
ISSN 1686-0209

Thai Journal of Mathematics
Volume 20 Number 1 (2022)
Pages 293–304

http://thaijmath.in.cmu.ac.th

A Deep Single-Pass Learning for Recognition of

Handwritten Digits

Setthanun Thongsuwan and Saichon Jaiyen∗

Advanced Artificial Intelligence (AAI) Research Laboratory, Department of Computer Science,
King Mongkuts Institute of Technology Ladkrabang, Bangkok 10520, Thailand
e-mail : tsetthanun@gmail.com (S. Thongsuwan); saichon.jai@sit.kmutt.ac.th (S. Jaiyen)

Abstract We describe a deep learning model - Deep Single-Pass Learning (DSPL) - that can learn a
data set, with a single pass for recognition, and predict with high accuracy, when evaluated for visual
recognition of handwritten digits. DSPL consists of several stacked convolutional layers to learn features
automatically and Extreme gradient boosting (XGBoost) was set as the last layer for predicting class
labels. The learning time complexity is O(Lc2mnpq), or less than the learning time of deep learning -
Convolutional Neural Networks (CNNs). The network does not need iteration to re-adjust weights during
feature learning. Tests showed that our model provided better accuracy than other models i.e. CNNs,
XGBoost, LR, ETC, GBC, RFC, GNB, and DTC, including MLP and SVC families: in the worst case,
DSPL provided 99.95% accuracy.  

MSC: 68T10; 68T30; 62H30; 62H35
Keywords: deep single-pass learning; handwriting recognition; pattern recognition; convolutional neural
networks; xgboost

Submission date: 29.05.2019 / Acceptance date: 07.07.2019

1. Introduction
Handwriting recognition (HWR) is one of the challenging problems for research in ar-

tificial intelligence (AI) and has been extensively investigated. Handwriting patterns are
specific to a person and these characteristics can be used in various areas of pattern recog-
nition, e.g. writer identification [1–3]. It also includes the analysis of personal behavior:
these unique features can be used to analyze various diseases, e.g. [4–6]. However, the
ambiguity and lack of clarity of handwriting is still a problem in learning and pattern
recognition of systems, as well as optical recognition of handwritten digits [7], described
in more detail in Section 2.1, therefore, effective methods are still being developed and
presented continuously to achieve higher accuracy results.

In recent years, deep learning technology has gained significant attention in AI. It
caused a revolution in state-of-the-art developments in all fields of research, with the

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright © 2022 by TJM. All rights reserved.



294 Thai J. Math. Vol. 20 (2022) /S. Thongsuwan and S. Jaiyen

ability to effectively learn a network, that solves a problem. Especially, automatic features
learning, from the training set, allows a system to discover the representations needed for
predictions. Currently, there are many alternative learning models for deep learning used
in HWR problems. Convolutional Neural Networks (CNNs) [8] belong to a class of deep
learning techniques, which has become widely used by researchers. All deep learning
models still to learn repeatedly to adjust the weights, that causes the system to have
high computational complexity (including CNNs). Furthermore, these models become
slow when a very large data set must be learned and the models use many epochs in the
learning step, because of the optimization techniques added.

We describe a new deep learning model - Deep Single-Pass Learning (DSPL) - to learn
a data set in a single pass. Our model has three convolutional layers, where XGBoost
[9] is the last layer, but the structure of the convolution layer is flexible and the number
of layers can be increased or decreased, depending on available computational power and
data set size.

The rest of this paper is organized as follows. Materials and methods are introduced in
Section 2. In Section 3, we describe the deep single-pass learning (DSPL) for parameter
computation and learning algorithm. The model evaluations follow in Section 4. Finally,
Section 5 concludes.

2. Materials and Methods
2.1. Handwritten Digits Data Set

The handwritten digits data set used to evaluate the performance of our model, was
built by Garris et al. [10] from handwritten digits, on a preprinted form, from 43 people,
with 30 for the training set and 13 others for the test set. The National Institute of Stan-
dards and Technology (NIST) preprocessed Garris et al.’s images to reduce dimensionality
and extract normalized bitmaps - see Figure 1.

Figure 1. Examples of (a) original images and (b) digital representa-
tions used in our evaluations.

