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Abstract A clone is a set of operations defined on a base set which is closed under composition and
contains all projection operations. A special kind of clone satisfies the superassociative law is called a
Menger algebra. In this paper, we introduce the new concept of S(n̄i, Yi)-terms of type τ . The set of all
S(n̄i, Yi)-terms of type τ is closed under the superposition operation Sni and so forms a clone denoted
by cloneS(n̄i,Yi)

(τ). We show that the cloneS(n̄i,Yi)
(τ) is a Menger algebra of rank ni and study its

algebraic properties. A connection between identities in cloneS(n̄i,Yi)
(τ) and S(n̄i, Yi)-hyperidentities is

established.  

MSC: 08A05; 08A62; 08B99
Keywords: terms; clones; Menger algebras; hypersubstitutions; hyperidentities; transformations with
invariant set

Submission date: 18.05.2020 / Acceptance date: 27.02.2021

1. Introduction and Preliminaries
Let X := {x1, x2, . . .} be a countably infinite set of symbols called variables. We

often refer to these variables as letters to X as an alphabet, and also refer to the set
Xn := {x1, x2, . . . , xn} as an n-element alphabet. Let (fi)i∈I be an indexed set which is
disjoint from X. Each fi is called an ni-ary operation symbol, where ni ≥ 1 is a natural
number. Let τ be a function which assigns to every fi the number ni as its arity. The
sequence of the values of function τ , written as (ni)i∈I , is called a type. An n-ary term
of type τ is defined inductively as follows:

(i) Every variable xj ∈ Xn is an n-ary term of type τ .
(ii) If t1, . . . , tni

are n-ary terms of type τ and fi is an ni-ary operation symbol,
then fi(t1, . . . , tni) is an n-ary term of type τ .

The set of all n-ary terms of type τ , closed under finite number of applications of (ii),

is denoted by Wτ (Xn). We call the set Wτ (X) :=

∞∪
n=1

Wτ (Xn) is the set of all terms of

type τ .
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Now, we recall the concept of superposition operation of terms. For each natural
numbers m,n ≥ 1, the superposition operation is a many-sorted mapping

Sn
m :Wτ (Xn)×Wτ (Xm)n →Wτ (Xm)

defined by
(i) Sn

m(xj , t1, . . . , tn) := tj , if xj ∈ Xn,
(ii) Sn

m(fi(s1, . . . , sni
), t1, . . . , tn) := fi(S

n
m(s1, t1, . . . , tn), . . . , S

n
m(sni

, t1, . . . , tn)).
Then the many-sorted algebra can be defined by

clone τ := ((Wτ (Xn))n∈N+ , (Sn
m)n,m∈N+ , (xi)i≤n∈N+),

which is called the clone of all terms of type τ .
The set of all terms of type τ can be used as the universe of an algebra of type τ . For

every i ∈ I, an ni-ary operation f̄i :Wτ (X)ni −→Wτ (X) is defined by
f̄i (t1, . . . , tni

) := fi (t1, . . . , tni
) .

The algebra Fτ (X) := (Wτ (X); (f̄i)i∈I) is called the absolutely free algebra of type τ
over the set X.

A hypersubstitution of type τ is a map σ : {fi | i ∈ I} −→ Wτ (X) which maps
each operation symbol fi to an ni-ary term σ(fi) of type τ . Any hypersubstitutions
σ : {fi | i ∈ I} −→ Wτ (X) can be uniquely extended to a map σ̂ : Wτ (X) −→ Wτ (X) as
follows:

(i) σ̂[t] := t if t ∈ X ; and
(ii) σ̂[t] := Sni (σ(fi), σ̂[t1], . . . , σ̂[tni

]) if t = fi(t1, . . . , tni
).

The set Hyp(τ) of all hypersubstitutions of type τ forms a monoid under the binary
associative operation, denoted by ◦h:

σ1 ◦h σ2 := σ̂1 ◦ σ2
where ◦ is the usual composition of functions, together with the identity σid : {fi | i ∈
I} −→Wτ (X) such that σid(fi) = fi(x1, . . . , xni).

Let τn be the sequence of operation symbols having the same arity n, i.e., τn = (ni)i∈I

with ni = n for all i ∈ I. In 2004, Denecke and Jampachon [1], inductively defined n-ary
full terms of type τn by

(i) If fi is an n-ary operation symbol and α ∈ Tn where Tn is the set of all full
transformation on {1, 2, . . . , n}, then fi(xα(1), . . . , xα(n)) is an n-ary full term of
type τn.

