Proof. We give a proof by induction on the complexity of an n_i -ary $S(\bar{n}_i, Y_i)$ -term t which is substituted for X_0 .

If we substitute for X_0 by a $S(\bar{n_i}, Y_i)$ -term $t = f_i(x_{\alpha_i(1)}, \ldots, x_{\alpha_i(n_i)})$ where $\alpha_i \in S(\bar{n_i}, Y_i)$, then

$$\begin{split} S^{n_i} \left(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), S^{n_i}(t_1, s_1, \dots, s_{n_i}), \dots, S^{n_i}(t_{n_i}, s_1, \dots, s_{n_i}) \right) \\ &= f_i(S^{n_i}(x_{\alpha_i(1)}, S^{n_i}(t_1, s_1, \dots, s_{n_i}), \dots, S^{n_i}(t_{n_i}, s_1, \dots, s_{n_i})), \dots, \\ S^{n_i}(x_{\alpha_i(n_i)}, S^{n_i}(t_1, s_1, \dots, s_{n_i}), \dots, S^{n_i}(t_{n_i}, s_1, \dots, s_{n_i}))) \\ &= f_i(S^{n_i}(t_{\alpha_i(1)}, s_1, \dots, s_{n_i}), \dots, S^{n_i}(t_{\alpha_i(n_i)}, s_1, \dots, s_{n_i})) \\ &= S^{n_i}(f_i(t_{\alpha_i(1)}, \dots, t_{\alpha_i(n_i)}), s_1, \dots, s_{n_i}) \\ &= S^{n_i}(S^{n_i}(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), t_1, \dots, t_{n_i}), s_1, \dots, s_{n_i}). \end{split}$$

If we substitute for X_0 by a $S(\bar{n_i}, Y_i)$ -term $t = f_i(r_1, \ldots, r_{n_i})$ where $r_1, \ldots, r_{n_i} \in W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$ and assume that

$$S^{n_i}(r_k, S^{n_i}(t_1, s_1, \dots, s_{n_i}), \dots, S^{n_i}(t_{n_i}, s_1, \dots, s_{n_i})) = S^{n_i}(S^{n_i}(r_k, t_1, \dots, t_{n_i}), s_1, \dots, s_{n_i})$$

for all $1 \leq k \leq n_i$, then

$$\begin{split} S^{n_i}(f_i(r_1,\ldots,r_{n_i}),S^{n_i}(t_1,s_1,\ldots,s_{n_i}),\ldots,S^{n_i}(t_{n_i},s_1,\ldots,s_{n_i})) \\ &= f_i(S^{n_i}(r_1,S^{n_i}(t_1,s_1,\ldots,s_{n_i}),\ldots,S^{n_i}(t_{n_i},s_1,\ldots,s_{n_i})),\ldots,\\ S^{n_i}(r_{n_i},S^{n_i}(t_1,s_1,\ldots,s_{n_i}),\ldots,S^{n_i}(t_{n_i},s_1,\ldots,s_{n_i})))) \\ &= f_i(S^{n_i}(S^{n_i}(r_1,t_1,\ldots,t_{n_i}),s_1,\ldots,s_{n_i}),\ldots,(S^{n_i}(r_{n_i},t_1,\ldots,t_{n_i}),s_1,\ldots,s_{n_i}))) \\ &= S^{n_i}(f_i(S^{n_i}(r_1,t_1,\ldots,t_{n_i}),\ldots,S^{n_i}(r_{n_i},t_1,\ldots,t_{n_i}),s_1,\ldots,s_{n_i})) \\ &= S^{n_i}(S^{n_i}(f_i(r_1,\ldots,r_{n_i}),t_1,\ldots,t_{n_i}),s_1,\ldots,s_{n_i}). \end{split}$$

An algebra $\mathcal{M} := (M, S^n)$ of type $\tau = (n+1)$ is called a *Menger algebra* of rank *n* if \mathcal{M} satisfies the condition (SASS) [7]. Then by Theorem 2.4, $clone_{S(\bar{n}_i, Y_i)}(\tau)$ is an example of a Menger algebra of rank n_i .

