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1. Introduction
Fuzzy set theory is applied for modeling uncertainty data and for processing ambiguous

or subjective information in mathematical models. Their main objective of development
have been diverse and its applications appear in the very varied real problems, for instance,
in the golden mean [1], particle systems [2], quantum optics and gravity [3], synchronize
hyper chaotic systems [4], chaotic system [5–7], medicine [8, 9], and engineering problems
[10]. Particularly, fuzzy differential equation is a very important topic from a theoretical
point of view (see [11–17]) as well as of their applications, for example, in population
models [18, 19], civil engineering [20] and in modeling hydraulic [21]. Initially, the deriv-
ative for fuzzy valued mappings was developed by Puri and Ralescu [16], that generalized
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and extended the concept of Hukuhara differentiability (H-derivative) for set-valued map-
pings to the class of fuzzy mappings. Subsequently, using the H-derivative, Kaleva [13]
started to develop a theory for FDE. In the last few years, many works have been done
by several authors in theoretical and applied fields (see [11, 13, 15, 17, 21–23]). In some
cases this approach suffers certain disadvantages since the diameter diam(x(t)) of the
solution is unbounded as time t increases [11, 12]. This problem demonstrates that this
interpretation is not a good generalization of the associated crisp case and we assume that
this problem is due to the fuzzification of the derivative utilized in the formulation of the
FDE. In this direction, Bede and Gal in [24, 25] introduced a more general definition of
derivative for fuzzy mappings enlarging the class of differentiable fuzzy mappings. Fol-
lowing this idea, in this paper we define the fuzzy lateral H-derivative for a fuzzy mapping
G : I = (a, b) → F(X) where X is a normed space. We give some nice properties of it
and we finally, by using Banach’s contraction theorem, provide an existence result to the
initial fuzzy value problem.

2. Basic Concepts
Let K(X) denote the family of all nonempty compact subsets of a normed space X.

If A,B ∈ K(X), then we define the operations of addition and scalar multiplication as

A+B = {a+ b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}.

It is easy to verify that K(X) satisfies all axioms of being a vector space except having
additive inverse. Note that A + {θ} = A, for each A ∈ K(X) where θ denotes the zero
vector of X.

If A ∈ K(X) we define the ε−neighborhood of A as the set

N(A, ε) = {x ∈ X | d(x,A) < ε},

where d(x,A) = infa∈A ∥x− a∥ and ∥.∥ the norm on X.

Remark 2.1. It is clear that A ⊂ N(A, ε). If {xn} is also a sequence in N(A, ε) with
xn → x, then d(x,A) ≤ ε. Hence, the closure of N(A, ε) (denoted by N(A, ε)) is a subset
of {x ∈ X | d(x,A) ≤ ε}. It is well known that the mapping x → d(x,A) is continuous
and so the set N(A, ε) is an open subset of X while the set {x ∈ X | d(x,A) ≤ ε} is closed.
Hence, if A is a nonempty compact subset of X and θ ̸∈ A, then since X is connected
(note that each normed space is connected), N(A, ε) ⫋ {x ∈ X | d(x,A) ≤ ε}. Finally, it
is obvious that, for each ε > 0,

X =
∪

A∈K(X)

N(A, ε)

and for each A ∈ K(X),

N(A, ε) =

∞∪
n=1

N(A, rn),

where {rn}∞n=1 is a dense subset of [0, ε]. Consequently, the family

{N(A, ε) | A ∈ K(X), ε > 0}

is a base for a topology on X.
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The Hausdorff separation ρ(A,B) of A,B ∈ K(X) is defined by
ρ(A,B) = inf{ε > 0 | A ⊂ N(ε,B)}

and the Hausdorff metric on K(X) is defined by
h(A,B) = max{ρ(A,B), ρ(B,A)}.

Remark that, for each (A,B) ∈ K(X) × K(X), we have ρ(A,B) ∈ [0,∞). Because
otherwise, for all natural number n, there exists xn ∈ A\N(n,B). Hence, d(xn, B) ≥ n
and since B is compact there exists yn ∈ B such that

d(xn, B) = d(xn, yn) ≥ n. (2.1)
Now since A×B is compact there is (x, y) ∈ A×B such that

d(xn, yn) → d(x, y)

which is contradicted by (2.1) (note that it follows from (2.1) that lim supn d(xn, yn) ≥
lim supn n = ∞).