(ii) If fi is an n-ary operation symbol and t1, . . . , tn are n-ary full terms of type
τn, then fi (t1, . . . , tn) is an n-ary full term of type τn.

Let WF
τn(Xn) be the set of all n-ary full terms of type τn. The set WF

τn(Xn) is closed
under finite application of (ii). If Tn is replaced by a submonoid {1n}, then WF

τn(Xn)

is denoted by WSF
τn (Xn) called the set of all strongly full terms of type τn which was

studied by Denecke and Freiberg [2]. In 2011, Phuapong and Leeratanavalee [3] were
introduced the concept of generalized of full terms and strongly full terms of type τ . In
2015, Phuapong [4] studied some algebraic properties of generalized clone automorphisms.

In 2019, Wattanatripop and Changphas [5] studied the clone of K∗(n, r)-full terms.
The result obtained the notion of K∗(n, r)-full closed identities. In this paper, we use
idea of K∗(n, r)-full terms of type τn to define a new concept of ni-ary S(n̄i, Yi)-terms of
type τ induced by transformations with invariant set. We study some algebraic properties
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of cloneS(n̄i,Yi)(τ) and S(n̄i, Yi)-hypersubstitutions. The related S(n̄i, Yi)-hyperidentities
and S(n̄i, Yi)-solid varieties is also mentioned.

2. The Menger Algebra of S (n̄i, Yi)-Terms
The first of our main results is a new concept of a specific term, based on full trans-

formation mappings and the original notions of terms.
Let X be a nonempty set and let T (X) be the semigroup of full transformations from

X into itself under composition of mappings. This semigroup has an important role in
semigroup theory, combinatorics, many-valued logic, etc.

For a fixed nonempty subset Y of X, let
S(X,Y ) := {α ∈ T (X) | Y α ⊆ Y }.

Then S(X,Y ) is a semigroup of full transformations on X which leave Y invariant. In
1966, Magill [6] introduced and studied this semigroup. In fact, if Y = X, then S(X,Y ) =
T (X). So we may regard S(X,Y ) as a generalization of T (X). The full transformation
semigroup Tni

consists of the set of all maps αi : {1, 2, . . . , ni} −→ {1, 2, . . . , ni} and the
usual composition of mappings. Indeed, Tni

is a monoid and identity map 1ni
acts as its

identity. For a fixed nonempty subset Yi of n̄i := {1, 2, . . . , ni}, it is well-known that the
set

S(n̄i, Yi) := {αi ∈ Tni
| Yiαi ⊆ Yi}

is a submonoid of Tni
where 1ni

is an identity element.
Then we define the definition of ni-ary S(n̄i, Yi)-term of type τ .

Definition 2.1. Let τ = (ni)i∈I and fi be an ni-ary operation symbol and αi ∈ S(n̄i, Yi).
An ni-ary S(n̄i, Yi)-term of type τ is inductively defined by the following steps :

(i) fi(xαi(1), . . . , xαi(ni)) is an ni-ary S(n̄i, Yi)-term of type τ ;
(ii) if t1, . . . , tni are ni-ary S(n̄i, Yi)-terms of type τ , then fi (t1, . . . , tni) is an ni-

ary S(n̄i, Yi)-term of type τ .

Let WS(n̄i,Yi)
τ (Xni

) be the set of all ni-ary S(n̄i, Yi)-terms of type τ .

Example 2.2. Let I = {1, 2} and consider a type τ = (3, 4) with f1, f2 are operation
symbols having arity 3, 4 respectively.

For i = 1; we fixed subset Y1 = {1, 2} ⊆ {1, 2, 3} and α1 : {1, 2, 3} −→ {1, 2, 3}, and
for i = 2; we fixed subset Y2 = {3, 4} ⊆ {1, 2, 3, 4} and α2 : {1, 2, 3, 4} −→ {1, 2, 3, 4}.

Then we have f1(x1, x2, x3), f1(x1, x1, x2), f1(x1, x2, x2), f1(x2, x2, x3) are some exam-
ples of WS(3̄,Y1)

τ (X3) and f2(x1, x2, x3, x4), f2(x1, x1, x3, x3), f2(x3, x4, x4, x3) are some
examples of WS(4̄,Y2)

τ (X4).

It can be seen that
(
W

S(n̄i,Yi)
τ (Xni); (f̄i)i∈I

)
is a subalgebra of

(
Wτ (X); (f̄i)i∈I

)
.