The freeness of this algebra will be presented in the next theorem. It is observed that $clone_{S(\bar{n}_i,Y_i)}(\tau)$ is generated by

$$F_{W_{\tau}^{S(\bar{n}_{i},Y_{i})}(X_{n_{i}})} := \left\{ f_{i}\left(x_{\alpha_{i}(1)},\ldots,x_{\alpha_{i}(n_{i})}\right) \mid i \in I, \alpha_{i} \in S(\bar{n}_{i},Y_{i}) \right\}.$$

Let $V^{S(\bar{n_i},Y_i)}$ be the variety of type $\tau = (n_i + 1)$ generated by the superassociative law (SASS). Now, let $\mathcal{F}_{V^{S(\bar{n_i},Y_i)}}(\{Y_l \mid l \in J\})$ be the free algebra with respect to $V^{S(\bar{n_i},Y_i)}$, freely generated by an alphabet $\{Y_l \mid l \in J\}$ where $J = \{(i, \alpha_i) \mid i \in I, \alpha_i \in S(\bar{n_i}, Y_i)\}$. The operation of $\mathcal{F}_{V^{S(\bar{n_i},Y_i)}}(\{Y_l \mid l \in J\})$ is denoted by \tilde{S}^{n_i} . Then we have:

Theorem 2.5. The algebra $clone_{S(\bar{n}_i,Y_i)}(\tau)$ is isomorphic to $\mathcal{F}_{V^{S(\bar{n}_i,Y_i)}}(\{Y_l \mid l \in J\})$ and therefore free with respect to the variety $V^{S(\bar{n}_i,Y_i)}$, and freely generated by the set $\{f_i(x_{\alpha_i(1)},\ldots,x_{\alpha_i(n_i)}) \mid i \in I, \alpha_i \in S(\bar{n}_i,Y_i)\}.$

Proof. We define the mapping $\varphi : W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i}) \longrightarrow \mathcal{F}_{V^{S(\bar{n_i}, Y_i)}}(\{Y_l \mid l \in J\})$ inductively as follows:

- (i) $\varphi(f_i(x_{\alpha_i(1)},\ldots,x_{\alpha_i(n_i)})=y_{(i,\alpha_i)};$
- (ii) $\varphi(f_i(t_{\alpha_i(1)},\ldots,t_{\alpha_i(n_i)})) = \tilde{S}^{n_i}(y_{(i,\alpha_i)},\varphi(t_1),\ldots,\varphi(t_{n_i})).$

Since φ maps the generating system of $clone_{S(\bar{n}_i,Y_i)}(\tau)$ onto the generating system of $\mathcal{F}_{V^{S(\bar{n}_i,Y_i)}}(\{Y_l \mid l \in J\})$, it is surjective. We prove the homomorphism property

$$\varphi(S^{n_i}(t_0, t_1, \dots, t_{n_i})) = \tilde{S}^{n_i}(\varphi(t_0), \varphi(t_1), \dots, \varphi(t_{n_i}))$$

by induction on the complexity of an n_i -ary $S(\bar{n}_i, Y_i)$ -term t_0 . If $t_0 = f_i(x_{i_1}(1), \dots, x_{i_n}(n_i))$ where $\alpha_i \in S(\bar{n}_i, Y_i)$, then

If
$$t_0 = f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)})$$
 where $\alpha_i \in S(n_i, r_i)$, then
 $\varphi(S^{n_i}(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), t_1, \dots, t_{n_i})))$

$$= \varphi(f_i(t_{\alpha_i(1)}, \dots, t_{\alpha_i(n_i)}))$$

$$= \tilde{S}^{n_i}(y_{(i,\alpha_i)}, \varphi(t_1), \dots, \varphi(t_{n_i}))$$

$$= \tilde{S}^{n_i}(\varphi(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)})), \varphi(t_1), \dots, \varphi(t_{n_i})).$$
If $t_i = f_i(x_i, x_{\alpha_i(n_i)})$ and assume that

If $t_0 = f_i(r_1, \ldots, r_{n_i})$ and assume that

$$\varphi(S^{n_i}(r_k, t_1, \dots, t_{n_i})) = S^{n_i}(\varphi(r_k), \varphi(t_1), \dots, \varphi(t_{n_i}))$$

for all $1 \leq k \leq n_i$, then

$$\begin{split} \varphi(S^{n_i}(f_i(r_1, \dots, r_{n_i}), t_1, \dots, t_{n_i})) &= \varphi(f_i(S^{n_i}(r_1, t_1, \dots, t_{n_i}), \dots, S^{n_i}(r_{n_i}, t_1, \dots, t_{n_i}))) \\ &= \tilde{S}^{n_i}(y_{(i,1_{n_i})}, \varphi(S^{n_i}(r_1, t_1, \dots, t_{n_i})), \dots, \varphi(S^{n_i}(r_{n_i}, t_1, \dots, t_{n_i}))) \\ &= \tilde{S}^{n_i}(y_{(i,1_{n_i})}, \tilde{S}^{n_i}(\varphi(r_1), \varphi(t_1), \dots, \varphi(t_{n_i})), \dots, \tilde{S}^{n_i}(\varphi(r_{n_i}), \varphi(t_1), \dots, \varphi(t_{n_i}))) \\ &= \tilde{S}^{n_i}(\tilde{S}(y_{(i,1_{n_i})}, \varphi(r_1), \dots, \varphi(r_{n_i})), \varphi(t_1), \dots, \varphi(t_{n_i})) \\ &= \tilde{S}^{n_i}(\varphi(f_i(r_1, \dots, r_{n_i})), \varphi(t_1), \dots, \varphi(t_{n_i})). \end{split}$$

