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1. Introduction
Let A and B be nonempty subsets of a metric space (X, d) and T : A → B a non-self

mapping. Given the equation Tx = x, it is generally known that there might not be
any solution to it, especially when A and B are disjoint. It is yet possible to determine
approximate solutions to this problem for which the distance between x and Tx must be
minimized. With the aid of the best proximity point theorems, the global minimization
of d(x, Tx) can be guaranteed under the condition that an approximate solution x must
satisfy d(x, Tx) = d(A,B). A family of such approximate solutions, x, is called the best
proximity points of the mapping T . In the case when a mapping is a self-mapping, these
best proximity points become fixed points according to the best proximity point theorems
which sometimes can be accounted for natural generalizations of fixed points.

There have been several studies on the best proximity point theorems [1–11]. Their
approaches differ depending on imposed conditions that assure the existence. One of the
prominent generalizations of the Banach contraction principle for the existence of fixed
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points for self mappings on metric spaces is the theorem by Geraghty [12]. Here, he
considered the class Θ as the class of mappings θ : [0,∞) → [0, 1) such that

θ(tn) → 1 =⇒ tn → 0.

Whilst Biligili, Karapinar, and Sadarangani [13] introduced the notion of Geraghty-
contractions as well as considered the related the best proximity point for a pair (A,B)
of subsets on a metric space X by applying the concept of the P-property defined by
Raj [14]. Zhang and Su [15] subsequently gave the notion of the weak P-property which
is more feasible than P-property. They also provided the concise proof of the non-self
contraction case proposed by Geraghty [12].

In different aspect, Jachymski [16] utilized the concept of graph to the fixed point
theorems on metric spaces. This consequently leads to the generalization of the Banach
contraction principle to mappings on metric spaces endowed with a graph. Klanarong
and Suantai [17] later extended it by introducing the notion of a G-proximal generalized
contraction which is defined from self mappings to non-self mappings. Altogether, they
proved the best proximity point theorems for such mappings in a complete metric space
endowed with a directed graph.

Motivated by the work of Klanarong and Suantai [17], generalized theorems on the
existence of the best proximity point for G-proximal Geraghty type M non-self mappings
defined on a subset of a complete metric space are presented. Moreover, we also show
that other theorems of the best proximity coincidence points for the case of metric spaces
endowed with symmetric binary relations can be deduced from our main theorem.

2. Preliminaries and Definitions
Let (A,B) be a pair of nonempty subsets of a metric space (X, d). We adopt the

following notations:

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B};
A0 := {a ∈ A : there exists b ∈ B such that d(a, b) = d(A,B)};
B0 := {b ∈ B : there exists a ∈ A such that d(a, b) = d(A,B)}.

Definition 2.1 ([1, 11]). Let T : A → B and g : A → A be mappings.
(1) An element x∗ is said to be a best proximity point of T if d(x∗, Tx∗) =
d(A,B) ;

(2) An element x∗ is said to be a best proximity coincidence point of the pair
(T, g) if d(gx∗, Tx∗) = d(A,B).

Definition 2.2 ([15]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
such that A0 is nonempty. Then the pair (A,B) is said to have the weak P -property
iff d(x1, y1) = d(x2, y2) = d(A,B) =⇒ d(x1, x2) ≤ d(y1, y2), where x1, x2 ∈ A and
y1, y2 ∈ B.

Suppose now that (X, d) is a metric space, and ∆ denotes the diagonal of X ×X. We
construct a directed graph G = (V (G), E(G)) from X such that the set of vertices V (G)
consists of all elements in X and the set of edges E(G) contains the diagonal ∆ of X×X.
Moreover, we assume further throughout this work that E(G) contains no parallel edges.
A metric space (X, d) is said to be endowed with a directed graph G if all of the
above mentioned properties hold.
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Definition 2.3 ([16]). Let (X, d) be a metric space endowed with a directed graph G.
We say that the set of edges of G, E(G), satisfies the transitivity property if for all
x, y, z ∈ X,

(x, z), (z, y) ∈ E(G) ⇒ (x, y) ∈ E(G).

