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Abstract The semigroup has many applications in finite state machine, transformation etc. So the
abstract concept of neutrosophic cubic sets was required to establish these ideas. It was a motivation
for the authors to present the idea of neutrosophic cubic semigroups. Operational properties of neutro-
sophic cubic sets are investigated. The notion of neutrosophic cubic subsemigroups and neutrosophic
cubic left (resp. right) ideals are introduced and several properties are investigated. Relations between
neutrosophic cubic subsemigroups and neutrosophic cubic left (resp. right) ideals are discussed. Charac-
terizations of neutrosophic cubic left (resp. right) ideals are considered, and how the images or inverse
images of neutrosophic cubic subsemigroups and cubic left (resp. right) ideals become neutrosophic cubic
subsemigroups and neutrosophic cubic left (resp. right) ideals, respectively, are studied. An application

on neutrosophic cubic ideals is discussed.
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1. INTRODUCTION

An institution decides to evaluate its students. The panel consists of both internal
and external evaluators. What would be the best aggregated value? And why neutro-
sophic cubic sets are used? The answer to first question is the ideals in semigroups may
be considered. To answer the second question we would suggest the review of following
literature. Fuzzy sets are initiated by Zadeh [23]. In [24], Zadeh made an extension of the
concept of a fuzzy set by an interval-valued fuzzy set, i.e., a fuzzy set with an interval-
valued membership function. In traditional fuzzy logic, to represent the expert’s degree
of certainty in different statements, numbers from the interval [0, 1] are used. It is often
difficult for an expert to exactly quantify his or her certainty, therefore, instead of a real
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number, it is more adequate to represent this degree of certainty by an interval or even by
a fuzzy set. In the first case, we get an interval-valued fuzzy set. In the second case, we
get a second-order fuzzy set. Interval-valued fuzzy sets have been actively used in real-
life applications, for example, Sambuc [12] in Medical diagnosis in thyroidian pathology,
Kohout [11] also in Medicine, in a system CLINAID, Gorzalczany [12] in Approximate
reasoning, Turksen [12, 16] in Interval-valued logic, in preferences modelling [17], etc.
These works and others show the importance of these sets. Fuzzy sets deal with pos-
sibilistic uncertainty, connected with imprecision of states, perceptions and preferences.
Using a fuzzy set and an interval-valued fuzzy set, Jun et al. [3] introduced a new no-
tion, called a cubic set, and investigated several properties. Cubic set theory is applied
to BCK/BClI-algebras (see [5-8]), LA-semihypergroups [19] and I'-semihypergroups [24].
Jun et al. [4] introduced the concept of cubic ideals in semigroups. They investigated op-
erational properties of cubic sets, the notion of cubic subsemigroups and cubic left (resp.
right) ideals, and investigated several properties. The concept of neutrosophic set (NS)
developed by Smarandache [13], is a more general concept which extends the concepts of
the classic set and fuzzy set [14]. Neutrosophic set theory has diverese applications in a
number of different aspects (refer to the site http://fs.gallup.unm.edu/neutrosophy.htm).
Jun et al. [9] introduced the notion of neutrosophic cubic set extending the concept of
cubic sets to the neutrosophic sets. Some applications of neutrosophic cubic sets can be
found in [1, 20, 25].

In this paper, we introduce the concept of neutrosophic cubic ideals in semigroup.
We investigate some operational properties of neutrosophic cubic sets. The notion of
neutrosophic cubic subsemigroups and neutrosophic cubic left (resp.right) ideals are in-
troduced, and several properties are investigated. Relations between neutrosophic cubic
subsemigroups and neutrosophic cubic left (resp. right) ideals are discussed. Charac-
terizations of neutrosophic cubic left (resp. right) ideals are considered, and how the
images or inverse images of neutrosophic cubic subsemigroups and cubic left (resp. right)
ideals become neutrosophic cubic subsemigroups and neutrosophic cubic left (resp. right)
ideals, respectively, are discussed. In the last section, an application of aggregation used
to neutrosophic cubic ideals is provided.

2. PRELIMINARIES

In this section we recall some definitions.

