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1. Introduction
Let H(U) be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}.

Also let P be the class of Carathéodory functions in U . For n ∈ N = {1, 2, . . .}, and a ∈ C,
let

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + . . .},

and let H0 = H[0, 1]. We denote by A the class of functions of the form

f(z) = z +

∞∑
k=1

ak+1z
k+1, (1.1)

which are analytic in the open unit disk U . For two functions f and F , analytic in U ,
we say that the function f is subordinate to F , and write f(z) ≺ F (z), if there exists a
Schwarz function w, analytic in U with

w(0) = 0 and |w(z)| < 1, z ∈ U,

such that f(z) = F (w(z)). Furthermore, if the function F is univalent in U , then we have
the following equivalence (cf. [1]):

f(z) ≺ F (z) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).
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Let f ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +

∞∑
k=1

bk+1z
k+1, z ∈ U,

then the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) = z +

∞∑
k=1

ak+1bk+1z
k+1 = (g ∗ f)(z) z ∈ U.

Note that f ∗ g ∈ A.
The generalized Bessel function of the first kind w = wp,b,c is defined as the particular

solution of the second-order linear homogeneous differential equation [2, 3]

z2w′′(z) + bzw′(z) + (cz2 − p2 + (1− b)p)w(z) = 0, (1.2)

which is natural generalization of Bessel differential equation. This function has the
representation

w(z) = wp,b,c(z) =
∑
n≥0

(−1)ncn

n!Γ(p+ n+ b+1
2 )

(z
2

)2n+p

, (1.3)

where b, p, c, z ∈ C and c ̸= 0 and Γ stands for the Euler-Gamma function.
The series (1.3) permits the study of Bessel, modified Bessel and spherical Bessel

functions in a unified manner. We note that,
(i) For b = c = 1 in (1.3), we have the familiar Bessel function of the first kind of

order p defined by (see [4] and also [3])

Jp(z) = wp,1,1(z) =

∞∑
n=0

(−1)n

n!Γ(p+ n+ 1)

(z
2

)2n+p

, z ∈ C,

(ii) For b = 1 and c = −1 in (1.3), we obtain the modified Bessel function of the first
kind of order p defined by (see [4] and also [3])

Ip(z) = wp,1,−1(z) =

∞∑
n=0

1

n!Γ(p+ n+ 1)

(z
2

)2n+p

, z ∈ C,

(iii) For b = 2 and c = 1 in (1.3), the function wp,b,c(z) reduces to
√
2jp(z)/

√
π, where

jp is the spherical Bessel function of the first kind of order p defined by (see [3])

jp(z) = wp,2,1 =

√
π

2

∞∑
n=0

(−1)n

n!Γ(p+ n+ 3
2 )

(z
2

)2n+p

, z ∈ C,

Recently, Baricz et al. [5], Deniz et al. [6] and Deniz [7] (see also [2, 3, 8–14]) consid-
ered the function up,b,c(z) : U → C defined, in terms of the generalized Bessel function
wp,b,c(z), by the transformation

up,b,c(z) = 2pΓ

(
p+

b+ 1

2

)
z1−

p
2wp,b,c(

√
z). (1.4)
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By using the well-known Pochhammer symbol (or the shifted factorial) (a)n defined, for
a, n ∈ C and in terms of the Euler Γ-function, by

(a)n =
Γ(a+ n)

Γ(a)
=

 1, n = 0, a ∈ C\{0},

a(a+ 1) . . . (a+ n− 1), n ̸= 0, a ∈ C,

we obtain for the function up,b,c the following representation

up,b,c(z) = z +

∞∑
n=1

(−1)ncn

4n(κ)n

zn+1

n!
, (1.5)

where κ = p + b+1
2 ̸= 0,−1,−2, . . .. For convenience, we write uκ,c(z) = up,b,c(z). This

function is analytic on C and satisfies the second order linear differential equation
4z2u′′(z) + 2(2p+ b+ 1)zu′(z) + czu(z) = 0.

Now, we introduce a new operator Bc
κ : A → A, which is defined by the Hadamard

product

Bκ,c(f)(z) = uκ,c(z) ∗ f(z) = z +

∞∑
n=1

(−c)nan+1

4n(κ)n

zn+1

n!
. (1.6)

It is easy to verify from the definition (1.6) that
z(Bκ+2,c(f)(z))

′ = (κ+ 1)Bκ+1,c(f)(z)− κBκ+2,c(f)(z). (1.7)

In fact, the function Bκ,c(f)(z) is an elementary transform of the generalized hypergeo-
metric function defined by (see [15–19]; also [20, 21])

qFs(α1, . . . , αq;β1, . . . , βs; z) =

∞∑
n=0

(α1)n, . . . , (αq)n
(β1)n, . . . , (βs)n

zn

n!