Definition 2.4. [17] Let (X, d) be a metric space and G = (V (G), E(g)) is a directed
graph such that V (G) = X. A mapping T : A → B is said to be G-proximal edge
preserving if (x1, x2) ∈ E(G) and d(u1, Tx1) = d(u2, Tx2) = d(A,B) =⇒ (u1, u2) ∈
E(G) for all x1, x2, u1, u2 ∈ A.

3. Main Results
Definition 3.1. Let (X, d) be a metric space and G = (V (G), E(G)) a directed graph
such that V (G) = X and assume that T : A → B and g : A → A are mappings. Then
the pair (T, g) is said to be G-proximal edge preserving if (gx1, gx2) ∈ E(G) and
d(gu1, Tx1) = d(gu2, Tx2) = d(A,B) =⇒ (gu1, gu2) ∈ E(G) for all x1, x2, u1, u2 ∈ A.

Remark 3.2. It is obvious to see that if T is a G-proximal edge preserving mapping,
then (T, g) is G-proximal edge preserving mapping, where g = I is the identity mapping.

Definition 3.3. Suppose that (X, d) is a metric space and G = (V (G), E(G)) is a directed
graph such that V (G) = X. Let T : A → B and g : A → A be mappings. Then the pair
(T, g) is said to be a G-proximal Geraghty type M mapping if the following hold;

(1) (T, g) is G-proximal edge preserving;
(2) there exists θ ∈ Θ such that for all x, y, u, v ∈ A if d(gu, Tx) = d(gv, Ty) =
d(A,B) and (gx, gy) ∈ E(G), then

d(Tx, Ty) ≤ θ(M(x, y, u, v))M(x, y, u, v), (3.1)

where M(x, y, u, v) = max

{
d(gx, gy), d(gx, gu), d(gy, gv),

d(gx, gv) + d(gy, gu)

2

}
.

Theorem 3.4. Let (A,B) be a pair of nonempty subsets of a complete metric space
(X, d) endowed with a directed graph G = (V (G), E(G)) in which E(G) has the transitive
property. Let T : A → B and g : A → A be mappings such that a pair (T, g) is a G-
proximal Geraghty type M mapping. Assume that A0 is nonempty such that A0 ⊆ g(A0)
and g(A0) is a closed subset of X. If the following assertions hold;

(i) T (A0) ⊆ B0 and the pair (A,B) satisfies the weak P -property;
(ii) There exist elements x, y ∈ A0 such that d(gx, Ty) = d(A,B) and (gy, gx) ∈
E(G);

(iii) For any sequence {gxn} in A if gxn→gx∗, for some gx∗ ∈A and (gxn, gxn+1)∈
E(G) for all n ∈ N, then there is a subsequence {gxnk

} such that (gxnk
, gx∗) ∈

E(G) for all k ∈ N.
Consequently there is x∗ ∈ A such that d(gx∗, Tx∗) = d(A,B). Moreover if (gx∗, gy∗) ∈
E(G) for all best proximity coincidence points x∗, y∗ ∈ A, then gx∗ = gy∗.

Proof. By assumption (ii), we take x0, x1 ∈ A

d(gx1, Tx0) = d(A,B) and (gx0, gx1) ∈ E(G). (3.2)
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Since T (A0) ⊆ B0 and A0 ⊆ g(A0) and (T, g) is G-proximal edge preserving, there
exists x2 ∈ A0 such that

d(gx2, Tx1) = d(A,B) and (gx1, gx2) ∈ E(G). (3.3)

By repeating this process, we obtain a sequence {xn} ⊆ A0 and {gxn} ⊆ g(A0) such
that

d(gxn, Txn−1) = d(A,B) and (gxn−1, gxn) ∈ E(G) for all n ∈ N. (3.4)

By applying (3.4) together with the weak P -property of (A,B), it leads to

d(gxn, gxn+1) ≤ d(Txn−1, Txn) for all n ∈ N. (3.5)

In the next step, we will prove that

lim
n→∞

d(gxn−1, gxn) = 0.

which is useful for verifying that the sequence {gxn} is a Cauchy sequence.
Since (T, g) is a G-proximal Geraghty type M mapping, (3.4) and (3.5), we obtain

d(gxn, gxn+1) ≤ d(Txn−1, Txn)

≤ θ(M(xn−1, xn, xn, xn+1))M(xn−1, xn, xn, xn+1)

< M(xn−1, xn, xn, xn+1), for all n ≥ 1, (3.6)

where

M(xn−1, xn, xn, xn+1) = max{d(gxn−1, gxn), d(gxn, gxn+1),
d(gxn−1, gxn+1)

2
}.