Thus φ is a homomorphism. The mapping φ is bijective since $\{y_{(i,\alpha_i)} \mid i \in I, \alpha_i \in S(\bar{n}_i, Y_i)\}$ is free independent set. Therefore, we have

$$\begin{aligned} y_{(i,\alpha_i)} &= y_{(j,\alpha_j)} \Longrightarrow (i,\alpha_i) = (j,\alpha_j) \\ &\implies i = j, \ \alpha_i = \alpha_j. \end{aligned}$$

So $f_i(x_{\alpha_i(1)}, \ldots, x_{\alpha_i(n_i)}) = f_j(x_{\alpha_j(1)}, \ldots, x_{\alpha_j(n_j)})$. Thus φ is a bijection between the generating sets of $clone_{S(\bar{n_i}, Y_i)}(\tau)$ and $\mathcal{F}_{V^{S(\bar{n_i}, Y_i)}}(\{Y_l \mid l \in J\})$ and therefore φ is an isomorphism.

3. The Monoid of $S(\bar{n}_i, Y_i)$ -Hypersubstitutions

The concept of a hypersubstitution is the main tool used to study hyperidentities and hypervarieties. In this section, the monoid of $S(\bar{n}_i, Y_i)$ -hypersubstitutions will be studied. Next, we give the definition of a $S(\bar{n}_i, Y_i)$ -hypersubstitution and introduce some properties of $S(\bar{n}_i, Y_i)$ -hypersubstitutions.

Definition 3.1. A $S(\bar{n}_i, Y_i)$ -hypersubstitution of type τ is a mapping σ from the set $\{f_i \mid i \in I\}$ of n_i -ary operation symbols of type τ to the set $W^{S(\bar{n}_i, Y_i)}_{\tau}(X)$ of all n_i -ary $S(\bar{n}_i, Y_i)$ -terms of type τ , i.e., $\sigma : \{f_i \mid i \in I\} \longrightarrow W^{S(\bar{n}_i, Y_i)}_{\tau}(X)$.

For a $S(\bar{n_i}, Y_i)$ -term t, we need the $S(\bar{n_i}, Y_i)$ -term t_{β_i} arising from t by replacement a variable $x_{\alpha_i(j)}$ in t by a variable $x_{\beta_i(\alpha_i(j))}$ for a mapping $\beta_i \in S(\bar{n_i}, Y_i)$. This can be defined as follows.

Definition 3.2. Let $\tau = (n_i)_{i \in I}$ and f_i be an n_i -ary operation symbol, $t, t_1, \ldots, t_{n_i} \in W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$ and $\alpha_i, \beta_i \in S(\bar{n_i}, Y_i)$. Then we define the n_i -ary $S(\bar{n_i}, Y_i)$ -term t_{β_i} by the following step:

(i) If $t = f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)})$, then $t_{\beta_i} := f_i(x_{\beta_i(\alpha_i(1))}, \dots, x_{\beta_i(\alpha_i(n_i))})$. (ii) If $t = f_i(t_1, \dots, t_{n_i})$, then $t_{\beta_i} := f_i((t_1)_{\beta_i}, \dots, (t_{n_i})_{\beta_i})$.

It is observed that if t is an n_i -ary $S(\bar{n_i}, Y_i)$ -term of type τ , then t_{β_i} is an n_i -ary $S(\bar{n_i}, Y_i)$ -term of type τ for all $\beta_i \in S(\bar{n_i}, Y_i)$. Any $S(\bar{n_i}, Y_i)$ -hypersubstitution σ induces a mapping $\hat{\sigma}$ defined on the set $W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$ of n_i -ary $S(\bar{n_i}, Y_i)$ -terms of type τ .