Then we define a superposition operation Sni on the setWS(n̄i,Yi)
τ (Xni

) by the following
steps:

Definition 2.3. Let αi ∈ S(n̄i, Yi) and s1, . . . , sni , t1, . . . , tni ∈W
S(n̄i,Yi)
τ (Xni). Then

Sni :
(
WS(n̄i,Yi)

τ (Xni
)
)ni+1

−→WS(n̄i,Yi)
τ (Xni

)

is defined by
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(i) Sni
(
fi
(
xαi(1), . . . , xαi(ni)

)
, t1, . . . , tni

)
:= fi

(
tαi(1), . . . , tαi(ni)

)
;

(ii) Sni (fi (s1, . . . , sni) , t1, . . . , tni)
:= fi (S

ni (s1, t1, . . . , tni) , . . . , S
ni (sni , t1, . . . , tni)).

Then we can form the algebra

cloneS(n̄i,Yi)(τ) :=
(
WS(n̄i,Yi)

τ (Xni), S
ni

)
which is called the clone of all S(n̄i, Yi)-terms of type τ . The following theorem shows
the fact that the algebra

(
W

S(n̄i,Yi)
τ (Xni), S

ni

)
satisfies the superassociative law (SASS)

:
S̃ni(X0, S̃ni(Y1, X1, . . . , Xni

), . . . , S̃ni(Yni
, X1, . . . , Xni

))

≈ S̃ni(S̃ni(X0, Y1, . . . , Yni
), X1, . . . , Xni

),

where S̃ni is (ni + 1)-ary operation symbol and Xi, Yj are variables.

Theorem 2.4. The algebra cloneS(n̄i,Yi)(τ) satisfies the superassociative law (SASS).

Proof. We give a proof by induction on the complexity of an ni-ary S(n̄i, Yi)-term t which
is substituted for X0.

If we substitute for X0 by a S(n̄i, Yi)-term t = fi(xαi(1), . . . , xαi(ni)) where αi ∈
S(n̄i, Yi), then

Sni (fi(xαi(1), . . . , xαi(ni)), S
ni(t1, s1, . . . , sni

), . . . , Sni(tni
, s1, . . . , sni

))

= fi(S
ni(xαi(1), S

ni(t1, s1, . . . , sni
), . . . , Sni(tni

, s1, . . . , sni
)), . . . ,

Sni(xαi(ni), S
ni(t1, s1, . . . , sni

), . . . , Sni(tni
, s1, . . . , sni

)))

= fi(S
ni(tαi(1), s1, . . . , sni), . . . , S

ni(tαi(ni), s1, . . . , sni))

= Sni(fi(tαi(1), . . . , tαi(ni)), s1, . . . , sni
)

= Sni(Sni(fi(xαi(1), . . . , xαi(ni)), t1, . . . , tni
), s1, . . . , sni

).

If we substitute for X0 by a S(n̄i, Yi)-term t = fi(r1, . . . , rni) where r1, . . . , rni ∈
W

S(n̄i,Yi)
τ (Xni

) and assume that
Sni(rk, S

ni(t1, s1, . . . , sni
), . . . , Sni(tni

, s1, . . . , sni
))

= Sni (Sni(rk, t1, . . . , tni
), s1, . . . , sni

)
for all 1 ≤ k ≤ ni, then

Sni(fi(r1, . . . , rni
), Sni(t1, s1, . . . , sni

), . . . , Sni(tni
, s1, . . . , sni

))
= fi(S

ni(r1, S
ni(t1, s1, . . . , sni

), . . . , Sni(tni
, s1, . . . , sni

)), . . . ,
Sni(rni , S

ni(t1, s1, . . . , sni), . . . , S
ni(tni , s1, . . . , sni)))

= fi (S
ni (Sni(r1, t1, . . . , tni), s1, . . . , sni) , . . . , (S

ni(rni , t1, . . . , tni), s1, . . . , sni))
= Sni(fi(S

ni(r1, t1, . . . , tni
), . . . , Sni(rni

, t1, . . . , tni
)), s1, . . . , sni

)
= Sni(Sni(fi(r1, . . . , rni

), t1, . . . , tni
), s1, . . . , sni

).

An algebra M := (M,Sn) of type τ = (n+1) is called a Menger algebra of rank n if M
satisfies the condition (SASS) [7]. Then by Theorem 2.4, cloneS(n̄i,Yi)(τ) is an example
of a Menger algebra of rank ni.