We now consider M(xn−1, xn, xn, xn+1) in three cases:
Case 1. If M(xn−1, xn, xn, xn+1) = d(gxn−1, gxn), then according to (3.6), we can

write

d(gxn, gxn+1) ≤ d(Txn−1, Txn)

≤ θ(d(gxn−1, gxn))d(gxn−1, gxn)

< d(gxn−1, gxn) for all n ≥ 1. (3.7)

This implies that d(gxn−1, gxn) is decreasing, then there exists r ∈ R such that

lim
n→∞

d(gxn−1, gxn) = r ≥ 0.

Suppose that r > 0 and by taking n → ∞ in (3.7), we derive

1 ≤ lim
n→∞

θ(d(gxn−1, gxn)) ≤ 1. (3.8)

We can conclude that lim
n→∞

θ(d(gxn−1, gxn)) = 1. By the definition of θ, we have

lim
n→∞

d(gxn−1, gxn) = r = 0,

which is a contradiction. Thus lim
n→∞

d(gxn−1, gxn) = 0.
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Case 2. If M(xn−1, xn, xn, xn+1) = d(gxn, gxn+1), then from (3.6), we have

d(gxn, gxn+1) ≤ d(Txn−1, Txn)

≤ θ(d(gxn, gxn+1))d(gxn, gxn+1)

< d(gxn, gxn+1) for all n ≥ 1, (3.9)

which is a contradiction.
Case 3. When M(xn−1, xn, xn, xn+1) =

d(gxn−1, gxn+1)

2
and by applying (3.6), we

find that

d(gxn, gxn+1) ≤ d(Txn−1, Txn)

≤ θ

(
d(gxn−1, gxn+1)

2

)
d(gxn−1, gxn+1)

2

≤ θ

(
d(gxn−1, gxn+1)

2

)[
d(gxn−1, gxn) + d(gxn, gxn+1)

2

]
<

d(gxn−1, gxn) + d(gxn, gxn+1)

2
for all n ≥ 1. (3.10)

From (3.10), we have

d(gxn, gxn+1) < d(gxn−1, gxn) for all n ≥ 1. (3.11)

This means that d(gxn−1, gxn) is decreasing, then there exists r ∈ R such that

lim
n→∞

d(gxn−1, gxn) = lim
n→∞

d(gxn, gxn+1) = r ≥ 0

which also implies

lim
n→∞

d(gxn−1, gxn) + d(gxn, gxn+1)

2
= r ≥ 0.

By taking n → ∞ in (3.10) and assuming r > 0, we have

1 ≤ lim
n→∞

θ

(
d(gxn−1, gxn+1)

2

)
≤ 1.

From the definition of θ, it follows that

lim
n→∞

d(gxn−1, gxn+1)

2
= 0.

By using (3.10), we can deduce that

d(gxn, gxn+1) <
d(gxn−1, gxn+1)

2
. (3.12)

By letting n → ∞ in (3.12), we therefore obtain

lim
n→∞

d(gxn, gxn+1) = r = 0

which is a contradiction. Hence, it can be concluded that

lim
n→∞

d(gxn, gxn−1) = 0. (3.13)
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Here we will show that {gxn} is a Cauchy sequence. Suppose that {gxn} is not a
Cauchy sequence. There exist ϵ > 0 and both {gxm(k)} and {gxn(k)} are subsequences of
{gxn}. For all k ∈ N with m(k) > n(k) ≥ k, this implies that

d(gxm(k), gxn(k)) ≥ ϵ (3.14)

Additionally, we can choose the smallest m(k) satisfying (3.14) for each k ∈ N so that
d(gxm(k)−1, gxn(k)) < ϵ.