An input matrix of 8×8 was be created and each element is an integer in the range
0..16, by dividing into non-overlapping blocks of 4×4 from 32×32 bitmaps where the
number of on pixels is counted in each block. Readers can download the data sets from



A Deep Single-Pass Learning for Recognition of Handwritten Digits 295

the University of California at Irvine (UCI) Repository of machine learning data sets [7].
This data set is provided in the form of vectors, each vector consists of classes label (in
the last column) see Definition 2.2.

Definition 2.1. Image: An input H ×D grayscale image, I ∈ RH×D, when pjk ∈ R is
the intensity of the pixel, represented as:

I = {pjk|1 ≤ j ≤ H, 1 ≤ k ≤ D}, (2.1)

Definition 2.2. Training set: Let I = {Ii, yi|1 ≤ i ≤ M}, is the training set of M images
and yi is the label of image xi in R

This data set was found in the UCI repository [7], included 5,620 images, reduced to
64 real-valued pixels. Thus for the test data set: H = D = 8 and M = 5,620.

2.2. Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs), first described by Lecun et al. [8], are de-

scribed in detail by Goodfellow et al [11] and Stutz [12]. A short summary follows, but
readers familiar with CNNs may skip this section.

CNNs have an architecture, generally consisting of L convolutional layers, indexed by
k, alternating with multiple pooling layers, which are responsible for learning the features
of the training data. The last layer is usually a Fully Connected (FC) one. In each layer,
a convolution operation, Kk, is applied to the ‘image’ which the input to the kth layer.

We assume a grayscale ‘image’, Yk
j , as the input to the kth layer, (where Y1

j = Ij). The
discrete convolution of Yk

j,m,n and the kernel Kk, with size h× d and indices u ∈ [−h, h]
and v ∈ [−d, d], is computed as

Yk+1
j,m,n = (Yk

j ⊗K)j,m,n =

h∑
u=−h

d∑
v=−d

Kk
u,vYk

j,m+u,n+v (2.2)

where m,n ranges over the indices in the ’image’ in the k+1th layer, which is not always
the same as the range in layer, k. For understanding, the calculation in each layer is
forwarded to the next layer: the input to the first (k = 1) layer is the set of original
images, but after convolution, the inputs to the next, and subsequent layers, are the F k

‘features’ in layer k, Yk
j |j ∈ [1..F k], because they are transformations (the convolutions)

of the previous inputs. Note that the number of feature maps in each layer, F k, may
vary, set by the user for each application. In convolution layer, k ∈ [1..L]:

Then, the jth feature map for layer k + 1, Yk+1
j , after a set of biases, Bk

j , for each
feature, j, in each layer, k, are added and the activation function, φ is applied:

Yk+1
j = φ(Bk

j +

Fk∑
m=1

(Kk
m,j ⊗ Yk

m)) (2.3)

Here a Rectified Linear Unit (ReLU) activation function was used for φ,

φ =

{
0 if x < 0,

x otherwise.
(2.4)



296 Thai J. Math. Vol. 20 (2022) /S. Thongsuwan and S. Jaiyen

Thus, the elements of the output of layer, k+1, for the jthfeature map, Yk+1
j , at position

(r, s) is:

(Yk+1
j )r,s = φ((Bk

j )r,s +

Fk∑
m=1

(Kk
m,j ⊗ Yk

m)r,s) (2.5)

The pooling layer helps to reduce the size of the output (i.e. it may downsample the
input to that layer). Other function options could be used e.g. maximum, average, etc..
We followed the common practice to use the maximum value on a local rectangular region
(neighborhood). Let us assume p × p is size of the pooling window and sp is stride of
the pooling, then P (..) is a pooling function which acts on Yk+1

j , and pooling window of
dimension is ((H − h)/sp+ 1)× ((D − d)/sp+ 1). So that the output of a max-pooling
function is:

P (Yk+1
j )m,n = max(Yk+1

j )m,n (2.6)

The FC layer receives data from the previous convolutional and pooling layer. This
layer is a classifier layer, the weights received in this layer in each iteration is fed back
to adjust the weights in all previous layers. Generally, softmax is the transformation
function used in the feed back:

Y = softmax(I ⊗W + B) (2.7)

Finally, we obtain as output, the predictions Y, where I. is the set of original images,
and set, W of all weights, and set of biases B.

2.3. Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is a machine learning model for classification

and regression problems designed by Chen and Guestrin [9] and shown first in KDD Cup
2015. It is effective for machine learning and data mining challenges and has been used
extensively by data scientists.