(αi ∈ C; βj ∈ C\Z−
0 ; q ≤ s+ 1; q, s ∈ N ∪ {0}; i = 1, 2, . . . , q; j = 1, 2, . . . , s).

That is, we have

Bκ,c(f)(z) = z0F1

(
κ;− c

4
z
)
∗ f(z).

We observe that, for suitable choices of the parameters b and c, we obtain some new
operators:

(i) For b = c = 1 in (1.6), we have the operator Jp : A → A related with Bessel
function, defined by
Jpf(z) = wp,1,1(z) ∗ f(z) =

[
2pΓ(p+ 1)z1−p/2Jp(

√
z)
]
∗ f(z)

= z +

∞∑
n=1

(−1)nan+1

4n(p+ 1)n

zn+1

n!
.

(ii) For b = 1 and c = −1 in (1.6), we obtain the operator Ip : A → A related with
Bessel function, defined by
Ipf(z) = wp,1,−1(z) ∗ f(z) =

[
2pΓ(p+ 1)z1−p/2Ip(

√
z)
]
∗ f(z)

= z +

∞∑
n=1

an+1

4n(p+ 1)n

zn+1

n!
.
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(iii) For b = 2 and c = 1 in in (1.6), we get the operator Sp : A → A related with
Bessel function, defined by

Spf(z) = wp,2,1(z) ∗ f(z) =
[
π− 1

2 2p+
1
2Γ

(
p+

3

2

)
z1−p/2jp(

√
z)

]
∗ f(z)

= z +

∞∑
n=1

(−1)nan+1

4n(p+ 3
2 )n

zn+1

n!
.

which satisfies the recurrence relation

z[Sp+1f(z)]
′ =

(
p+

3

2

)
Spf(z)−

(
p+

1

2

)
Sp+1f(z).

In the present paper, by making use of the differential subordination results of Miller
and Mocanu [1], we determine certain subclasses of analytic functions and obtain some
subordination of analytic functions associated with the Bκ,c-operator defined by (1.6).
To prove our main results, we need the following definition and lemmas.

Definition 1.1. Let 0 ≤ η < 1 and p, b, c ∈ C be such that c ̸= 0, κ = p + b+1
2 ̸=

0,−1,−2, . . . and let Sc(κ, η, h) be the class of functions f ∈ A satisfying the condition
1

1− η

(
z(Bκ,c(f)(z))

′

Bκ,c(f)(z)
− η

)
≺ h(z), 0 ≤ η < 1, h ∈ P.

For simplicity we write

Sc

(
κ, η,

1 +Az

1 +Bz

)
= Sc(κ, η,A,B), −1 ≤ B < A ≤ 1.

Lemma 1.2. [22] For β, γ ∈ C let h be convex univalent in U with h(0) = 1 and
ℜ (βh(z) + γ) > 0, if p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z),

implies that p(z) ≺ h(z).

Lemma 1.3. [23] Let h be convex univalent in U and w be analytic in U with ℜ w(z) > 0.
If p is analytic in U and p(0) = h(0), and

p(z) + zw(z)p′(z) ≺ h(z),

then p(z) ≺ h(z).

Lemma 1.4. [24] Let p be analytic in U with p(0) = 1 and p(z) ̸= 0. Suppose that there
exists a point z0 ∈ U such that

| arg p(z)| < π

2
α, |z| < |z0|,

and

| arg p(z0)| =
π

2
α, 0 < α ≤ 1,

then we have
z0p

′(z0)

p(z0)
= isα,
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where

s ≥ 1

2

(
a+

1

a

)
, when arg p(z0) =

π

2
α,

s ≤ −1

2

(
a+

1

a

)
, when arg p(z0) = −π

2
α,

where
p(z0)

1
α = +ia, a > 0.

Lemma 1.5. [25] The function
(1− z)γ ≡ exp(γ log(1− z)), γ ̸= 0,

is univalent if only if γ is either in the closed disk |γ − 1| ≤ 1 or in the closed disk
|γ + 1| ≤ 1.

Lemma 1.6. [26] Let q be analytic in U and let Θ(w) and ϕ(w) be analytic in a domain
D containing q(U) with ϕ(w) ̸= 0 when w ∈ q(U). Set

Q(z) = zq′(z)ϕ(q(z)), h(z) = Θ(q(z)) +Q(z),

and suppose that
(1) Q is starlike; either
(2) h is convex;

(3) ℜ
(

zh′(z)
Q(z)

)
= ℜ

(
Θ′(q(z)

ϕ(q(z))
+ zQ′(z)

Q(z)

)
> 0.