It is straightforward to see that (K(X), h) is a complete metric space.
A fuzzy set u in an universe set X is a mapping u : X → [0, 1] which u(x) assigns the

degree of membership of element x in the fuzzy set A, for each x ∈ X. If u is a fuzzy set
in X, we define [u]α = {x ∈ X | u(x) ≥ α} the α-level of u, with 0 < α ≤ 1. For α = 0
the support of u is defined

[u]0 = supp(u) = {x ∈ X | u(x) ≥ 0}.
Proposition 2.2. Let u be a fuzzy set in X, then the family {Lα(u) = [u]α | α ∈ [0, 1]}
satisfies the following properties:

i) [u]β ⊆ [u]α ⊆ [u]0, for all 0 ≤ α ≤ β.
ii) If αn ↑ α, then [u]α =

∩∞
n=1[u]

αn (i.e., the level-application is left-continuous).
iii) (Representation). Let M ⊆ X and suppose that {Bα | α ∈ [0, 1]} is a family of

subsets of M verifying (i) and (ii) and B0 = M . Then, there exists a fuzzy set u
in X such that [u]α = Bα, for all α ∈ [0, 1].

Proof. (i) is obvious from the definition of the α-level set. To see (ii), it follows from
αn ↑ α and (i) that

[u]α ⊂ [u]αn , ∀n ∈ N(the natural numbers),
and so

[u]α ⊂
∞∩

n=1

[u]αn .

Now let x ∈
∩∞

n=1
[u]αn , hence

u(x) ≥ αn, ∀n ∈ N

and so
u(x) ≥ αn, ∀n ∈ N.

Then u(x) ≥ limn→∞ αn = α which means that x ∈ [u]α. This completes the proof of
(ii). To verify (iii), it is enough to define the fuzzy set u in X as

u(x) =

{
sup{α | x ∈ Bα}, if x ∈ M,
0, if x ̸∈ M.
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This completes the proof.

Remark that the result of part (iii) in Proposition 2.2 still valid if we replace the
assumption αn ↑ α by the weaker condition αnα, for all n ∈ N and there exists a
subsequence {αnk

} of {αn} with lim supαnk
= α or lim inf αnk

= α. The simple example

αn =

{
1
3 , if n = 2k,
0, if n = 2k − 1.

and α = 1
2 does not satisfy (iii) of Proposition 2.2 while αn ≤ α, for all n ∈ N and

lim sup(α2k−1 = 1
2 ) =

1
2 .

We say that a fuzzy set u is compact if [u]α ∈ K(X), for all α ∈ [0, 1] and u is called
convex if [u]α is a convex subset of X, for all α ∈ [0, 1].

As an extension of K(X) we define the space F (X) the space of all fuzzy sets u :
[0, 1]×X with the following properties:

i) u is normal, i.e. {x ∈ X | u(x) = 1} ̸= ∅,
ii) u is fuzzy-convex, i.e., for all x, y ∈ X and λ ∈ [0, 1] we have

u(λx+ (1− λ)y) ≥ min{u(x), u(y)},
iii) u is upper semicontinuous,
iv) L0u is compact.

We will denote by F(X) the space of all compact and convex fuzzy sets on X. If we take
X = R, then it is easy to check that the α-level sets of u ∈ F (R) are compact intervals of
the real line, for all α ∈ [0, 1]. The sum and the scalar multiplication operations on F(X)
are defined as (u+ v)(x) = sup{inf{u(y), v(x− y))} : y ∈ X} and

(λ.u)(x) =

{
u(xλ ), if λ ̸= 0,
χ{θ}(x), if λ = 0.

where θ is the zero vector of X and χ{θ} is the characteristic function of {θ}.
It is easy to prove that [u + v]α = [u]α + [v]α and [λ.u]α = λ[u]α, for all u, v ∈ F(X)

and λ ∈ R. We can also extend the Hausdorff metric h to F(X) by means
D(u, v) = sup

α∈[0,1]

h([u]α, [v]α), ∀u, v ∈ F(X).