A brief summary of Chen and Guestrin’s work follows, but readers familiar with their
work may skip to Section 3.1. XGBoost is a highly scalable end-to-end tree boosting
system. Its architecture consists of a tree, which is an ensemble of K classification and
regression trees (CARTs). If xi is the vector training set and yi is the corresponding class
labels of xi . The output prediction, ŷi is the sum of the prediction scores of K trees:

ŷi = ϕ(xi) =

K∑
k=1

fk(xi) (2.8)

where fk ∈ F then fk is the leaf score for the kth tree and F is the set of all K scoring
function. The output prediction, ŷi were compared between the target based on a loss
function, l(ŷi, yi), with the addition of an Ω term to the model for prevent overfitting,
calculated:

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (2.9)

where Ω(f) = γT+ 1
2λ

∑T
j=1 wj

2, with constants, γ and λ, which control the regularization
degree, T is the set of leaves in the tree with the weight of each leaf denoted w. In addition,



A Deep Single-Pass Learning for Recognition of Handwritten Digits 297

we can improve the efficiency in Equation (2.9) by expanding the loss function with a
first or second order Taylor expansion. Therefore, at step t, we can calculate :

L̃(t) ≃
n∑

i=1

[gifi(xi) +
1

2
hifi

2(xi)] + Ω(ft)

=

n∑
i=1

[gifi(xi) +
1

2
hifi

2(xi)] + γT +
1

2
λ

T∑
j=1

wj
2

=

T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)wj
2] + γT

(2.10)

where Ij = {i | q(xi) = j} denotes the instance set of leaf t, and

gi =
∂l(ŷi

(t−1)
, yi)

∂ŷ
(t−1)
i

(2.11)

hi =
∂2l(ŷi

(t−1)
, yi)

∂(ŷ
(t−1)
i )2

(2.12)

are first and second order gradient statistics of the loss function. The optimal weight, w∗
j ,

of leaf, j, and the quality, q, for a given tree structure, q(xi), can be computed:

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
, (2.13)

when calculating the weight in Equation (2.13), the final equation is the quality of a tree
structure, q, computed as:

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi + λ
+ γT, (2.14)

The XGBoost model calculates scores in each node in the tree structure for split decisions.
For effective predictive, we realize the loss after the split and want to reduce it. If
I = IL ∪ IR, where IL and IR are the left and right nodes after the split, we compute:

Lsplit =
1

2

[
(
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
+

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ. (2.15)

3. Deep Single-Pass Learning (DSPL)
3.1. Structure and Parameter Computation

In this section, we will explain the parameters and the key equations of a Deep Single-
Pass Learning (DSPL) model. DSPL has two main parts, the ability to learn the features
of the training set and efficiently predicting the class labels of the test set. The first part,
before entering the prediction process, the training set will be learnt by deep feature
learning, which consists of several convolutional layers, Y, and the pooling layer, P ,
for reducing feature size. Generally, feature learning has a hierarchical structure, see a
diagram of our model in Figure 2 showing the structre. The output of the convolution



298 Thai J. Math. Vol. 20 (2022) /S. Thongsuwan and S. Jaiyen

operation, Y∥, in each layer k, is computed from the output of layer k− 1. Therefore, the
feature learning of the training data set follows this chain:

Figure 2. The structure overview of the DSPL.

P (Y1
j ) → P (Y2

j ) → · · · → P (Yk
j ) → P (Yk+1

j ) → Z (3.1)

when Z is tensor output of the feature learning process. In each layer, the output of the
previous layer is set to the input of the current layer. In the case where L = k+1, so the
input, of Yk+1

j , in the k + 1 layer for the jth feature map, is derived from the output of
the previous layer, Yk

j .
An additive bias is applied to each input So the input, Yk

i , of the kth layer for the jth

feature map, is derived from the output of the previous layer, Yk−1
j , as set out previously

in Equation 2.5 (repeated here)

Yk+1
j = φ(Bk

j +

Fk∑
m=1

(Kk
m,j ⊗ Yk

m))

Remark 3.1. We used the capabilities of the convolutional layers from CNNs, the input
must be in a tensor format, see Definition 2.1. Therefore, the training set (in Section 2.1)
will be converted to the standard input format of convolutional operation as the following
Definition 3.2.