If p is analytic in U with p(0) = q(0) and p(U) ⊂ D, and
Θ(p(z)) + zp′(z)ϕ(p(z)) ≺ Θ(q(z)) + zq′(z)ϕ(q(z)) = h(z),

then p(z) ≺ q(z), and q is the best dominant.

2. Main Results
Theorem 2.1. Let f ∈ A, h ∈ P, 0 ≤ η < 1, c ∈ C with c ̸= 0, p, b ∈ R be such that
κ > −1 and suppose that

ℜ
(
(1− η)h(z) + η + κ

)
> 0.

Then the subordination condition
1

1− η

(
z (Bκ+1,c(f)(z))

′

Bκ+1,c(f)(z)
− η

)
≺ h(z),

implies that
1

1− η

(
z (Bκ+2,c(f)(z))

′

Bκ+2,c(f)(z)
− η

)
≺ h(z),

where Bκ+2,c(f)(z) ̸= 0 for z ∈ U .

Proof. Let

p(z) =
1

1− η

(
z (Bκ+2,c(f)(z))

′

Bκ+2,c(f)(z)
− η

)
≺ h(z),
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where p is an analytic function with p(0) = 1. By using the equation
z (Bκ+2,c(f)(z))

′
= (κ+ 1)Bκ+1,c(f)(z)− κBκ+2,c(f)(z), z ∈ U. (2.1)

we have

(1− η)p(z) + η + κ =
(κ+ 1)Bκ+1,c(f)(z)

Bκ+2,c(f)(z)
. (2.2)

Differentiating logarithmically derivatives in both sides of (2.2) and using (2.1) we have

p(z) +
zp′(z)

(1− η)p(z) + η + κ
=

1

1− η

(
z (Bκ+1,c(f)(z))

′

Bκ+1,c(f)(z)
− η

)
, 0 ≤ η < 1.

Since ℜ ((1− η)h(z) + η + κ) > 0, applying Lemma 1.2, it follows that p(z) ≺ h(z), that
is

1

1− η

(
z (Bκ+2,c(f)(z))

′

Bκ+2,c(f)(z)
− η

)
≺ h(z).

This completes the proof.

Theorem 2.2. Let 0 < ρ < 1, γ ̸= 1, c ∈ C with c ̸= 0, p, b ∈ R be such that κ > −1
satisfying either |2(κ + 1)γρ − 1| ≤ 1 or |2(κ + 1)γρ + 1| ≤ 1. If f ∈ A satisfiees the
condition

ℜ
(
1 +

Bκ+1,c(f)(z)

Bκ+2,c(f)(z)

)
> 1− ρ, z ∈ U, (2.3)

then (
zκBκ+2,c(f)(z)

)γ ≺ q1(z) =
1

(1− z)2(κ+1)γρ
,

where q1 is the best dominant and zκBκ+2,c(f)(z) ̸= 0 for z ∈ U .

Proof. Denoting p(z) = (zκBκ+2,c(f)(z))
γ . It follows that

zp′(z)

p(z)
= γ(κ+ 1)

Bκ+1,c(f)(z)

Bκ+2,c(f)(z)
. (2.4)

Combing (2.3) and (2.4), we find that

1 +
zp′(z)

(κ+ 1)γp(z)
≺ 1 + (2ρ− 1)z

1− z
, (2.5)

if we set Θ(w) = 1, ϕ(w) = 1
γ(κ+1)w , and q1(z) =

1
(1−z)2(κ+1)γρ , then by the assumption of

the theorem and making use of Lemma 1.6, we know that q1 is univalent in U . It follows
that

Q(z) = zq′1(z)ϕ(q1(z)) =
2ρz

1− z
,

and

h(z) = Θ(q1(z)) +Q(z) =
1 + (2ρ− 1)z

1− z
.

If we consider D such that
q(U) =

{
w : |w

1
ξ − 1| < |w

1
ξ |, ξ = 2γ(κ+ 1)ρ

}
⊂ D,

then it is easy to check that the conditions (i) and (ii) of Lemma 1.6 hold true. Thus, the
desired result of Theorem 2.2 follows from (2.5).
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Taking into account the above result, we have the following particular case. Choosing
f(z) = z

1−z , ρ = 1
2 , p = − 3

2 , b = c = 1 (κ = − 1
2 ) and p = − 1

2 , b = c = 1 (κ = 1
2 ), in the

above theorem we obtain for κ > −1 and z ∈ U the following results

ℜ
(
1 +

√
z cot

√
z
)
>

1

2
⇒
(
sin

√
z

z

)γ

≺ 1

(1− z)
γ
2

,

and

ℜ
(
1 +

z sin
√
z

3(sin
√
z −

√
z cos

√
z)

)
>

1

2
⇒
(
3
sin

√
z −

√
z cos

√
z

z

)γ

≺ 1

(1− z)
3
2γ

.