The freeness of this algebra will be presented in the next theorem. It is observed that
cloneS(n̄i,Yi)(τ) is generated by

F
W

S(n̄i,Yi)
τ (Xni

)
:=

{
fi
(
xαi(1), . . . , xαi(ni)

)
| i ∈ I, αi ∈ S(n̄i, Yi)

}
.
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Let V S(n̄i,Yi) be the variety of type τ = (ni +1) generated by the superassociative law
(SASS). Now, let FV S(n̄i,Yi)({Yl | l ∈ J}) be the free algebra with respect to V S(n̄i,Yi),
freely generated by an alphabet {Yl | l ∈ J} where J = {(i, αi) | i ∈ I , αi ∈ S(n̄i, Yi)}.
The operation of FV S(n̄i,Yi)({Yl | l ∈ J}) is denoted by S̃ni . Then we have:
Theorem 2.5. The algebra cloneS(n̄i,Yi)(τ) is isomorphic to FV S(n̄i,Yi)({Yl | l ∈ J})
and therefore free with respect to the variety V S(n̄i,Yi), and freely generated by the set
{fi(xαi(1), . . . , xαi(ni)) | i ∈ I, αi ∈ S(n̄i, Yi)}.

Proof. We define the mapping φ :W
S(n̄i,Yi)
τ (Xni

) −→ FV S(n̄i,Yi)({Yl | l ∈ J}) inductively
as follows:

(i) φ(fi(xαi(1), . . . , xαi(ni)) = y(i,αi);
(ii) φ(fi(tαi(1), . . . , tαi(ni))) = S̃ni(y(i,αi), φ(t1), . . . , φ(tni)).

Since φ maps the generating system of cloneS(n̄i,Yi)(τ) onto the generating system of
FV S(n̄i,Yi)({Yl | l ∈ J}), it is surjective. We prove the homomorphism property

φ(Sni(t0, t1, . . . , tni)) = S̃ni(φ(t0), φ(t1), . . . , φ(tni))

by induction on the complexity of an ni-ary S(n̄i, Yi)-term t0.
If t0 = fi(xαi(1), . . . , xαi(ni)) where αi ∈ S(n̄i, Yi), then

φ(Sni(fi(xαi(1), . . . , xαi(ni)), t1, . . . , tni))
= φ(fi(tαi(1), . . . , tαi(ni)))

= S̃ni(y(i,αi), φ(t1), . . . , φ(tni
))

= S̃ni(φ(fi(xαi(1), . . . , xαi(ni))), φ(t1), . . . , φ(tni
)).

If t0 = fi(r1, . . . , rni
) and assume that

φ(Sni(rk, t1, . . . , tni
)) = S̃ni(φ(rk), φ(t1), . . . , φ(tni

))

for all 1 ≤ k ≤ ni, then
φ(Sni(fi(r1, . . . , rni), t1, . . . , tni))

= φ(fi(S
ni(r1, t1, . . . , tni

), . . . , Sni(rni
, t1, . . . , tni

)))

= S̃ni(y(i,1ni
), φ(S

ni(r1, t1, . . . , tni)), . . . , φ(S
ni(rni , t1, . . . , tni)))

= S̃ni(y(i,1ni
), S̃

ni(φ(r1), φ(t1), . . . , φ(tni
)), . . . , S̃ni(φ(rni

), φ(t1), . . . , φ(tni
)))

= S̃ni(S̃(y(i,1ni
), φ(r1), . . . , φ(rni)), φ(t1), . . . , φ(tni))

= S̃ni(φ(fi(r1, . . . , rni
)), φ(t1), . . . , φ(tni

)).
Thus φ is a homomorphism. The mapping φ is bijective since {y(i,αi) | i ∈ I, αi ∈

S(n̄i, Yi)} is free independent set. Therefore, we have
y(i,αi) = y(j,αj) =⇒ (i, αi) = (j, αj)

=⇒ i = j, αi = αj .
So fi(xαi(1), . . . , xαi(ni)) = fj(xαj(1), . . . , xαj(nj)). Thus φ is a bijection between the
generating sets of cloneS(n̄i,Yi)(τ) and FV S(n̄i,Yi)({Yl | l ∈ J}) and therefore φ is an
isomorphism.