Definition 3.2. Training Set: Let is the set of training sets, when [xi
j ]n1 be a set of n

feature vectors in Rn then n′ =
√
n is integral, it is defined as dimension for a square

matrix notation [aij ]n′n′ . Therefore, a general tensor, T of m-order can be created as
follows:

T = [ai1i2...imj1j2...jm
]
n′n′ (3.2)

The output of convolution operation, Y, caused from the tensor, T , applied to the h×d
kernel, K. The kernel, K, is slid through tensor, T , by a stride, sk, and zero padding
value.

In the second part, we use the decision rules in XGBoost to predict from the training
set learned through from the first part. We addition term of features learning Z (see



A Deep Single-Pass Learning for Recognition of Handwritten Digits 299

in Equation 3.1) to predict classes. Therefore, the final prediction is the sum of the
prediction scores for each tree E, as follows:

ŷi = ϕ(Zi) =

K∑
k=1

fk(Zi), fk ∈ F, (3.3)

For Equation (3.3) uses an ensemble of number of E classification and regression trees
(CARTs), when F = f(Z) = wq(Y)(q : Rn → T,w ∈ RT ) is is the set of all K scores for
all CARTs, and fk is the leaf score for the kth tree corresponds to both the independent
tree structure q and leaf weights w, where T is the number of leaves in the tree.

Remark 3.3. Since Equation (3.3) supports the training set Z, data type is vector, but,
the data type of Z, after through the process of features learning is tensor. Therefore, it
is necessary to convert the type of Z to vector see in Definition 3.4, which describes the
standard and convert the input data.

Definition 3.4. The training set Z is tensor size as [ai1i2...irj1j2...jr
]
n′n′ , which r is the number

of filters, and n′ exhibit the number of rows and columns. Therefore, Z will be converted
in the form of vector V of feature in Rb when b = n′ × n′ × r, and will be represented in
the Equation (3.3) is:

ŷi = ϕ(Vi) =

K∑
k=1

fk(Vi), fk ∈ F, (3.4)

when F = f(V) = wq(V)(q : Rn → T,w ∈ RT ). The quality of a tree structure can be
scored from Equation (2.14), we can set the number of trees, thus the size of the structure
affects performance.

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi + λ
+ γT,

when Ij = {i|q(Vi) = j} denotes the instance set of leaf t and gi = ∂l(ŷi
(t−1),yi)

∂ŷ
(t−1)
i

, hi =

∂2l(ŷi
(t−1),yi)

∂ŷ
(t−1)
i

are first and second order gradient statistics of the loss function, γ and λ are
constants to control the regularization degree. In addition, one of the key tasks is splitting
into the best set of segments: we use the gain of the split in Equation (2.15). In each
segment, sort the data according to feature values and visit the data will be implemented
as a first step in sorted order to accumulate the gradient statistics. Let IR, IL are the left
and right instance sets and I = IR ∪ IL is their union, then the loss after the split is:

Lsplit =
1

2

[
(
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
+

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ.

In our model, this formula is used for evaluating candidate splits by using the scores
of the instance sets of the left and right child nodes after the split.



300 Thai J. Math. Vol. 20 (2022) /S. Thongsuwan and S. Jaiyen

3.2. DSPL Algorithm
Given a training set, I = {Ii, yi|1 ≤ i ≤ M}, consisting of M images, with labels,

yi ∈ R, the label of image xi, when xi ∈ {T | T = [ai1i2...imj1j2...jm
]
n′n′} is an m-order tensor

with n features (Rn or Rn′×n′ , where n′ =
√
n). The learning algorithm for the DSPL

can be summarized as follows:

(1) Initialize the training set, I = {Ii, yi|1 ≤ i ≤ M}
(2) Set the parameters of the convolutions for learning features

(a) number of convolutional layers, L
(b) for each layer, set the filter sizes, Kk, and
(c) kernel strides, skk

(3) For each layer, k, in 1..L:
calculate the convolutions to generate the Yk+1

j for layer, k+1, and the jth feature
map:
Z = Yk+1

j = φ(Bk
j +

Fk∑
m=1

(Kk
m,j ⊗ Yk

m)),

(4) Reshape Z to a vector of length (n′ × n′ × rk+1) - V see in Definition 3.4.
(5) Initialize parameters for the prediction step:

(a) total number of trees, K
(b) regularization parameters, γ and λ,
(c) column subsampling parameter,
(d) maximum tree depth, t and
(e) learning rate

(6) Determine the output class labels:

ŷi = ϕ(Vi) =

K∑
k=1

fk(Vi), fk ∈ F,

where F = f(V) = wq(V)(q : Rn → T,w ∈ RT )

(7) Calculate the optimal leaf weight for the best tree structure

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
,

(8) Calculate the quality of the tree structure, q, using the scoring function

L̃(t)(q) = −1

2

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi + λ
+ γT,

where T is the number of leaves in the tree
(9) Calculate the best splitting points

Lsplit =
1

2

[
(
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
+

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ.