Definition 2.1. A non-empty set S together with an associative binary operation * - ”

is called a semigroup.

Definition 2.2. A non-empty subset A of a semigroup S is called a subsemigroup if
AACA.

Definition 2.3. A non-empty subset A of S is left(resp., right) ideal of S if SACA
(resp., ASCA).
Definition 2.4. A fuzzy set in X is a function p: X — [0, 1].

Definition 2.5. An interval valued fuzzy set (briefly, IVF-set) fia on X is defined as
fa = {{z,[uy(x),ph(z)]) 2 € X}, where p(z) < pfi(z), for all z € X. Then the
ordinary fuzzy sets pu; : X — [0,1] and pf : X — [0,1] are called a lower fuzzy set
and an upper fuzzy set of fi, respectively. Let fia(z) = [, (), puk(2)]. Then A = {<

x,fia(x) > x € X}, where py : X — DI0, 1].
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Definition 2.6. [24] Let X be a non-empty set. A cubic set in X is a structure of the
form: C' = {(z, p(z), A(z))|z € X} where i is an interval-valued fuzzy set in X and A is
a fuzzy set in X.

Definition 2.7. [15] A neutrosophic set (NS) in X is a structure of the form: \ =
{(Ar(2), A\1(z), Ap(x)) |z € X}, where Ay : X — [0,1] is a truth membership function,
Ar: X — [0,1] is an indeterminate membership function, and Ap : X — [0,1] is a false
membership function.

Definition 2.8. [22] Let X be a non-empty set. An interval neutrosophic set (INS) in X
is a structure of the form: = {(ir(x), gr(x), pr(x)) |z € X} where fip, iy and fp are
interval-valued fuzzy set in X, which are called an interval truth membership function, an
interval indeterminacy membership function and an interval falsity membership function,
respectively.

Definition 2.9. [9] Let X be the space of points. We define a neutrosophic cubic
set(NCS), A(x) = {{i\) |z € X} where fi(z) = {{jir, jir,jir) [z € X} and () =
{<)\T7)\I>)\F> |£L‘ S X} with ﬁT X — D[O7 1}, ﬁ[ X = D[O, 1]7 ﬁp X — D[O, 1] and
Ar 0 X = [0,1], Ay : X — [0,1], Ap : X — [0,1]. We will briefly denote by A (z) =
{{r, por, oF, Ay A1, Ap) | € X}, where [0,0] X i+ ir +oir = [3,3] and 0 < Ap + Ap +
Ar < 3.

3. OPERATIONAL PROPERTIES OF NEUTROSOPHIC CUBIC SETS

In this section, we define some basic operations on neutrosophic cubic sets. Shortly we
use NC instead of neutrosophic cubic.
Definition 3.1. [9] Let X be non-empty set. A NC set A in X is the structure
A(ZE) = {<xaﬁT7ﬁIaﬁFaATa)‘Iv)\F> HEUS X}

Definition 3.2. For any non-empty subset G of set X, the characteristic NC function of
G in X defined to be a structure

Xg = {(z, prG, firg, irG, A\rc, A\16, A\rg) € X},

- 1], ifzed, N — 0, ifzegq,
HTG = [0 0] TG =

where

,  otherwise, 1, otherwise,
~ )1, ifzred, A 0, ifzed,
pie = [00], otherwise, e 1,  otherwise,
~_Joo], ifzed, Ao 1, ifzeq,
HrG = [11], otherwise, re = 0, otherwise.

Definition 3.3. The whole NC set S in semigroup S is defined to be the structure
§= {<ITS,IL976FS»OT5’70137 1FS> HEAS 5} ;
where 1= [1,1] and 0= [0,0].