By applying (3.14), we have
ϵ ≤ d(gxm(k), gxn(k))

≤ d(gxm(k), gxm(k)−1) + d(gxm(k)−1, gxn(k))

< d(gxm(k), gxm(k)−1) + ϵ. (3.15)

By taking k → +∞ in (3.15) and using (3.13), we have

lim
k→∞

d(gxm(k), gxn(k)) = ϵ. (3.16)

From (3.4), we find that
d(gxn(k)+1, Txn(k)) = d(A,B) and d(gxm(k)+1, Txm(k)) = d(A,B). (3.17)

By using the weak P -property, we have
d(gxn(k)+1, gxm(k)+1) ≤ d(Txn(k), Txm(k)).

Also, since (gxn(k), gxn(k)+1) ∈ E(G) where E(G) has transitive property, it follows
that (gxn(k), gxm(k)) ∈ E(G).

Due to the fact that (T, g) is a G-proximal Geraghty type M mapping, we obtain
d(gxn(k)+1, gxm(k)+1)

≤ d(Txn(k), Txm(k))

≤ θ(M(xn(k), xm(k), xn(k)+1, xm(k)+1))M(xn(k), xm(k), xn(k)+1, xm(k)+1), (3.18)
where

M(xn(k), xm(k),xn(k)+1, xm(k)+1)

= max{d(gxn(k), gxm(k)), d(gxn(k), gxn(k)+1), d(gxm(k), gxm(k)+1),

d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)

2
}.

Let us consider M(xn(k), xm(k), xn(k)+1, xm(k)+1) in four separate cases:

Case 1. In the case when M(xn(k), xm(k), xn(k)+1, xm(k)+1) = d(gxn(k), gxm(k)) and
according to (3.18), we therefore have

d(gxn(k)+1, gxm(k)+1) ≤ d(Txn(k), Txm(k))

≤ θ(d(gxn(k), gxm(k)))d(gxn(k), gxm(k))

< d(gxn(k), gxm(k)). (3.19)

By taking k → ∞ in (3.19) and applying (3.16), we derive
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1 ≤ lim
n→∞

θ(d(gxn(k), gxm(k))) ≤ 1. (3.20)

This results in lim
n→∞

θ(d(gxn(k), gxm(k))) = 1. By the definition of θ, we have

lim
k→∞

d(gxn(k), gxm(k)) = ϵ = 0,

in which it is a contradiction.
Case 2. When M(xn(k), xm(k), xn(k)+1, xm(k)+1) = d(gxn(k), gxn(k)+1) and by exploit-

ing (3.18), it leads to

d(gxn(k)+1, gxm(k)+1) ≤ d(Txn(k), Txm(k))

≤ θ(d(gxn(k), gxn(k)+1))d(gxn(k), gxn(k)+1)

< d(gxn(k), gxn(k)+1). (3.21)

By taking k → ∞ in the inequality above along with (3.13), we obtain

lim
k→∞

d(gxn(k)+1, gxm(k)+1) = ϵ = 0,

a contradiction.
Case 3. When M(xn(k), xm(k), xn(k)+1, xm(k)+1) = d(gxm(k), gxm(k)+1) together with

(3.18), we have

d(gxn(k)+1, gxm(k)+1) ≤ d(Txn(k), Txm(k))

≤ θ(d(gxm(k), gxm(k)+1))d(gxm(k), gxm(k)+1)

< d(gxm(k), gxm(k)+1). (3.22)

By taking k → ∞ in the inequality above along with (3.13), we have

lim
k→∞

d(gxn(k)+1, gxm(k)+1) = ϵ = 0,

which is also a contradiction.
Case 4. If

M(xn(k), xm(k), xn(k)+1, xm(k)+1) =
d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)

2
,

then from (3.18), we have

d(gxn(k)+1, gxm(k)+1)

≤ d(Txn(k), Txm(k))

≤ θ(
d(gxn(k),gxm(k)+1)+d(gxm(k),gxn(k)+1)