(10) Terminate



A Deep Single-Pass Learning for Recognition of Handwritten Digits 301

Our DSPL algorithm has time complexity:
O(Lc2mnpq) +O(x(Kt+ logB))

where L is the number of layers, c is the number of input or output channels, the data
matrix has size m × n, the kernel has size p × q, x = ∥x∥ is the number of non-missing
entries, K is the number of trees, t is the tree depth and B is the block length, which
reduces to O(Lc2mnpq), because it dominates x(Kt+ logB).

4. Model Evaluations
4.1. Experimental Setup

We chose the experimental setup carefully to balance the resources used with good
performance, guided by the time complexity of our model - see Section 3.2. Initial pa-
rameters were to: number of the convolutional layers or number of maps, L = 3, and the
output depth of the convolutional layer, r = 32. The filter size was set as: K = 3×3: if K
is small, accuracy will be high, but the convolution operation will be repeated many times
and the computation will be slow. On the other hand, if K is too large, accuracy willy
suffer. Additionally, choosing a small stride of the filter, sk = 1, enables small features
to be recognized. The parameters set of our model in 10 layers - see in Table 1.

Table 1. Structure of each layer for the DSPL model.
Layer Type Input Kernel Stride Output

L1 Input [n′, n′,m] na na [n′, n′,m]
L2 Convolutional (Conv1) [n′, n′,m] h× d 1 [n′, n′, r(L−2)]
L3 Max-Pooling (Pool1) Conv1 p× p 1 Pool1
L4 Convolutional (Conv2) Pool1 h× d 1 [n′, n′, r(L−1)]
L5 Max-Pooling (Pool2) Conv2 p× p 1 Pool2
L6 Convolutional (Conv3) Pool2 h× d 1 [n′, n′, r(L)]
L7 Max-Pooling (Pool3) Conv3 p× p 1 Pool3
L8 Reshape Pool3 na na n′ × n′ × r(L)

L9 Class Prediction n′ × n′ × r(L) na na No. of Classes
L10 Output na na na No. of Classes

Notes: na = not applicable.

Our model was compared with with other models which has shown good performance:
Convolutional Neural Networks (CNNs) [8], Extreme Gradient Boosting (XGBoost) [9],
Logistic Regression (LR) [13], Extra Trees Classifier (ETC) [14], Gradient Boosting Clas-
sifier (GBC) [15], Random Forest Classifier (RFC) [16], Gaussian Naive Bayes (GNB) [17],
Decision Tree Classifier (DTC) [18], Multilayer Perceptron (MLP) [19] and the Support
Vector Classification (SVC) [20] - see Table 3.

For the CNNs model, parameters were set to the same as those for our model, DSPL.
The number of neurons in the FC class was 2n, where n = 8, 9 and 10. The XGBoost
model was set similarly, with parameters, matching those in the class prediction layer of
our model, to fairly evaluate performance.

The MLP family model was evaluated with different activation functions: linear (MLP1),
sigmoid (MLP2), tanh (MLP3), and ReLU (MLP4). The numbers of neurons were 2n,
where n = 8, 9 and 10 and the learning rate was set to 0.001. Similarly, the SVC family
model was tested with differing kernel functions: RBF (SVC1), linear (SVC2), polynomial
(SVC3) and sigmoid (SVC4). In total, there were 16 models, including, LR, ETC, GBC,



302 Thai J. Math. Vol. 20 (2022) /S. Thongsuwan and S. Jaiyen

RFC, GNB, and DTC. The effectiveness of our model and properties is summarized in
Table 2.