Definition 3.3. Let σ be a $S(\bar{n}_i, Y_i)$ -hypersubstitution of type τ and $\alpha_i \in S(\bar{n}_i, Y_i)$. Then σ induces a mapping

$$\hat{\sigma}: W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i}) \longrightarrow W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$$

by setting

(i) $\hat{\sigma}[f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)})] := (\sigma(f_i))_{\alpha_i};$ (ii) $\hat{\sigma}[f_i(t_1, \dots, t_{n_i})] := S^{n_i}(\sigma(f_i), \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}]).$

The set of all $S(\bar{n}_i, Y_i)$ -hypersubstitutions of type τ will be denoted by $Hyp^{S(\bar{n}_i, Y_i)}(\tau)$. It is easy to see that $(Hyp^{S(\bar{n}_i, Y_i)}(\tau); \circ_h, \sigma_{id})$ is a submonoid of $(Hyp(\tau); \circ_h, \sigma_{id})$.

The following lemma shows the property of a term t_{α_i} and the extension $\hat{\sigma}$.

Lemma 3.4. Let $t, t_1, \ldots, t_{n_i} \in W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$. Then $S^{n_i}(t, \hat{\sigma}[t_{\alpha_i(1)}], \ldots, \hat{\sigma}[t_{\alpha_i(n_i)}]) = S^{n_i}(t_{\alpha_i}, \hat{\sigma}[t_1], \ldots, \hat{\sigma}[t_{n_i}])$

for all $\alpha_i \in S(\bar{n_i}, Y_i)$.

Proof. If $t = f_i(x_{\beta_i(1)}, \ldots, x_{\beta_i(n_i)})$ where $\beta_i \in S(\bar{n_i}, Y_i)$, then for all $\alpha_i \in S(\bar{n_i}, Y_i)$, we have

$$\begin{split} S^{n_i}(t,\sigma[t_{\alpha_i(1)}],\dots,\sigma[t_{\alpha_i(n_i)}]) &= S^{n_i}(f_i(x_{\beta_i(1)},\dots,x_{\beta_i(n_i)}),\hat{\sigma}[t_{\alpha_i(1)}],\dots,\hat{\sigma}[t_{\alpha_i(n_i)}]) \\ &= f_i(\hat{\sigma}[t_{\alpha_i(\beta_i(1))}],\dots,\hat{\sigma}[t_{\alpha_i(\beta_i(n_i))}]) \\ &= S^{n_i}(f_i(x_{\alpha_i(\beta_i(1))},\dots,x_{\alpha_i(\beta_i(n_i))}),\hat{\sigma}[t_1],\dots,\hat{\sigma}[t_{n_i}]) \\ &= S^{n_i}(t_{\alpha_i},\hat{\sigma}[t_1],\dots,\hat{\sigma}[t_{n_i}]). \end{split}$$
 If $t = f_i(s_1,\dots,s_{n_i})$ and assume that

$$S^{n_i}(s_k, \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}]) = S^{n_i}((s_k)_{\alpha_i}, \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}])$$

r all $1 \le k \le n_i$ and $\alpha_i \in S(\bar{n_i}, Y_i)$ then

$$\begin{aligned} \text{for all } 1 &\leq k \leq n_i \text{ and } \alpha_i \in S(\bar{n_i}, Y_i), \text{ then} \\ & S^{n_i}(t, \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}]) \\ &= S^{n_i}(f_i(s_1, \dots, s_{n_i}), \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}]) \\ &= f_i(S^{n_i}(s_1, \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}]), \dots, S^{n_i}(s_{n_i}, \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}])) \\ &= f_i(S^{n_i}((s_1)_{\alpha_i}, \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}]), \dots, S^{n_i}((s_{n_i})_{\alpha_i}, \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}])) \end{aligned}$$

$$= S^{n_i}(f_i((s_1)_{\alpha_i}, \dots, (s_{n_i})_{\alpha_i}), \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}])$$

= $S^{n_i}(t_{\alpha_i}, \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}]).$

Theorem 3.5. For $\sigma \in Hyp^{S(\bar{n_i},Y_i)}(\tau)$, the extension

$$\hat{\tau}: W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i}) \longrightarrow W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$$

is an endomorphism on the algebra $clone_{S(\bar{n_i},Y_i)}(\tau)$.