2 )
d(gxn(k),gxm(k)+1)+d(gxm(k),gxn(k)+1)

2

<
d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)

2
. (3.23)

The triangular inequality is utilized so that
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d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)

2

≤ d(gxn(k),gxm(k))+d(gxm(k),gxm(k)+1)+d(gxm(k),gxn(k))+d(gxn(k),gxn(k)+1)

2 . (3.24)

By (3.13), this results in

lim
n→∞

d(gxn(k),gxm(k))+d(gxm(k),gxm(k)+1)+d(gxm(k),gxn(k))+d(gxn(k),gxn(k)+1)

2

= ϵ. (3.25)

By taking k → ∞ in (3.23) and exploiting (3.24) and (3.25), we acquire

1 ≤ lim
k→∞

θ(
d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)

2
) ≤ 1. (3.26)

According to the property of θ, this leads to

lim
k→∞

d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)

2
= 0. (3.27)

By taking k → ∞ in (3.23) and using (3.16) and (3.27), we obtain

lim
k→∞

d(gxn(k)+1, gxm(k)+1) = ϵ = 0,

which is a contradiction.
Thus, the sequence {gxn} is a Cauchy sequence in the closed subset g(A0) of the

complete metric space (X, d). Then there exists x∗ ∈ A0 such that

lim
k→∞

gxn = gx∗. (3.28)

Since A0 ⊆ g(A0) and T (A0) ⊆ B0, it follows that there exists a ∈ A0 such that

d(ga, Tx∗) = d(A,B). (3.29)

By applying (3.4) and (3.28) along with the assumption (iii), there exists a subsequence
{gxn(k)} of {gxn} such that (gxn(k), gx

∗) ∈ E(G) for all k ∈ N. From (3.4), we have

d(gxn(k)+1, Txn(k)) = d(A,B) for all k ∈ N. (3.30)

By using (3.29) and (3.30) and (A,B) have the weak P -property, this implies that

d(gxn(k)+1, ga) ≤ d(Txn(k), Tx
∗). (3.31)

Since (gxn(k), gx
∗) ∈ E(G), (3.29), (3.30), (3.31) and (T, g) is a G-proximal Geraghty

type M mapping, we have

d(gxn(k)+1, ga) ≤ d(Txn(k), Tx
∗)

≤ θ(M(xn(k), x
∗, xn(k)+1, a))M(xn(k), x

∗, xn(k)+1, a)

< M(xn(k), x
∗, xn(k)+1, a), for all k ≥ 1, (3.32)
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where
M(xn(k), x

∗, xn(k)+1, a)

= max{d(gxn(k), gx
∗), d(gxn(k), gxn(k)+1), d(gx

∗, ga),
d(gxn(k),ga)+d(gx∗,gxn(k)+1)

2 }.
(3.33)

By using (3.13) and (3.28) , it is rather straightforward to see that

lim
k→∞

M(xn(k), x
∗, xn(k)+1, a) = d(gx∗, ga) ≥ 0. (3.34)

We now suppose d(gx∗, ga) > 0. By letting k → ∞ in (3.32), we derive

1 ≤ lim
k→∞

θ(M(xn(k), x
∗, xn(k)+1, a)) ≤ 1. (3.35)

This implies that
lim
k→∞

θ(M(xn(k), x
∗, xn(k)+1, a)) = 1.

By property of θ, we have
lim
k→∞

M(xn(k), x
∗, xn(k)+1, a) = d(gx∗, ga) = 0

which is a contradiction and this results in gx∗ = ga. Therefore, from (3.29) there exists
x∗ ∈ A such that

d(gx∗, Tx∗) = d(A,B). (3.36)
In the next step, x∗ and y∗ are supposed to be the best proximity coincidence points

of (T, g) such that (gx∗, gy∗) ∈ E(G). Also, the condition gx∗ ̸= gy∗ is presumed.
Consequently, this makes

d(gx∗, gy∗) > 0 and d(gx∗, Tx∗) = d(gy∗, T y∗) = d(A,B).

By using the weak P - property, it can be concluded that
0 < d(gx∗, gy∗) ≤ d(Tx∗, T y∗).