Table 2. Properties of models used in performance comparison.
Model Parameters details Ref. Time Complexity

Deep Single-Pass Learning (DSPL) No. of Conv. layer L = 3 - O(Lc2mnpq) + O(x(Kt+ logB))
Convolutional Neural Networks (CNNs) No. of Conv. layer L = 3 [8] O(Lc2mnpq) + O(mnhge)
eXtreme Gradient Boosting (XGBoost) Max_depth = 3 [9] O(x(Kt+ logB))
Logistic Regression (LR) Tol = 0.0001, C=1.0 [13] O(mn) to O(mn2)
Extra Trees Classifier (ETC) Criterion = Gini, MinSS = 2 [14] O(nmK)
Gradient Boosting Classifier (GBC) Max_depth = 3, MinSS = 2 [15] O(mnK)
Random Forest Classifier (RFC) Criterion = Gini, MinSS = 2 [16] O(Ktmn log n)
Gaussian Naive Bayes (GNB) Var_Smoothing = 1e-09 [17] O(Mg)
Decision Tree Classifier (DTC) Criterion = Gini, MinSS = 2 [18] O(tm log n)
Multi-layer Perceptron Classifier (MLP)

MLP1 Activation = Linear [19] O(mnhge)
MLP2 Activation = Sigmoid [19] O(mnhge)
MLP3 Activation = tanh [19] O(mnhge)
MLP4 Activation = ReLU [19] O(mnhge)

Support Vector Classification (SVC)
SVC1 Kernel = RBF, C = 1.0 [20] O(m3)
SVC2 Kernel = Linear , C = 1.0 [20] O(m3)
SVC3 Kernel = Poly, C = 1.0 [20] O(m3)
SVC4 Kernel = Sigmoid, C = 1.0 [20] O(m3)

Table 2 also shows the time complexity of the models. We assumed that: L is the
number of layers, c is the various of input or output channels, the data matrix has size
m × n, the filter has size p × q, x = ∥x∥ is the number of non-missing entries, K is the
number of trees, t is the tree depth and B is the block length, m is the number of training
sets, n is the number of features or dimensions, h is number of hidden neurons, g is the
number of classes and e is the number of epochs.

Table 3. Properties of models used in performance comparison.
Model Worst (%) Best (%) Improvement

Deep Single-Pass Learning (DSPL) 99.95 100.0 -
Convolutional Neural Networks (CNNs) 98.72 98.88 1.2%
Extreme Gradient Boosting (XGBoost) 97.12 97.76 2.8%
Logistic Regression (LR) 95.78 97.12 4.2%
Extra Trees Classifier (ETC) 96.21 97.22 3.7%
Gradient Boosting Classifier (GBC) 97.01 97.70 2.9%
Random Forest Classifier (RFC) 95.57 96.10 4.4%
Gaussian Naive Bayes (GNB) 75.19 84.09 24.8%
Decision Tree Classifier (DTC) 88.63 89.80 11.3%
Multi-layer Perceptron Classifier (MLP)

MLP1 95.41 96.58 4.5%
MLP2 97.92 98.24 2.0%
MLP3 97.49 98.18 2.5%
MLP4 97.17 98.34 2.8%

Support Vector Classification (SVC)
SVC1 60.01 65.67 39.9%
SVC2 97.65 97.97 2.3%
SVC3 98.72 98.99 1.2%
SVC4 08.81 09.45 91.1%

Note: Improvement vs DSPL are shown in the ‘Improvement’ column.



A Deep Single-Pass Learning for Recognition of Handwritten Digits 303

4.2. Experimental Results
DSPL was evaluated on the visual recognition of handwritten digits in the [7] data

set - see Section 2.1- a multiclass classification problems and compared with the other
16 models in Table 2. We used three-fold cross-validation to train and test the models.
Each data set was divided into three disjoint subsets. Then, two subsets were used as a
training set and the other subset was used as the testing set. This was repeated three
times, with each of the three subsets used exactly once as the testing set. Overall, our
model efficiently provided worst case accuracy of 99.95% - see Table 3.

However, evaluating the performance for visual recognition of handwritten digits. Our
model provided higher accuracy than all models, with accuracy higher than worst vs
worst here .. CNNs (1.2%), XGBoost (2.8%), LR (4.2%), ETC (3.7%), GBC (2.9%),
RFC (4.4%), GNB (24.8%), and DTC (11.3%). In addition, compares our model with
the MLP family and the SVC family, which shows that our model provides higher accuracy
than the MLP family (2.0% to 4.5%) and the SVC family (1.2% to 91.14%).