Proof. It is clear that $\hat{\sigma} : W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i}) \longrightarrow W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})$ is well defined. Let $t_0, t_1, \ldots, t_{n_i} \in W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})$. We will show by induction on the complexity of t_0 that

$$\hat{\sigma}[S^{n_i}(t_0, t_1, \dots, t_{n_i})] = S^{n_i}(\hat{\sigma}[t_0], \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}]).$$

If
$$t_0 = f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)})$$
 where $\alpha_i \in S(\bar{n_i}, Y_i)$, then
 $\hat{\sigma}[S^{n_i}(t_0, t_1, \dots, t_{n_i})] = \hat{\sigma}[S^{n_i}(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), t_1, \dots, t_{n_i})]$
 $= \hat{\sigma}[f_i(t_{\alpha_i(1)}, \dots, t_{\alpha_i(n_i)})]$
 $= S^{n_i}(\sigma(f_i), \hat{\sigma}[t_{\alpha_i(1)}], \dots, \hat{\sigma}[t_{\alpha_i(n_i)}])$
 $= S^{n_i}(\hat{\sigma}[t_0], \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}]).$

If $t_0 = f_i(r_1, \ldots, r_{n_i})$ and we assume that

$$\hat{\sigma}[S^{n_i}(r_k, t_1, \dots, t_{n_i})] = S^{n_i}(\hat{\sigma}[r_k], \hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}])$$

for all $1 \leq k \leq n_i$, then

$$\begin{split} \hat{\sigma}[S^{n_i}(t_0,t_1,\ldots,t_{n_i})] &= \hat{\sigma}[S^{n_i}(f_i(r_1,\ldots,r_{n_i}),t_1,\ldots,t_{n_i})] \\ &= \hat{\sigma}[f_i(S^{n_i}(r_1,t_1,\ldots,t_{n_i}),\ldots,S^{n_i}(r_{n_i},t_1,\ldots,t_{n_i}))] \\ &= S^{n_i}(\sigma(f_i),\hat{\sigma}[S^{n_i}(r_1,t_1,\ldots,t_{n_i})],\ldots,\hat{\sigma}[S^{n_i}(r_{n_i},t_1,\ldots,t_{n_i})]) \\ &= S^{n_i}(\sigma(f_i),S^{n_i}(\hat{\sigma}[r_1],\hat{\sigma}[t_1],\ldots,\hat{\sigma}[t_{n_i}]),\ldots,S^{n_i}(\hat{\sigma}[r_{n_i}],\hat{\sigma}[t_1],\ldots,\hat{\sigma}[t_{n_i}])) \\ &= S^{n_i}(S^{n_i}(\sigma(f_i),\hat{\sigma}[r_1],\ldots,\hat{\sigma}[r_{n_i}]),\hat{\sigma}[t_1],\ldots,\hat{\sigma}[t_{n_i}]) \\ &= S^{n_i}(\hat{\sigma}[t_0],\hat{\sigma}[t_1],\ldots,\hat{\sigma}[t_{n_i}]). \end{split}$$

We complete this section by studying the connection between $S(\bar{n}_i, Y_i)$ -terms and the extension of a mapping which maps fundamental term to any $S(\bar{n}_i, Y_i)$ -terms.

As mentioned, the algebra $clone_{S(\bar{n}_i, Y_i)}(\tau)$ is generated by the set

$$F_{W_{\tau}^{S(\bar{\pi_{i}},Y_{i})}(X_{n_{i}})} := \left\{ f_{i}\left(x_{\alpha_{i}(1)},\ldots,x_{\alpha_{i}(n_{i})}\right) \mid i \in I, \alpha_{i} \in S(\bar{n_{i}},Y_{i}) \right\}.$$

Therefore, any mapping

$$\eta: F_{W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})} \longrightarrow W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})$$

called $S(\bar{n}_i, Y_i)$ -clone substitution, can be uniquely extended to an endomorphism

$$\bar{\eta}: W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i}) \longrightarrow W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i}).$$

Let $Subst_{S(\bar{n}_i,Y_i)}(\tau)$ be the set of all $S(\bar{n}_i,Y_i)$ -clone substitutions. Together with a binary composition operation \odot defined by; for all $\eta_1, \eta_2 \in Subst_{S(\bar{n}_i,Y_i)}(\tau)$,

$$\eta_1 \odot \eta_2 := \bar{\eta_1} \circ \eta_2$$

where \circ is usual composition of functions and with the identity mapping $id_{F_{W_{\tau}^{S(\bar{n_i},Y_i)}(X_{n_i})}}$

on
$$F_{W^{S(\tilde{\pi_i},Y_i)}_{\tau}(X_{n_i})}$$
. Then $\left(Subst_{S(\tilde{n_i},Y_i)}(\tau); \odot, id_{F_{W^{S(\tilde{\pi_i},Y_i)}_{\tau}(X_{n_i})}}\right)$ forms a monoid.