Since (T, g) is a G-proximal Geraghty type M mapping and M(x∗, y∗, x∗, y∗)=d(gx∗, gy∗),
we obtain that

d(gx∗, gy∗) ≤ d(Tx∗, T y∗) ≤ θ(M(x∗, y∗, x∗, y∗))M(x∗, y∗, x∗, y∗)

= θ(d(gx∗, gy∗))d(gx∗, gy∗)

< d(gx∗, gy∗)

which is a contradiction. This gives gx∗ = gy∗.

Example 3.5. Let X = R3 equipped with the metric d given by

d((x, y, z), (u, v, w)) =
√
(x− u)2 + (y − v)2 + (z − w)2.

Let
A = {(1, y, 2) : 0 ≤ y ≤ 6}

and
B = {(1, y,−2) : 0 ≤ y ≤ 3}.
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It is simple to see that the pair (A,B) satisfies the weak P -property when d(A,B) = 4,

A0 = {(1, y, 2) : 0 ≤ y ≤ 3} and B0 = {(1, y,−2) : 0 ≤ y ≤ 3}.

Let T : A → B be a mapping defined by

T (1, y, 2) = (1,
y2

12
,−2), for all (1, y, 2) ∈ A,

and g : A → A such that

g(1, y, 2) =


(1,

7y

6
, 2) if 0 ≤ y ≤ 36

7

(1, 0, 2) if 36

7
< y ≤ 6

We have

A0 = {(1, y, 2) : 0 ≤ y ≤ 3} ⊆ g(A0) = {(1, y, 2) : 0 ≤ y ≤ 7

2
}.

Define a directed graph G = (V (G), E(G)) by V (G) = X and

E(G) = {((x, y, z), (u, v, w)) ∈ R3 × R3 : x ≤ u, y ≥ v and z ≤ w}.

Hence E(G) is transitive and

T (A0) = {(1, y,−2) : 0 ≤ y ≤ 9

12
} ⊆ B0 = {(1, y,−2) : 0 ≤ y ≤ 3}.

We will show the pair (T, g) is G-proximal Geraghty type M mapping. First justifying
that (T, g) is G-proximal edge preserving.

Let (1, x, 2), (1, y, 2), (1, u, 2), (1, v, 2) ∈ A such that

(g(1, x, 2), g(1, y, 2)) = ((1,
7x

6
, 2), (1,

7y

6
, 2)) ∈ E(G)

and
d(g(1, u, 2), T (1, x, 2)) = d(A,B) = d(g(1, v, 2), T (1, y, 2)).

Then

x ≥ y and d((1,
7u

6
, 2), (1,

x2

12
,−2)) = d(A,B) = d((1,

7v

6
, 2), (1,

y2

12
,−2)).

This implies that
7u

6
=

x2

12
and 7v

6
=

y2

12
.

Since x ≥ y and x, y ∈ [0, 6], we have
7u

6
≥ 7v

6
.

Thus
(g(1, u, 2), g(1, v, 2)) = ((1,

7u

6
, 2), (1,

7v

6
, 2)) ∈ E(G).

This means that (T, g) is G-proximal edge preserving.
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Subsequently we also note that there is θ ∈ Θ such that θ(t) =
6

7
for all t ∈ [0,∞).

We then have
d(T (1, x, 2), T (1, y, 2))

= d((1,
x2

12
,−2), (1,

y2

12
,−2))

=

∣∣∣∣x2

12
− y2

12

∣∣∣∣
=

6

7

|x+ y|
12

∣∣∣∣7x6 − 7y

6

∣∣∣∣
≤ 6

7

∣∣∣∣7x6 − 7y

6

∣∣∣∣
= θ(M((1, x, 2), (1, y, 2), (1, u, 2), (1, v, 2)))d((1,

7x

6
, 2), (1,

7y

6
, 2))

≤ θ(M((1, x, 2), (1, y, 2), (1, u, 2), (1, v, 2)))M((1, x, 2), (1, y, 2), (1, u, 2), (1, v, 2)).

which leads to the conclusion that the pair (T, g) is G-proximal Geraghty type M mapping.
We now show that the assumption (iii) in Theorem 3.4 holds.