Here we used the relations

u− 1
2 ,1,1

=

√
π

2
z

1
4 J− 1

2
(
√
z) = cos

√
z, u 1

2 ,1,1
=

√
π

2
z−

1
4 J 1

2
(
√
z) =

sin
√
z√

z
,

and

u 3
2 ,1,1

= 3

√
π

2
z−

31
4 J 3

2
(
√
z) = 3

(
sin

√
z

z
√
z

− cos
√
z

z

)
.

Theorem 2.3. Let h be convex univalent function in U and
ℜ
(
µ+ η + (1− η)h(z)

)
> 0, z ∈ U.

If f ∈ A satisfies the condition
1

1− η

(
z(Bκ+1,c(f)(z))

′

Bκ+1,c(f)(z)
− η

)
≺ h(z), 0 ≤ η < 1,

then
1

1− η

(
z(Bκ+1,c(Fµ(f))(z))

′

Bκ+1,c(Fµ(f))(z)
− η

)
≺ h(z), 0 ≤ η < 1,

where Fµ is the Bernadi integral operator defined by

Fµ(f)(z) =
µ+ 1

zµ

∫ z

0

tµ−1f(t)dt. (2.6)

Proof. From (2.6), we have
z(Bκ+1,c(Fµ(f))(z))

′ = (µ+ 1)Bκ+1,c(f)(z)− µBκ+1,c(Fµ(f))(z). (2.7)
Let

p(z) =
1

1− η

(
z(Bκ+1,c(Fµ(f))(z))

′

Bκ+1,c(Fµ(f))(z)
− η

)
, (2.8)

where p is analytic function with p(0) = 1. Then, using (2.7) we get

µ+ η + (1− η)p(z) = (µ+ 1)
Bκ+1,c(f)(z)

Bκ+1,c(Fµ(f))(z)
. (2.9)

Differentiating logarithmically in both sides of (2.9) and multiplying by z, we have

p(z) +
zp′(z)

µ+ η + (1− η)p(z)
=

1

1− η

(
z(Bκ+1,c(f)(z))

′

Bκ+1,c(f)(z)
− η

)
.

Since ℜ
(
µ+ η + (1− η)p(z)

)
> 0 thus by Lemma 1.2, we have

p(z) =
1

1− η

(
z(Bκ+1,c(Fµ(f))(z))

′

Bκ+1,c(Fµ(f))(z)
− η

)
≺ h(z).



288 Thai J. Math. Vol. 20 (2022) /S. Rahrovi

This completes the proof.

Theorem 2.4. Let f ∈ A, 0 < δ ≤ 1, 0 ≤ γ < 1, c ∈ C with c ̸= 0, p, b ∈ R be such that
κ > −1. If∣∣∣∣arg(z(Bκ+1,c(f)(z))

′

Bκ+1,c(g)(z)
− γ

)∣∣∣∣ < π

2
α,

for some g ∈ Sc(κ+ 1, η, A,B). Then∣∣∣∣arg(z(Bκ+2,c(f)(z))
′

Bκ+1,c(g)(z)
− γ

)∣∣∣∣ < π

2
α.

where α (0 < α ≤ 1) is the solution of the equation

δ =


α+ 2

π arctan
α cos π

2 t1
(1−γ)(1+A)

1+B +γ+κ+α sin π
2 t1

, B ̸= −1,

α, B = −1,

(2.10)

where

t1 =
2

π
arcsin

(
(1− γ)(A−B)

(1− γ)(1−AB) + (γ + κ)(1−B2)

)
. (2.11)

Proof. Let

p(z) =
1

1− γ

(
z(Bκ+2,c(f)(z))

′

Bκ+1,c(g)(z)
− γ

)
.