Consider $\sigma \in Hyp^{S(\bar{n_i},Y_i)}(\tau)$ and by Theorem 3.5, we have $\hat{\sigma} : W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i}) \longrightarrow W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})$ is an endomorphism. Since $F_{W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})}$ generates $clone_{S(\bar{n_i},Y_i)}(\tau)$, we have $\hat{\sigma}|_{F_{W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})}}$ is an $S(\bar{n_i},Y_i)$ -clone substitution with

$$\overline{\hat{\sigma}\big|_{F_{W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})}}} = \hat{\sigma}.$$

Define a mapping $\psi: Hyp^{S(\bar{n_i},Y_i)}(\tau) \longrightarrow Subst_{S(\bar{n_i},Y_i)}(\tau)$ by

$$\psi(\sigma) = \hat{\sigma}\big|_{F_{W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})}}.$$

We have that ψ is a homomorphism. In fact : Let $\sigma_1, \sigma_2 \in Hyp^{S(\bar{n_i}, Y_i)}(\tau)$. Then $\psi(\sigma_1 \circ_h \sigma_2) = (\sigma_1 \circ_h \sigma_2)^{\uparrow}_{F_{-S(\bar{n_i}, Y_i)}}$.

$$= \left(\hat{\sigma}_{1} \circ \hat{\sigma}_{2}\right)\Big|_{F_{W_{\tau}^{S}(\tilde{\pi}_{i},Y_{i})(Xn_{i})}} \\ = \left.\left.\left.\left(\hat{\sigma}_{1} \circ \hat{\sigma}_{2}\right)\right|_{F_{W_{\tau}^{S}(\tilde{\pi}_{i},Y_{i})(Xn_{i})}} \circ \hat{\sigma}_{2}\right|_{F_{W_{\tau}^{S}(\tilde{\pi}_{i},Y_{i})(Xn_{i})}} \\ = \left.\overline{\psi(\sigma_{1})} \circ \psi(\sigma_{2})\right|_{F_{W_{\tau}^{S}(\tilde{\pi}_{i},Y_{i})(Xn_{i})}} \\ = \psi(\sigma_{1}) \circ \psi(\sigma_{2}).$$

Clearly, ψ is an injection. Hence we have the following corollary.

Corollary 3.6. The monoid $(Hyp^{S(\bar{n}_i,Y_i)}(\tau);\circ_h,\sigma_{id})$ can be embedded into the monoid $(Subst_{S(\bar{n}_i,Y_i)}(\tau);\odot,id_{F_{W_{\Sigma}^{S(\bar{n}_i,Y_i)}(X_{T_i})})$.

4. $S(\bar{n_i}, Y_i)$ -Hyperidentities and Clone Identities

In this section, we examine the relationship between a variety V of type τ and the identity in the $clone_{S(\bar{n_i},Y_i)}(\tau)$.

Let V be a variety of type τ and let IdV be the set of all identities of V. Let $Id^{S(\bar{n_i},Y_i)}V$ be the set of all $s \approx t$ of V such that s and t are both $S(\bar{n_i},Y_i)$ -terms of type τ , that is,

$$Id^{S(\bar{n_i},Y_i)}V := \left(W^{S(\bar{n_i},Y_i)}_{\tau}(X_{n_i})\right)^2 \cap IdV.$$

It is well-known that IdV is a congruence on the free algebra $\mathcal{F}_{\tau}(X)$. However, in general this is not true for $Id^{S(\bar{n_i},Y_i)}V$. The following theorem shows that $Id^{S(\bar{n_i},Y_i)}V$ is a congruence on $clone_{S(\bar{n_i},Y_i)}(\tau)$.

Theorem 4.1. Let V be a variety of type τ . Then $Id^{S(\bar{n_i},Y_i)}V$ is a congruence on the $clone_{S(\bar{n_i},Y_i)}(\tau)$.

Proof. We will prove that from $r \approx t$, $r_k \approx t_k \in Id^{S(\bar{n_i},Y_i)}V$, $k = 1, 2, \ldots, n_i$, it follows that $S^{n_i}(r, r_1, \ldots, r_{n_i}) \approx S^{n_i}(t, t_1, \ldots, t_{n_i}) \in Id^{S(\bar{n_i},Y_i)}V$.

Firstly, we prove by induction on the complexity of a term $t \in W^{S(\bar{n}_i,Y_i)}_{\tau}(X_{n_i})$ that for every $i \in I$ from $t_k \approx r_k \in Id^{S(\bar{n}_i,Y_i)}V, k = 1, 2, \ldots, n_i$, it follows that $S^{n_i}(t, t_1, \ldots, t_{n_i}) \approx S^{n_i}(t, r_1, \ldots, r_{n_i}) \in Id^{S(\bar{n}_i,Y_i)}V$.