3. The Monoid of S(n̄i, Yi)-Hypersubstitutions
The concept of a hypersubstitution is the main tool used to study hyperidentities and

hypervarieties. In this section, the monoid of S(n̄i, Yi)-hypersubstitutions will be studied.
Next, we give the definition of a S(n̄i, Yi)-hypersubstitution and introduce some properties
of S(n̄i, Yi)-hypersubstitutions.
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Definition 3.1. A S(n̄i, Yi)-hypersubstitution of type τ is a mapping σ from the set
{fi | i ∈ I} of ni-ary operation symbols of type τ to the set WS(n̄i,Yi)

τ (X) of all ni-ary
S(n̄i, Yi)-terms of type τ , i.e., σ : {fi | i ∈ I} −→W

S(n̄i,Yi)
τ (X).

For a S(n̄i, Yi)-term t, we need the S(n̄i, Yi)-term tβi arising from t by replacement
a variable xαi(j) in t by a variable xβi(αi(j)) for a mapping βi ∈ S(n̄i, Yi). This can be
defined as follows.

Definition 3.2. Let τ = (ni)i∈I and fi be an ni-ary operation symbol, t, t1, . . . , tni
∈

W
S(n̄i,Yi)
τ (Xni

) and αi, βi ∈ S(n̄i, Yi). Then we define the ni-ary S(n̄i, Yi)-term tβi
by

the following step:
(i) If t = fi(xαi(1), . . . , xαi(ni)), then tβi

:= fi(xβi(αi(1)), . . . , xβi(αi(ni))).
(ii) If t = fi(t1, . . . , tni), then tβi := fi((t1)βi , . . . , (tni)βi).

It is observed that if t is an ni-ary S(n̄i, Yi)-term of type τ , then tβi is an ni-ary
S(n̄i, Yi)-term of type τ for all βi ∈ S(n̄i, Yi). Any S(n̄i, Yi)-hypersubstitution σ induces
a mapping σ̂ defined on the set WS(n̄i,Yi)

τ (Xni
) of ni-ary S(n̄i, Yi)-terms of type τ .

Definition 3.3. Let σ be a S(n̄i, Yi)-hypersubstitution of type τ and αi ∈ S(n̄i, Yi).
Then σ induces a mapping

σ̂ :WS(n̄i,Yi)
τ (Xni) −→WS(n̄i,Yi)

τ (Xni)

by setting
(i) σ̂[fi(xαi(1), . . . , xαi(ni))] := (σ(fi))αi

;
(ii) σ̂[fi(t1, . . . , tni)] := Sni (σ(fi), σ̂[t1], . . . , σ̂[tni ]).

The set of all S(n̄i, Yi)-hypersubstitutions of type τ will be denoted by HypS(n̄i,Yi)(τ).
It is easy to see that

(
HypS(n̄i,Yi)(τ); ◦h, σid

)
is a submonoid of (Hyp(τ); ◦h, σid).

The following lemma shows the property of a term tαi and the extension σ̂.

Lemma 3.4. Let t, t1, . . . , tni ∈W
S(n̄i,Yi)
τ (Xni). Then

Sni(t, σ̂[tαi(1)], . . . , σ̂[tαi(ni)]) = Sni(tαi
, σ̂[t1], . . . , σ̂[tni

])

for all αi ∈ S(n̄i, Yi).

Proof. If t = fi
(
xβi(1), . . . , xβi(ni)

)
where βi ∈ S(n̄i, Yi), then for all αi ∈ S(n̄i, Yi), we

have
Sni(t, σ̂[tαi(1)], . . . , σ̂[tαi(ni)])

= Sni(fi(xβi(1), . . . , xβi(ni)), σ̂[tαi(1)], . . . , σ̂[tαi(ni)])
= fi(σ̂[tαi(βi(1))], . . . , σ̂[tαi(βi(ni))])
= Sni(fi(xαi(βi(1)), . . . , xαi(βi(ni))), σ̂[t1], . . . , σ̂[tni ])
= Sni(tαi

, σ̂[t1], . . . , σ̂[tni
]).

If t = fi(s1, . . . , sni) and assume that
Sni(sk, σ̂[tαi(1)], . . . , σ̂[tαi(ni)]) = Sni((sk)αi

, σ̂[tαi(1)], . . . , σ̂[tαi(ni)])

for all 1 ≤ k ≤ ni and αi ∈ S(n̄i, Yi), then
Sni(t, σ̂[tαi(1)], . . . , σ̂[tαi(ni)])

= Sni(fi(s1, . . . , sni
), σ̂[tαi(1)], . . . , σ̂[tαi(ni)])

= fi(S
ni(s1, σ̂[tαi(1)], . . . , σ̂[tαi(ni)]), . . . , S

ni(sni
, σ̂[tαi(1)], . . . , σ̂[tαi(ni)]))

= fi(S
ni((s1)αi , σ̂[t1], . . . , σ̂[tni ]), . . . , S

ni((sni)αi , σ̂[t1], . . . , σ̂[tni ]))
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= Sni(fi((s1)αi
, . . . , (sni

)αi
), σ̂[t1], . . . , σ̂[tni

])
= Sni(tαi

, σ̂[t1], . . . , σ̂[tni
]).