Using (1.7), it is easy to see that(
(1− γ)p(z) + γ

)
Bκ+2,c(g)(z) = (κ+ 1)Bκ+1,c(f)(z)− κBκ+2,c(f)(z). (2.12)

Differentiating (2.12) and multiplying by z, we obtain
(1− γ)zp′(z)Bκ+2,c(g)(z) +

(
(1− γ)p(z) + γ

)
z(Bκ+2,c(g)(z))

′

= (κ+ 1)z(Bκ+1,c(f)(z))
′ − κz(Bκ+2,c(f)(z))

′ (2.13)
Since g ∈ Sc(κ+ 1, η, A,B), by Theorem 2.1, we have g ∈ Sc(κ+ 2, η, A,B). Let

q(z) =
1

1− γ

(
z(Bκ+2,c(g)(z))

′

Bκ+1,c(g)(z)
− γ

)
.

Then by using (1.7) once again, we have

q(z)(1− γ) + γ + κ = (κ+ 1)
Bκ+1,c(g)(z)

Bκ+2,c(g)(z)
. (2.14)

From (2.13) and (2.14), we obtain
zp′(z)

q(z)(1− γ) + γ + κ
+ p(z) =

1

1− γ

(
z(Bκ+1,c(f)(z))

′

Bκ+1,c(g)(z)
− γ

)
.

Since q(z) ≺ 1+Az
1+Bz (−1 ≤ B < A ≤ 1), we have∣∣∣∣q(z)− 1−AB

1−B2

∣∣∣∣ < A−B

1−B2
, z ∈ U, B ̸= −1, (2.15)

and
1−A

2
≤ ℜ q(z) , z ∈ U, B = −1. (2.16)
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Therefore, from (2.15) and (2.16), we obtain∣∣∣∣q(z)(1− γ) + γ + κ− (1− γ)(1−AB)

1−B2
− γ − κ

∣∣∣∣ < (1− η)(A−B)

1−B2
, B ̸= −1.

For B = −1, we have

ℜ
(
q(z)(1− γ) + γ + κ

)
>

(1− γ)(1−A)

2
+ γ + κ.

Let q(z)(1− γ) + γ + κ = r exp(iΦ2 ), where

(1− γ)(1−A)

1−B
+γ+κ < r <

(1− γ)(1 +A)

1 +B
+γ+κ, B ̸= −1, −t1 < Φ < t1,

and t1 is given by (2.11), and

(1− γ)(1−A)

2
+ γ + κ < r < ∞, B = −1, −t1 < Φ < t1.

We note that p is analytic in U with p(0) = 1, so by applying the assumption and Lemma
1.3 with

w(z) =
1

q(z)(1− γ) + γ + κ
,

we have ℜ w(z) > 0. Set

Q(z) =
1

1− γ

(
z(Bκ+1,c(f)(z))

′

Bκ+1,c(g)(z)
− γ

)
, 0 ≤ γ < 1.

At first, suppose that p(z0)
1
α = ia(a > 0). For B ̸= −1 we have

arg(Q(z0)) = arg

(
z0p

′(z0)

q(z0)(1− γ) + γ + κ
+ p(z0)

)
=

π

2
α+ arg

(
1 +

isα

r

(
exp

(
−iπ

2
Φ

)))

≥ π

2
α+ arctan

 sα sin
π

2
(1− Φ)

r + kα cos iπ
2 (1− Φ)



≥ π

2
α+ arctan

 α cos
π

2
t1

(1− γ)(1 +A)

1 +B
+ γ + κ+ α sin

π

2
t1


=

π

2
δ,

where δ and t1 are given by (2.10) and (2.11), respectively.
Similarly, for the case B = −1, we have

arg(Q(z)) = arg

(
z0p

′(z0)

q(z0)(1− γ) + γ + κ
+ p(z0)

)
≥ π

2
α.

These results obviously contradict the assumption.
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Next, suppose that p(z0)
1
α = −ia (a > 0), B ̸= −1 and z0 ∈ U . Applying the same

method we have

arg(Q(z0)) = arg

(
z0p

′(z0)

q(z0)(1− γ) + γ + κ
+ p(z0)

)
=

−π

2
α+ arg

(
1− isα

(
r exp

(
iπ

2
Φ

))−1
)

≤ −π

2
α− arctan

 sα sin
π

2
(1− Φ)

r + sα cos
iπ

2
(1− Φ)


≤ −π

2
α− arctan

 α cos
iπ

2
t1

(1−γ)(1+A)
1+B + γ + κ+ α sin

π

2
t1


=

−π

2
δ,

where δ and t1 are given by (2.10) and (2.11) respectively.
Similarly, for the case B = −1, we have

arg(Q(z)) = arg

(
z0p

′(z0)

q(z0)(1− γ) + γ + κ
+ p(z0)

)
≤ −π

2
α,

which contradicts the assumption of Theorem 2.4. Therefore, the proof of Theorem 2.4
is completed.
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