If
$$t = f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), i \in I, \alpha_i \in S(\bar{n_i}, Y_i)$$
, then
 $S^{n_i}(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), t_1, \dots, t_{n_i})$
 $= f_i(t_{\alpha_i(1)}, \dots, t_{\alpha_i(n_i)})$
 $\approx f_i(r_{\alpha_i(1)}, \dots, r_{\alpha_i(n_i)})$

$$= S^{n_i}(f_i(x_{\alpha_i(1)}, \dots, x_{\alpha_i(n_i)}), r_1, \dots, r_{n_i}) \in Id^{S(\bar{n_i}, Y_i)}V$$

since IdV is compatible with the operation $\overline{f_i}$ of the absolutely free algebra $\mathcal{F}_{\tau}(X)$ and by the definition of n_i -ary $S(\bar{n_i}, Y_i)$ -terms.

If $t = f_i(l_1, \ldots, l_{n_i}) \in W^{S(\bar{n_i}, Y_i)}_{\tau}(X_{n_i})$ and assume that

$$S^{n_i}(l_k, t_1, \dots, t_{n_i}) \approx S^{n_i}(l_k, r_1, \dots, r_{n_i}) \in Id^{S(\bar{n_i}, Y_i)}V$$

for all $1 \leq k \leq n_i$, then

$$\begin{split} S^{n_i}(f_i(l_1,\ldots,l_{n_i}),t_1,\ldots,t_{n_i}) &= f_i(S^{n_i}(l_1,t_1,\ldots,t_{n_i}),\ldots,S^{n_i}(l_{n_i},t_1,\ldots,t_{n_i})) \\ &\approx f_i(S^{n_i}(l_1,r_1,\ldots,r_{n_i}),\ldots,S^{n_i}(l_{n_i},r_1,\ldots,r_{n_i})) \\ &= S^{n_i}(f_i(l_1,\ldots,l_{n_i}),r_1,\ldots,r_{n_i}) \in Id^{S(\bar{n_i},Y_i)}V. \end{split}$$

Now, we prove the implication

$$t \approx r \in Id^{S(\bar{n_i}, Y_i)}V \Rightarrow S^{n_i}(t, r_1, \dots, r_{n_i}) \approx S^{n_i}(r, r_1, \dots, r_{n_i}) \in Id^{S(\bar{n_i}, Y_i)}V$$

This is a consequence of the fully invariant of IdV as a congruence on the absolutely free algebra $\mathcal{F}_{\tau}(X)$ and the definition of an n_i -ary $S(\bar{n_i}, Y_i)$ -term. Assume now that $t \approx r, t_k \approx r_k \in Id^{S(\bar{n_i}, Y_i)}V$. Then

$$S^{n_i}(t, t_1, \dots, t_{n_i}) \approx S^{n_i}(r, t_1, \dots, t_{n_i}) \approx S^{n_i}(r, r_1, \dots, r_{n_i}) \in Id^{S(\bar{n_i}, Y_i)}V. \quad \blacksquare$$

By using the concept of a $S(\bar{n}_i, Y_i)$ -hypersubstitution as we presented in Section 3. We will define $S(\bar{n}_i, Y_i)$ -hyperidentities in a variety of type τ .

Let V be a variety of type τ . An identity $s \approx t \in Id^{S(\bar{n_i},Y_i)}V$ is called a $S(\bar{n_i},Y_i)$ hyperidentity of V if $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in IdV$ for all $\sigma \in Hyp^{S(\bar{n_i},Y_i)}(\tau)$. Moreover, the variety V is called $S(\bar{n_i},Y_i)$ -solid if the following hold:

$$\forall s \approx t \in Id^{S(\bar{n}_i, Y_i)}V, \forall \sigma \in Hyp^{S(\bar{n}_i, Y_i)}(\tau), \hat{\sigma}[s] \approx \hat{\sigma}[t] \in IdV.$$

The following lemma give a sufficient condition for the $S(\bar{n}_i, Y_i)$ -hyperidentity of a variety V.

Lemma 4.2. Let V be a variety of type τ . If $Id^{S(\bar{n_i},Y_i)}V$ is a fully invariant congruence on $clone_{S(\bar{n_i},Y_i)}(\tau)$, then V is $S(\bar{n_i},Y_i)$ -solid.