Definition 3.4. For two NC set A = (i, i, fiF, A1, A1, Ap) and B = (Up, Up, Up, 07, N1, NF)
in semigroup S, we define

ACB << pr 2vp,ir U1, ip = Up and Ar > 01, A\r 2> 01, Ap < np.
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Definition 3.5. NC pI‘OdUCt of A= <ﬁT, /7[, /NJ,F, /\T, )\[7 )\F> and B = <ZT, AV}, ﬁF, nr,nr, 77F>
is defined to be NC set

_ z, (ur ovr) (x), (ir o vr) (), (ir o UF) (),
A®B{< (- 0 nr)(@), (At 0 n1)(@), (A0 ) (@) € § >}
which briefly it is denoted by
/ (ir o 5r) (@), (ir 0 71) (2), (fir 0 7r) ()
AwB= < (Ar- 0 0) (@), (Ar 0 11) (&), O\r 0 1) () >

where ppovy, irovy, ppovr and Aronr, Arony, A\pong are defined as follows, respectively

rsup [rmin{pr(y),vr(z)}], if x =yz for some y, z € S,

(ar ovr)(z) = {””—yz

[0,0], otherwise,
and
A [max{Ar(y),nr(2)}], if z=yz for some y,z € S,
(A1 onr)( T=yz
, otherwise,
rsup [rmin{u;(y),vi(z)}], if x = yz for some y,z € S,
(i1 o vr)( r= ”Z
otherwise,
and
A [max{A;(y),nr(2)}], if ¢ =yz for some y,z € S,
(Aromr)( :yz
1, otherwise,
rinf [rmaz {pp(y),vr(2)}], if x = yz for some y,z € S,
( HF © VF = yz
otherwise,
and
vV [min{Ar(y),nr(2)}], if z=yz for some y,z €S,
(Aronr)( 0
0, otherwise,
forall z € S.

Definition 3.6. Let A and B be a two NC sets in X. The intersection of A and B,
denoted by AN B, is the NC set

AN B = (arNor, fNwr, ipUp, Ar V nr, Ar V i, A Anp)

where
(ar0or) (z) = rmin{fr (), vr(x)}, (E0wr) ()
— rmindjir (@), 71 ()}, (r0vF) (2)
= rmaz{fip(z),vr(2)}
and

O Var)(z) = max{\p(z),nr(@)}, (A\r Vo) (z)
= max{A;(z),nr(x)}, Ar Anp)(z)
= min{Ap(z),nr(x)}.
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Definition 3.7. The union of A and B, denoted by A U B, is the NC set

AU B = (irUrr, 1rU0r, fipO0p, Ar Anr, At Anp, Ap V ne)

where
(rUvr) (x) = rmax{pr(x),vr(z)}
(mrnor) (x) = rmax{pr(z), vr(x)}
(irnop) (x) = rmin{ir(z), vr(z)}
and
(Ar Anr)(z) = min{Ar(z),nr(2)},
(ArAnr)(z) = min{A(x),n(z)},
(ArVnr)(r) = max{Ap(z),nr(z)}.

Proposition 3.8. Forany NC sets A = (z, jir, [i1, fir, AT, A1, AR), B = (U1, U, VR, 7, 11, 1F)
and C = <6T7EI,EF76T76175F> in semigroup S. We have

(1) AuBNC)=(AUB)N(AUCQC).
(2) AN(BUC)=(ANB)U(ANCQO).
(3) A (BUC)=(A®B)U(A® ().
4) A (BNC)C (A@B)N(A® ().

Proof. (1) and (2) are straightforward.
(3) Let X be any element of S. If x is not expressed as x = yz, then

(fir o Fr0Cr)) (@) = (0. 0] = ((ir o 7r)0(fir o Cr) (a),
(o @IC))@) = [0,0)= ((r o 7)T(ir o &) (w),
(i o (Fef)@) = [1.1] = (i o ) © Cr)) @)

and

(A1 o (nr Adr))(x) 1= ((Aronr) A (Arodr))(z),
(Aro(miAd))(xz) = 1=((Aroni)A(Arodr))(z),
(Aro(nrVip))(z) = 0= ((Aronr)V (Arodr))().