5. Conclusion
We designed a deep single-pass learning model (DSPL): it used only one epoch to

learn to recognize handwritten digits. In addition, it can learn data set without needing
to repeatedly adjust the weight. The number of the convolutional layer can be increased
or decreased with some conditions, and the data set in the features learning process will
be passed into XGBoost which is the last layer of the model. A DSPL trained model
was very effective, on tests with 5620 images, its worst case accuracy was 99.95% (and
sometimes reached 100%). DSPL’s worst case was 1.2% better than CNNs, the next best
performer, our tests. The very low number of misclassifications, in the worst case, showed
that our algorithm would be effective in practice.

Acknowledgements
This research was supported by the Thailand Research Fund (TRF) under grant num-

ber RTA6080013. We thank Prof. John Morris of the KMITL Research and Innovation
Services (KRIS) for editing the final manuscript.

References
[1] A. Rehman, S. Naz, M.I. Razzak, I.A. Hameed, Automatic visual features for writer

identification: A deep learning approach, IEEE Access 7 (2019) 17149–17157.
[2] C. Adak, B.B. Chaudhuri, M. Blumenstein, An empirical study on writer identifi-

cation and verification from intra-variable individual handwriting, IEEE Access 7
(2019) 24738–24758.

[3] V. Venugopal, S. Sundaram, Online writer identification with sparse coding-based
descriptors, IEEE Trans. Inf. Forensics Secur. 13 (10) (2018) 2538–2552.

[4] D. Impedovo, G. Pirlo, Dynamic handwriting analysis for the assessment of neurode-
generative diseases: A pattern recognition perspective, IEEE Rev. Biomed. Eng. 12
(2019) 209–220.

[5] D. Impedovo, Velocity-based signal features for the assessment of parkinsonian hand-
writing, IEEE Signal Process. Lett. 26 (4) (2019) 632–636.



304 Thai J. Math. Vol. 20 (2022) /S. Thongsuwan and S. Jaiyen

[6] C. Kahindo, M.A. El-Yacoubi, S.G. Salicetti, A.S. Rigaud, V.C. Lacroix, Character-
izing early-stage alzheimer through spatiotemporal dynamics of handwriting, IEEE
Signal Process. Lett. 25 (8) (2018) 1136–1140.

[7] D. Dua, C. Graff, UCI Machine Learning Repository, Irvine, CA: University of Cal-
ifornia, School of Information and Computer Science.

[8] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[9] C. Tianqi, G. Carlos, XGBoost: A scalable tree boosting system, Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2016) 785–794.

[10] M.D. Garris, J.L. Blue, G.T. Candela, D.L. Dimmick, J. Geist, P.J. Grother, S.A.
Janet, C.L. Wilson, NIST form-based handprint recognition system, NISTIR-5469
(1994) 1–63.

[11] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press; Cambridge, 2016.
[12] D. Stutz, Understanding Convolutional Neural Networks, Seminar Report, Fakultät

für Mathematik, Informatik und Naturwissenschaften Lehr-und Forschungsgebiet In-
formatik VIII Computer Vision, 2014.

[13] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, C.J. Lin, LIBLINEAR: A library
for large linear classification, J. Mach. Learn. Res. (9) (2008) 1871–1874.

[14] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Machine Learning
(63) (2006) 3–42.

[15] J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann.
Statist. 29 (5) (2001) 1189–1232.

[16] L. Breiman, Random forests, Machine Learning (45) (2001) 5–32.
[17] T.F. Chan, G. H. Golub, R.J. LeVeque, Updating formulae and a pairwise algorithm

for computing sample variances, COMPSTAT, 5th Symposium held at Toulouse
(1982), 30–41.

[18] L. Breiman, J. H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, CRC Press; Taylor & Francis Group LLC, New York, 1984.

[19] G.E. Hinton, Connectionist learning procedures, Artificial Intelligence 40 (1989) 185–
234.

[20] C.C. Chang, C.J Lin, LIBSVM: A library for support vector machines, ACM Trans.
Intell. Syst. Technol. (2011) 1–27.


	Introduction
	Materials and Methods
	Handwritten Digits Data Set
	Convolutional Neural Networks (CNNs)
	Extreme Gradient Boosting (XGBoost)

	Deep Single-Pass Learning (DSPL)
	Structure and Parameter Computation
	DSPL Algorithm

	Model Evaluations
	Experimental Setup
	Experimental Results

	Conclusion