Proof. Assume that $Id^{S(\bar{n}_i,Y_i)}V$ is a fully invariant congruence on $clone_{S(\bar{n}_i,Y_i)}(\tau)$. Let $s \approx t \in Id^{S(\bar{n}_i,Y_i)}V$ and $\sigma \in Hyp^{S(\bar{n}_i,Y_i)}(\tau)$. By Theorem 3.5, $\hat{\sigma}$ is an endomorphism of $clone_{S(\bar{n}_i,Y_i)}(\tau)$. Hence $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in Id^{S(\bar{n}_i,Y_i)}V$, that is, V is $S(\bar{n}_i,Y_i)$ -solid.

For a variety V of type τ , $Id^{S(\bar{n}_i, Y_i)}V$ is a congruence on $clone_{S(\bar{n}_i, Y_i)}(\tau)$ by Theorem 4.1. We can form the quotient algebra

$$clone_{S(\bar{n_i},Y_i)}(V) := clone_{S(\bar{n_i},Y_i)}(\tau)/Id^{S(\bar{n_i},Y_i)}V.$$

This quotient algebra belongs to the class of a Menger algebra of rank n_i . Note that we have a natural homomorphism

$$nat_{Id^{S(\bar{n}_i,Y_i)}V}: clone_{S(\bar{n}_i,Y_i)}(\tau) \longrightarrow clone_{S(\bar{n}_i,Y_i)}(V)$$

such that

$$nat_{Id^{S(\bar{n_i},Y_i)}V}(t) = [t]_{Id^{S(\bar{n_i},Y_i)}V}.$$

Finally, we prove the following connection between $S(\bar{n}_i, Y_i)$ -hyperidentities of a variety V and clone identities.

Theorem 4.3. Let V be a variety of type τ . If $s \approx t \in Id^{S(\bar{n_i},Y_i)}V$ is an identity in $clone_{S(\bar{n_i},Y_i)}(V)$, then $s \approx t$ is a $S(\bar{n_i},Y_i)$ -hyperidentity of V.

Proof. Assume that $s \approx t \in Id^{S(\bar{n_i},Y_i)}V$ is an identity in $clone_{S(\bar{n_i},Y_i)}(V)$. Let $\sigma \in Hyp^{S(\bar{n_i},Y_i)}(\tau)$. Then $\hat{\sigma} : clone_{S(\bar{n_i},Y_i)}(\tau) \longrightarrow clone_{S(\bar{n_i},Y_i)}(\tau)$ is an endomorphism by Theorem 3.5. Thus

$$nat_{Id^{S(\bar{n_i},Y_i)}V} \circ \hat{\sigma} : clone_{S(\bar{n_i},Y_i)}(\tau) \longrightarrow clone_{S(\bar{n_i},Y_i)}(V)$$

is a homomorphism. By assumption,

$$\left(nat_{Id^{S(\bar{n_i},Y_i)}V}\circ\hat{\sigma}\right)(s) = \left(nat_{Id^{S(\bar{n_i},Y_i)}V}\circ\hat{\sigma}\right)(t).$$

That is

$$nat_{Id^{S(\bar{n_i},Y_i)}V}(\hat{\sigma}[s]) = nat_{Id^{S(\bar{n_i},Y_i)}V}(\hat{\sigma}[t]).$$

Thus

$$[\hat{\sigma}[s]]_{Id^{S(\bar{n_i},Y_i)}V} = [\hat{\sigma}[t]]_{Id^{S(\bar{n_i},Y_i)}V}$$

and hence

$$\hat{\sigma}[s] \approx \hat{\sigma}[t] \in Id^{S(\bar{n_i}, Y_i)}V$$

Therefore, $s \approx t$ is a $S(\bar{n}_i, Y_i)$ -hyperidentity of V.

Acknowledgements

This research was supported by Rajamangala University of Technology Lanna.

References

- K. Denecke, P. Jampachon, Clones of full terms, Algebra Discrete Math. 4 (2004) 1–11.
- [2] K. Denecke, L. Freiberg, The algebra of strongly full terms, Novi Sad J. Math. 34 (2004) 87–98.
- [3] S. Phuapong, S. Leeratanavalee, The algebra of generalized full terms, Int. J. Open Problems Compt. Math. 4 (2011) 54–65.
- [4] S. Phuapong, Some algebraic properties of generalized clone automorphisms, Acta Univ. Apulensis Math. Inform. 41 (2015) 165–175.
- [5] K. Wattanatripop, Th. Changphas, The clone of $K^*(n, r)$ -full terms, Discuss. Math. Gen. Algebra Appl. 39 (2019) 277–288.
- [6] K.D. Magill Jr., Subsemigroups of S(X), Math. Japon. 11 (1966) 109–115.
- [7] K. Denecke, Menger algebra and clones of terms, East-West J. Math. 5 (2003) 179– 193.