Theorem 3.5. For σ ∈ HypS(n̄i,Yi)(τ), the extension

σ̂ :WS(n̄i,Yi)
τ (Xni) −→WS(n̄i,Yi)

τ (Xni)

is an endomorphism on the algebra cloneS(n̄i,Yi)(τ).

Proof. It is clear that σ̂ : W
S(n̄i,Yi)
τ (Xni

) −→ W
S(n̄i,Yi)
τ (Xni

) is well defined. Let
t0, t1, . . . , tni

∈W
S(n̄i,Yi)
τ (Xni

). We will show by induction on the complexity of t0 that

σ̂[Sni(t0, t1, . . . , tni
)] = Sni(σ̂[t0], σ̂[t1], . . . , σ̂[tni

]).

If t0 = fi(xαi(1), . . . , xαi(ni)) where αi ∈ S(n̄i, Yi), then
σ̂[Sni(t0, t1, . . . , tni

)] = σ̂[Sni(fi(xαi(1), . . . , xαi(ni)), t1, . . . , tni
)]

= σ̂[fi(tαi(1), . . . , tαi(ni))]
= Sni(σ(fi), σ̂[tαi(1)], . . . , σ̂[tαi(ni)])
= Sni(σ̂[t0], σ̂[t1], . . . , σ̂[tni ]).

If t0 = fi(r1, . . . , rni
) and we assume that

σ̂[Sni(rk, t1, . . . , tni
)] = Sni(σ̂[rk], σ̂[t1], . . . , σ̂[tni

])

for all 1 ≤ k ≤ ni, then
σ̂[Sni(t0, t1, . . . , tni

)]
= σ̂[Sni(fi(r1, . . . , rni

), t1, . . . , tni
)]

= σ̂[fi(S
ni(r1, t1, . . . , tni), . . . , S

ni(rni , t1, . . . , tni))]
= Sni(σ(fi), σ̂[S

ni(r1, t1, . . . , tni)], . . . , σ̂[S
ni(rni

, t1, . . . , tni
)])

= Sni(σ(fi), S
ni(σ̂[r1], σ̂[t1], . . . , σ̂[tni

]), . . . , Sni(σ̂[rni
], σ̂[t1], . . . , σ̂[tni

]))
= Sni(Sni(σ(fi), σ̂[r1], . . . , σ̂[rni

]), σ̂[t1], . . . , σ̂[tni
])

= Sni(σ̂[t0], σ̂[t1], . . . , σ̂[tni
]).

We complete this section by studying the connection between S(n̄i, Yi)-terms and the
extension of a mapping which maps fundamental term to any S(n̄i, Yi)-terms.

As mentioned, the algebra cloneS(n̄i,Yi)(τ) is generated by the set

F
W

S(n̄i,Yi)
τ (Xni

)
:=

{
fi
(
xαi(1), . . . , xαi(ni)

)
| i ∈ I, αi ∈ S(n̄i, Yi)

}
.

Therefore, any mapping

η : F
W

S(n̄i,Yi)
τ (Xni

)
−→WS(n̄i,Yi)

τ (Xni
)

called S(n̄i, Yi)-clone substitution, can be uniquely extended to an endomorphism

η̄ :WS(n̄i,Yi)
τ (Xni

) −→WS(n̄i,Yi)
τ (Xni

).

Let SubstS(n̄i,Yi)(τ) be the set of all S(n̄i, Yi)-clone substitutions. Together with a
binary composition operation ⊙ defined by; for all η1, η2 ∈ SubstS(n̄i,Yi)(τ),

η1 ⊙ η2 := η̄1 ◦ η2
where ◦ is usual composition of functions and with the identity mapping idF

W
S(n̄i,Yi)
τ (Xni

)

on F
W

S(n̄i,Yi)
τ (Xni

)
. Then

(
SubstS(n̄i,Yi)(τ);⊙, idF

W
S(n̄i,Yi)
τ (Xni

)

)
forms a monoid.
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Consider σ ∈ HypS(n̄i,Yi)(τ) and by Theorem 3.5, we have σ̂ : W
S(n̄i,Yi)
τ (Xni) −→

W
S(n̄i,Yi)
τ (Xni

) is an endomorphism. Since F
W

S(n̄i,Yi)
τ (Xni

)
generates cloneS(n̄i,Yi)(τ), we

have σ̂
∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

is an S(n̄i, Yi)-clone substitution with

σ̂
∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

= σ̂.