One can show that (F(X), h) is a complete metric space but it is not separable (note
that there is an uncountable subset A of X and so if we consider the family {χ{a}}a∈A,
then D(χ{a}, χ{b}) = ∥a − b∥). Also, the measure of u ∈ F (X) is defined by ∥u∥ =
D(u, χ{θ}) = supα∈[0,1] ∥Lαu∥. It is obvious that A ∈ K(X) then χ{a} ∈ F (x) and
∥χ{a}∥ = D(χA, χ{θ}) = supα∈[0,1] h([χA]

α, [χ{θ}]
α) = sup{∥x∥ : x ∈ A}. It is also clear

that if A ∈ K(X) then χA ∈ F (x) and ∥χA∥ = sup{∥x∥ : x ∈ A}. Moreover, the mapping
x ∈ X → χ{x} ∈ F(X) is an isometric embedding. Finally, if u ∈ F(X), then we say that
u ∈ X if u = χ{x}, for some x ∈ X.

The support function of u ∈ F (X) is defined as Su : [0, 1]×X∗ −→ ℜ,
Su(α, x

∗) = sup{x∗(x) : x ∈ [u]α}
where X∗ is the dual of X.

In the next proposition, we give some interesting properties of the support function.

Proposition 2.3. If u, v ∈ F (x), λ ≥ 0 and (α, x∗, y∗) ∈ [0, 1]×X∗ ×X∗, then
(i) Su+v(α, x

∗) = Su(α, x
∗) + Sv(α, x

∗),
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(ii) Su(α, x
∗ + y∗) = Su(α, x

∗) + Su(α, y
∗),

(iii) Sλu(α, x
∗) = Su(α, λx

∗) = λSu(α, x
∗),

(iv) If 0 ≤ α ≤ β ≤ 1, then Su(β, x
∗) ≤ Su(α, x

∗),
(v) The mapping x∗ −→ Su(α, x

∗) is lower semicontinuous and α −→ Su(α, x
∗) is

continuous.

Proof. is a direct result of the definition of the support function and the relation [u+v]α =
[u]α+[v]α. (ii) and (iii) are obvious from the definition of the support function. (iv) follows
from the fact that if 0 ≤ αβ ≤ 1; then [u]β ⊆ [u]α. The first part of (v) can be supposed
it as the supremum of a family of continuous functions. In fact,

Su(α, x
∗) = sup{x̂(x∗) : x ∈ [u]α}

where, x̂ : X∗ −→ ℜ is defined by x̂(x∗) = x∗(x), for all x ∈ X. The second part of (v)
follows from being It is easy the function α −→ Su(α, x

∗) decreasing and Su(λα, x
∗) =

λSu(α, x
∗), for all λ ∈ [0, 1].

3. The Fuzzy Derivative
It is well-known that the H-derivative (differentiability in the sense of Hukuhara) for

fuzzy mappings was initially introduced by Puri and Ralescu [16] in the setting of finite
dimensional Euclidean space ℜn. In this section we are going to extend it to an infinite
dimensional normed space. To do it we need interpret the meaning of the difference of
two fuzzy sets.

Definition 3.1. Let u, v ∈ F(X). If there exists w ∈ F(X) such that u = v + w, then w
is called the H-difference of u and v and it is denoted by u− v.

Remark that u− u = χ{} and u+ χ{θ} = u, for each u ∈ F(X).

Definition 3.2. Let I = (a, b) and consider a fuzzy mapping H : I → F(X). We say
that H is differentiable at t0 ∈ I if there exists an element H

′
(t0) ∈ F(X) such that the

limits

lim
h→0+

H(t0 + h)−H(t0)

h
and lim

h→0+

H(t0)−H(t0 − h)

h

exist and are equal to H
′
(t0). Here the limit is taken in the metric space (F(X), D).

Remark 3.3. As seen in the above, one can consider X as a subset of F(X), in fact
X has been isometrically embedded X into F(X) by the mapping x ∈ χ{x}. Hence if
f : I =]a, b[→ X is differentiable at t0 ∈ I in the usual sense then the limits

lim
h→0+

f(t0 + h)− f(t0)

h
and lim

h→0+

f(t0)− f(t0 − h)

h

exist and are equal to the element f
′
(t0) ∈ X. Equivalently one can verify that the limits

lim
h→0+

χ({t0+h}) − χ{t0}

h
and lim

h→0+

χ{t0} − χ({t0−h})

h

exist and equal to χf ′ (t0)
. This means that Definition 3.2 is a generalization of the

usual definition of differentiability. Although this definition of the differentiability is
an extension of the usual definition but it is very restrictive; for instance, if we take
H(t) = c.g(t), where c is a fuzzy number and g : [a, b] → [0,∞) is a function with g

′
(t) < 0,

then H is not differentiable. To avoid this difficulty, we define a more general definition
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of derivative for fuzzy mappings enlarging the class of differentiable fuzzy mappings by
considering a lateral type of H−derivatives.