Let {g(1, xn, 2)} = {(1, 7xn

6
, 2)} be a sequence in A and (1,

7x∗

6
, 2) ∈ A such that

lim
n→∞

(1,
7xn

6
, 2) = (1,

7x∗

6
, 2) and ((1,

7xn

6
, 2), (1,

7xn+1

6
, 2)) ∈ E(G).

Hence 7xn

6
≥ 7xn+1

6
which implies that {xn} is non-increasing and

lim
n→∞

xn = x∗ = inf{xn : n ∈ N}.

Thus xn ≥ x∗ for all n ∈ N, then there is a subsequence {g(1, xn(k), 2)} with

(g(1, xn(k), 2), g(1, x
∗, 2)) = ((1,

7xn(k)

6
, 2), (1,

7x∗

6
, 2)) ∈ E(G)

for all k ∈ N.
By Theorem 3.4 we can conclude that there is x∗ ∈ A such that d(gx∗, Tx∗) = d(A,B)

and (1, 0, 2) is the best proximity coincidence point of the pair (T, g).

4. Consequence
This section presents several outcomes deriving from our main result in the previous

section.

Definition 4.1. Suppose that (X, d) is a metric space and G = (V (G), E(G)) is a directed
graph such that V (G) = X. Let T : A → B and g : A → A be mappings. Then the pair
(T, g) is said to be a G-proximal mapping if the following hold;

(1) (T, g) is G-proximal edge preserving;
(2) there exists k ∈ [0, 1) such that for all x, y, u, v ∈ A if d(gu, Tx) = d(gv, Ty) =
d(A,B) and (gx, gy) ∈ E(G), then
d(Tx, Ty) ≤ kM(x, y, u, v), (4.1)
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where M(x, y, u, v) = max

{
d(gx, gy), d(gx, gu), d(gy, gv),

d(gx, gv) + d(gy, gu)

2

}
.

By putting θ(t) = k, where k ∈ [0, 1) in Theorem 3.4, the corollary given as follows.

Corollary 4.2. Let (A,B) be a pair of nonempty subsets of a complete metric space
(X, d) endowed with a directed graph G = (V (G), E(G)) in which E(G) has the transitive
property. Let T : A → B and g : A → A be mappings such that a pair (T, g) is a
G-proximal mapping. Assume that A0 is nonempty such that A0 ⊆ g(A0) and g(A0) is a
closed subset of X. If the following assertions hold;

(i) T (A0) ⊆ B0 and the pair (A,B) satisfies the weak P -property;
(ii) There exist elements x, y ∈ A0 such that d(gx, Ty) = d(A,B) and (gy, gx) ∈
E(G);

(iii) For any sequence {gxn} in A if gxn→gx∗, for some gx∗ ∈A and (gxn, gxn+1)∈
E(G) for all n ∈ N, then there is a subsequence {gxnk

} such that (gxnk
, gx∗) ∈

E(G) for all k ∈ N.
Consequently there is x∗ ∈ A such that d(gx∗, Tx∗) = d(A,B). Moreover if (gx∗, gy∗) ∈
E(G) for all best proximity coincidence points x∗, y∗ ∈ A, then gx∗ = gy∗.

Definition 4.3. Suppose that (X, d) is a metric space and G = (V (G), E(G)) is a directed
graph such that V (G) = X. Let T : A → B and g : A → A be mappings. Then the pair
(T, g) is said to be a G-proximal type R mapping if the following hold;

(1) (T, g) is G-proximal edge preserving;
(2) for all x, y, u, v ∈ A if d(gu, Tx) = d(gv, Ty) = d(A,B) and (gx, gy) ∈ E(G),

then

d(Tx, Ty) ≤ M(x, y, u, v)

M(x, y, u, v) + 1
, (4.2)

where M(x, y, u, v) = max

{
d(gx, gy), d(gx, gu), d(gy, gv),

d(gx, gv) + d(gy, gu)

2

}
.