Define a mapping ψ : HypS(n̄i,Yi)(τ) −→ SubstS(n̄i,Yi)(τ) by
ψ(σ) = σ̂

∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

.

We have that ψ is a homomorphism. In fact : Let σ1, σ2 ∈ HypS(n̄i,Yi)(τ). Then
ψ(σ1 ◦h σ2) = (σ1 ◦h σ2)̂

∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

= (σ̂1 ◦ σ̂2)
∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

= σ̂1
∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

◦ σ̂2
∣∣
F

W
S(n̄i,Yi)
τ (Xni

)

= ψ(σ1) ◦ ψ(σ2)
= ψ(σ1)⊙ ψ(σ2).

Clearly, ψ is an injection. Hence we have the following corollary.

Corollary 3.6. The monoid
(
HypS(n̄i,Yi)(τ); ◦h, σid

)
can be embedded into the monoid

(SubstS(n̄i,Yi)(τ);⊙, idF
W

S(n̄i,Yi)
τ (Xni

)
).

4. S(n̄i, Yi)-Hyperidentities and Clone Identities
In this section, we examine the relationship between a variety V of type τ and the

identity in the cloneS(n̄i,Yi)(τ).
Let V be a variety of type τ and let IdV be the set of all identities of V . Let IdS(n̄i,Yi)V

be the set of all s ≈ t of V such that s and t are both S(n̄i, Yi)-terms of type τ , that is,

IdS(n̄i,Yi)V :=
(
WS(n̄i,Yi)

τ (Xni)
)2

∩ IdV.

It is well-known that IdV is a congruence on the free algebra Fτ (X). However, in gen-
eral this is not true for IdS(n̄i,Yi)V . The following theorem shows that IdS(n̄i,Yi)V is a
congruence on cloneS(n̄i,Yi)(τ).

Theorem 4.1. Let V be a variety of type τ . Then IdS(n̄i,Yi)V is a congruence on the
cloneS(n̄i,Yi)(τ).

Proof. We will prove that from r ≈ t, rk ≈ tk ∈ IdS(n̄i,Yi)V, k = 1, 2, . . . , ni, it follows
that Sni(r, r1, . . . , rni

) ≈ Sni(t, t1, . . . , tni
) ∈ IdS(n̄i,Yi)V .

Firstly, we prove by induction on the complexity of a term t ∈W
S(n̄i,Yi)
τ (Xni

) that for
every i ∈ I from tk ≈ rk ∈ IdS(n̄i,Yi)V, k = 1, 2, . . . , ni, it follows that Sni(t, t1, . . . , tni

) ≈
Sni(t, r1, . . . , rni) ∈ IdS(n̄i,Yi)V .

If t = fi(xαi(1), . . . , xαi(ni)), i ∈ I, αi ∈ S(n̄i, Yi), then
Sni(fi(xαi(1), . . . , xαi(ni)), t1, . . . , tni

)
= fi(tαi(1), . . . , tαi(ni))
≈ fi(rαi(1), . . . , rαi(ni))
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= Sni(fi(xαi(1), . . . , xαi(ni)), r1, . . . , rni
) ∈ IdS(n̄i,Yi)V

since IdV is compatible with the operation fi of the absolutely free algebra Fτ (X) and
by the definition of ni-ary S(n̄i, Yi)-terms.

If t = fi(l1, . . . , lni
) ∈W

S(n̄i,Yi)
τ (Xni

) and assume that
Sni(lk, t1, . . . , tni

) ≈ Sni(lk, r1, . . . , rni
) ∈ IdS(n̄i,Yi)V

for all 1 ≤ k ≤ ni, then
Sni(fi(l1, . . . , lni), t1, . . . , tni) = fi(S

ni(l1, t1, . . . , tni), . . . , S
ni(lni , t1, . . . , tni))

≈ fi(S
ni(l1, r1, . . . , rni), . . . , S

ni(lni , r1, . . . , rni))

= Sni(fi(l1, . . . , lni
), r1, . . . , rni

) ∈ IdS(n̄i,Yi)V.