In this paper we consider the following definition in the setting of normed spaces:

Definition 3.4. Let H : I =]a, b[→ F(X) and t0 ∈ I. We say that H is differentiable at
t0 if: there exists an element H

′
(t0) ∈ F(X) such that, for all h > 0 sufficiently near to

0, there are H(t0 + h)−H(t0), H(t0)−H(t0 − h) and the limits (in the metric D)

lim
h→0+

H(t0 + h)−H(t0)

h
= lim

h→0+

H(t0)−H(t0 − h)

h
) = H

′
(t0) (3.1)

or
there exists an element H ′

(t0) ∈ F(X) such that, for all h < 0 sufficiently near to 0, there
are H(t0 + h)−H(t0), H(t0)−H(t0 − h) and the limits (in the metric D)

lim
h→0−

H(t0 + h)−H(t0)

h
= lim

h→0−

H(t0)−H(t0 − h)

h
= H

′
(t0) (3.2)

Remark 3.5. Note that if H is differentiable in the sense (3.1) and (3.2) simultaneously,
then for h > 0 sufficiently small we have H(t0+h) = H(t0)+u1, H(t0) = H(t0−h)+u2,
H(t0 + h) = H(t0) + v1 and H(t0) = (t0 + h) + v2, with u1, u2, v1, v2 ∈ F(X). Thus,
H(t0) = H(t0)+(u2+v1), i.e., u2+v1 = χ{θ}, it implies two possibilities: u2 = v1 = χ{θ}

if H(t0) = χ{θ}; or u2 = χ{a} = −v1, with a ∈ F(X), if H ′
(t0). Therefore, if there exists

H
′
(t0) in the first form (second form) with H

′
(t0) ∈ F(X) then does not exist H

′
(t0) in

the second form (first form, respectively).

The following example shows that the first form and the second form of the differen-
tiability in Definition 3.4 are different.

Example 3.6. Let X = ℜn and H(t) = c · g(t) be a fuzzy mapping where c is a fuzzy
number and g :]a, b[→ [0,∞) is a differentiable function on ]a, b[. In this case, if g′

(t0) > 0,
then H is differentiable in the first form (3.1) and we have H

′
(t0) = c.g

′
(t0). But, from

the previous remark H is not differentiable in the second form (3.2). Analogously, if
g

′
(t0) < 0, then H is differentiable in the second form (3.2) and H

′
(t0) = c.g

′
(t0), but H

is not differentiable in the first form.

Theorem 3.7. Let X be a normed space and H :]a, b[→ F(X) a fuzzy mapping. If H
is a differentiable mapping of the second form in the sense of Definition 3.4 then H is
continuous.

Proof. The result follows directly by the definition of the second form of Definition 3.4
and the rules [u+ v]α = [u]α + [v]α, [λ.u]α = λ[u]α, for all u, v ∈ F(X), λ ∈ R.

Theorem 3.8. Let X be a normed space and G,H :]a, b[→ F(X) two fuzzy mappings.
If G,H are differentiable in the second form (3.2) at the point t ∈]a, b[ and λ ∈ ℜ, then
(H +G)

′
(t) = H

′
(t) +G

′
(t) and (λH)

′
(t) = λH

′
(t).

Proof. The result follows by the definition of the second form of Definition 3.4, the rela-
tions [u+v]α = [u]α+[v]α, [λ.u]α = λ[u]α, for all u, v ∈ F(X), λ ∈ R, and the uniqueness
of the limit.

Theorem 3.9. Let H : I → F(X) be a fuzzy mapping and let xt, yt ∈ [H(t)]α, and
α ∈ [0, 1]. Then
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(i) If H is differentiable in the first form (3.1), then xt and yt are differentiable
functions and [x

′

t, y
′

t] ⊂ [H
′
(t)]α.