Applying θ(t) =
1

t+ 1
in Theorem 3.4, we obtain the second corollary as follows.

Corollary 4.4. Let (A,B) be a pair of nonempty subsets of a complete metric space
(X, d) endowed with a directed graph G = (V (G), E(G)) in which E(G) has the transitive
property. Let T : A → B and g : A → A be mappings such that a pair (T, g) is a G-
proximal type R mapping. Assume that A0 is nonempty such that A0 ⊆ g(A0) and g(A0)
is a closed subset of X. If the following assertions hold;

(i) T (A0) ⊆ B0 and the pair (A,B) satisfies the weak P -property;
(ii) There exist elements x, y ∈ A0 such that d(gx, Ty) = d(A,B) and (gy, gx) ∈
E(G);

(iii) For any sequence {gxn} in A if gxn→gx∗, for some gx∗ ∈A and (gxn, gxn+1)∈
E(G) for all n ∈ N, then there is a subsequence {gxnk

} such that (gxnk
, gx∗) ∈

E(G) for all k ∈ N.
Consequently there is x∗ ∈ A such that d(gx∗, Tx∗) = d(A,B). Moreover if (gx∗, gy∗) ∈
E(G) for all best proximity coincidence points x∗, y∗ ∈ A, then gx∗ = gy∗.
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5. Applications
We will apply our result on the best proximity coincidence point on a metric space

endowed with a symmetric binary relation R. Some properties are given below:

Definition 5.1. Let T : A → B and g : A → A be mappings. The pair (T, g) is said to be
a proximal comparative mapping if gxRgy and d(gu1, Tx) = d(gu2, T y) = d(A,B)
=⇒ gu1Rgu2 for all x, y, u1, u2 ∈ A.

Definition 5.2. Let T : A → B and g : A → A be mappings. The pair (T, g) is said to
be proximal comparative Geraghty type M mapping if the following hold;

(1) The pair (T, g) is a proximal comparative mapping;
(2) There exists θ ∈ Θ such that for all x, y, u, v ∈ A if d(gu, Tx) = d(gv, Ty) =
d(A,B) and gxRgy, then

d(Tx, Ty) ≤ θ(M(x, y, u, v))M(x, y, u, v), (5.1)

where M(x, y, u, v) = max

{
d(gx, gy), d(gx, gu), d(gy, gv),

d(gx, gv) + d(gy, gu)

2

}
.

Corollary 5.3. Let (A,B) be a pair of nonempty subsets of a complete metric space (X, d)
endowed with R be a symmetric binary relation over X in which R has the transitive
property. let T : A → B and g : A → A be mapping such that the pair (T, g) is a
proximal comparative Geraghty type M mapping. Assume that A0 is nonempty such that
A0 ⊆ g(A0) and g(A0) is a closed subset of X. If the following assertions hold;

(i) T (A0) ⊆ B0 and the pair (A,B) satisfies the weak P -property;
(ii) There exist elements x, y ∈ A0 such that d(gx, Ty) = d(A,B) and gyRgx;

(iii) {gxn} is a sequence in A, if gxn → gx∗, for some gx∗ ∈ A and gxnRgxn+1

for all n ∈ N, then there is a subsequence {gxnk
} with gxnk

Rgx∗ for all k ∈ N.
Consequently there is x∗ ∈ A such that d(gx∗, Tx∗) = d(A,B). Moreover if gx∗Rgy∗ for
all best proximity coincidence points x∗, y∗ ∈ A, then gx∗ = gy∗.

Proof. Let T : A → B and g : A → A be mappings.
Define a directed graph G = (V (G), E(G)) by V (G) = X and

E(G) = {(x, y) ∈ X ×X : gxRgy}.

It is apparent that the hypotheses of Theorem 3.4 hold which implies that there is x∗ ∈ A
such that d(gx∗, Tx∗) = d(A,B).

What follows is we let x∗, y∗ ∈ A be two best proximity coincidence points of the pair
(T, g). This gives gx∗Rgy∗ which implies that (gx∗, gy∗) ∈ E(G) according to Theorem
3.4. Ultimately, it leads to gx∗ = gy∗.
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