Now, we prove the implication
t ≈ r ∈ IdS(n̄i,Yi)V ⇒ Sni(t, r1, . . . , rni

) ≈ Sni(r, r1, . . . , rni
) ∈ IdS(n̄i,Yi)V.

This is a consequence of the fully invariant of IdV as a congruence on the absolutely
free algebra Fτ (X) and the definition of an ni-ary S(n̄i, Yi)-term. Assume now that
t ≈ r, tk ≈ rk ∈ IdS(n̄i,Yi)V . Then

Sni(t, t1, . . . , tni
) ≈ Sni(r, t1, . . . , tni

) ≈ Sni(r, r1, . . . , rni
) ∈ IdS(n̄i,Yi)V.

By using the concept of a S(n̄i, Yi)-hypersubstitution as we presented in Section 3. We
will define S(n̄i, Yi)-hyperidentities in a variety of type τ .

Let V be a variety of type τ . An identity s ≈ t ∈ IdS(n̄i,Yi)V is called a S(n̄i, Yi)-
hyperidentity of V if σ̂[s] ≈ σ̂[t] ∈ IdV for all σ ∈ HypS(n̄i,Yi)(τ). Moreover, the variety
V is called S(n̄i, Yi)-solid if the following hold:

∀s ≈ t ∈ IdS(n̄i,Yi)V, ∀σ ∈ HypS(n̄i,Yi)(τ), σ̂[s] ≈ σ̂[t] ∈ IdV.

The following lemma give a sufficient condition for the S(n̄i, Yi)-hyperidentity of a
variety V .

Lemma 4.2. Let V be a variety of type τ . If IdS(n̄i,Yi)V is a fully invariant congruence
on cloneS(n̄i,Yi)(τ), then V is S(n̄i, Yi)-solid.

Proof. Assume that IdS(n̄i,Yi)V is a fully invariant congruence on cloneS(n̄i,Yi)(τ). Let
s ≈ t ∈ IdS(n̄i,Yi)V and σ ∈ HypS(n̄i,Yi)(τ). By Theorem 3.5, σ̂ is an endomorphism of
cloneS(n̄i,Yi)(τ). Hence σ̂[s] ≈ σ̂[t] ∈ IdS(n̄i,Yi)V , that is, V is S(n̄i, Yi)-solid.

For a variety V of type τ , IdS(n̄i,Yi)V is a congruence on cloneS(n̄i,Yi)(τ) by Theorem
4.1. We can form the quotient algebra

cloneS(n̄i,Yi)(V ) := cloneS(n̄i,Yi)(τ)/Id
S(n̄i,Yi)V.

This quotient algebra belongs to the class of a Menger algebra of rank ni. Note that
we have a natural homomorphism

natIdS(n̄i,Yi)V : cloneS(n̄i,Yi)(τ) −→ cloneS(n̄i,Yi)(V )

such that

natIdS(n̄i,Yi)V (t) = [t]IdS(n̄i,Yi)V .

Finally, we prove the following connection between S(n̄i, Yi)-hyperidentities of a variety
V and clone identities.
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Theorem 4.3. Let V be a variety of type τ . If s ≈ t ∈ IdS(n̄i,Yi)V is an identity in
cloneS(n̄i,Yi)(V ), then s ≈ t is a S(n̄i, Yi)-hyperidentity of V .

Proof. Assume that s ≈ t ∈ IdS(n̄i,Yi)V is an identity in cloneS(n̄i,Yi)(V ). Let σ ∈
HypS(n̄i,Yi)(τ). Then σ̂ : cloneS(n̄i,Yi)(τ) −→ cloneS(n̄i,Yi)(τ) is an endomorphism by
Theorem 3.5. Thus

natIdS(n̄i,Yi)V ◦ σ̂ : cloneS(n̄i,Yi)(τ) −→ cloneS(n̄i,Yi)(V )

is a homomorphism. By assumption,
(natIdS(n̄i,Yi)V ◦ σ̂) (s) = (natIdS(n̄i,Yi)V ◦ σ̂) (t).

That is
natIdS(n̄i,Yi)V (σ̂[s]) = natIdS(n̄i,Yi)V (σ̂[t]).

Thus
[σ̂[s]]IdS(n̄i,Yi)V = [σ̂[t]]IdS(n̄i,Yi)V ,

and hence
σ̂[s] ≈ σ̂[t] ∈ IdS(n̄i,Yi)V.

Therefore, s ≈ t is a S(n̄i, Yi)-hyperidentity of V .
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