(ii) If H is differentiable in the second form (3.2), then xt and yt are differentiable
functions and [y

′

t, x
′

t] ⊂ [H
′
(t)]α.

Proof. (i) If h > 0 and α ∈ [0, 1], then we have
[xt+h − xt, yt+h − yt] ⊂ [H(t+ h)−H(t)]α

and, multiplying by 1
h we have

1

h
[xt+h − xt, yt+h − yt] = [

xt+h − xt

h
,
yt+h − yt

h
] ⊂ [H(t+ h)−H(t)]α

h

Passing to the limit we have

[x
′

t, y
′

t] ⊂ [H
′
(t)]α.

The proof of (ii) is similar to the proof of (i).

It is worth noting when X is an infinite dimensional normed space then the interior
of a compact and convex subset of X is empty. Hence, for each α ∈ [0, 1] the interior of
[H(t)]α is empty.

Definition 3.10. Let X be a normed space and (X,Ω, µ), where ω is the smallest σ−
algebra contains all the open subsets of X and µ is a measure on it, is a measure space.
We say that the fuzzy mapping H : I =]a, b[→ F(X) is measurable,if for each α ∈ [0, 1]
the set valued mapping Hα : I → F(X) defined by Hα(t) = [H(t)]α is a measurable set
as a subset of X. We define the integral of the fuzzy mapping H : I → F(X), denoted∫
t∈I

H(t), as[∫
t∈I

H(t)

]α
=

{∫
t∈I

f(t)dt : f : I → X is a measurable selection for Hα

}
,

for all α ∈ [0, 1].
A measurable fuzzy mapping H : I → X is said to be integrable over I if

∫
Ht)dt ∈ X.

Definition 3.11. A fuzzy mapping H : I → F(X) is called integrable bounded, if there
exists an integrable mapping h : I → [0,∞) such that

D(H(t), χ{θ}) ≤ h(t), ∀t ∈ I.

Remark that the previous definition is an extension of the usual definition of integrable
bounded for single real valued mappings. Also, if H : I → F(X) is a continuous fuzzy
mapping then H is a measurable mapping.

By using the definitions of the integrability and differentiability, we deduce the follow-
ing two theorems which are useful in the sequel and omit their proofs.

Theorem 3.12. Let H be continuous in I = [a, b]. Then the mapping G(t) =
∫ t

a
H is

differentiable in the second form and G
′
(t) = H(t),∀t ∈ I.

Theorem 3.13. Let H be differentiable in I = [a, b] with respect to the second form and
assume that the derivative H

′ is integrable over I. Then for each s ∈ I, we have

H(s) = H(a) +

∫ s

a

H.
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Now we are ready to study the following fuzzy initial value problem in the setting of
normed spaces.

x
′
(t) = H(t, x(t)), x(0) = x0,

where H : [0, a]× F(X) → F(X) is a fuzzy mapping and x0 is a fuzzy number.
If we take X = ℜ then the initial value problem collapses to the problem studied by

Kaleva [13].
The following theorem provides an existence result to the initial fuzzy value problem.

Theorem 3.14. Let H : [0, a] → F(X) be continuous fuzzy mapping and assume that
there exists a 0 < k < 1 such that

D(H(t, u),H(t, v)) ≤ D(u, v), ∀(u, v) ∈ F(X)× F(X),∀t ∈ I

Then the initial value problem
x

′
(t) = H(t, x(t)), x(0) = x0,

has two unique solutions on [0, a].

Proof. Set M = {f : f : [0, a] → F(X)}. It is straightforward to see that the set M is a
complete metric space with the metric d(f, g) = supt∈[0,a] D(f(t), g(t)). Now we define
G : M → M by

G(f)(s) = x0 +

∫ s

0

H(t, x(t))dt, ∀(f, s) ∈ M × [0, a].

It follows from our assumptions and the Banach’s contraction theorem that G has a fixed
point such as x ∈ M so that

x(s) = G(x)(s) = x0 +

∫ s

0

H(t, x(t))dt, ∀ ∈ [0, a].

Hence, by using Theorem 3.12 and by applying the two forms of Definition 3.4 we get
x

′
(s) = H(s, x(s)), ∀s ∈ [0, a].

Further x(0) = x0 +
∫ 0

0
H(t, x(t))dt = x0. This completes the proof.
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