262 Thai J. Math. Vol. 20 (2022) /M. Gulistan et al.

Therefore A® (BUC) = (AQ B)U(A® (). Assume that x is expressed as x = yz. Then

T=Yyz

(ir o FrUC)@) = rsup [rmin {fir(v), Fr U r)(2)}
= rsup [rmm {uT rmaa:{ CT( )}H
= rsup [rmax{rmm{uT (2)}, rmin {MT( ) ZT(Z)}H
= rmazx {rsup [rmin{pnr(y z)}, rmin {IJT( )s ZT(Z)}}]}
= ((fir 0 7r) U (fir 0 Cr)) ()
iz o 71 0)(w) = rsup [rmin {fir(w), (71 U (=)
= rsup [rmin ﬁl(y),rmal’{171(2),21(2)}}}
(2)

)} rmin {ir (), (2) } ]

= rsup [rma:c {rmin{ﬁj(y), Uy
r=yz

— rma {rsup {rmin (o), (20 i {7n 0. o)} 1
= (Grom) Ui o@))()

(ip o (@r 0 Cr)(@) = ring [rmaz {fir(y), Fr N Cr)() }|
= ring [rmaz {fir (y) rmm{ ). Cr()}}]
~ rin [rmin {rmaz{fir (v), 7r (2)}, rmaz {fir (), Ce() } ]
_ rmm{rmf{rmax{uF @ rmas {fin(u). Ge(a) 11}

= ((ir o 7p) N (jip o (p)) ()

and

(Aro (e Adr))(w) = A max{Ar(y), (nr Adr)(2)}
A max {Ar(y), min{nr(2), 0r(2)}}

win{ A, max{hn () ), A maxOr(n).07(2)} |

min {()\T (¢] T]T) y ()\T o ST)}
(AT omr) A (Ar 0 dr)) (7).
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(Aro(nrAép))(x)

(Aro(nrVir))(z)

Hence (3 ) holds.

= A max{Ar(y),(nr Nor)(2)}

T=yz

= A max{A(y), min{n;(2),d;(2)}}

T=yYz

= min {xé\yz max{)q(y)m[(z)},xé\yz max{Ar(y), 61(2;)}}
= ((Aronr) A(Arodr)(x).

= \/ min{/\p( ), (nFp Vr)(2)}
= VvV min{Ap(y), max{np(z),0r(2)}}

=Yz

= max{$Yy2min{AF(y),nF(z)},xl/yzmin{)\p(y),5F(z)}}
= ((Aronr)V(Arodr))(z).

(4) Let « € S. If x is not expressed as © = yz, then it is clear that A® (BN C) C
(A® B)N(A® C). Assume that there exist y,z € S such that = yz. Then

(fir o (70 N Cr))(2)

(i o (71 N ¢1))(x)

Zi@;}j {rmm {,uT (rr N CT H
Zi@;}; {rmm {,uT , TN { ), Cr(z )}H
Zilgjg {rmzn {rmm{uT z)}, rmin {uT( )s ZT(Z)}}:|

rmin {rsup[rmin{ﬁT (y), vr(2)}], rsup[rmin {ﬁT(y), gT(z) }]}

T=yz T=yz

((fir o o7) N (fir © (1) ()

roup rmin . 10 )9}
o [rmin {70 rmm{ )]
Ziﬂf’z’ L“mm {Tmzn{m z)}, rmin {m( ), ZI(Z)}H

rmin {rsup[rmin{ﬁl (v),v1(2)}], rsup[rmin {ﬁl (y), Zj(z)}]}

T=yz T=yz

((iz 0 or) N (i © C1)) (@)
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(fip o (7P UCP))(x) =

and

(A1 o (nr V or))(x)

(Aro(nrVvar))(z)

(Aro(nr ANdp))(x)

Hence (4) holds.

rinf {rmam {ﬁF(y)v (vr U ZF)(Z)H

T=yz

rinf [rmam {ﬁp(y), rmax {DF(Z)’ gF(z)}H

T=yz

rinf [rma:z: {rmaz{ﬁp(y), vp(z)}brmax {ﬁp(y), gp(z)}H

T=yz

rmazx {r inf[rmax{pr(y), vr(2)}], rinf[rmaz {ﬁp (y), Zp(z) }] }

rT=yz rT=yz

((Fip 0 7p) U (fir o CF)) (@)

— mé\yz max {Ar(y), (nr Vir)(2)}
= xé\yz max {Ar(y), max{nr(z),or(z)}}

= A max {max{Ar(y),nr(z)}, max{\r(y),or(z)}}

T=yz

> m{ A maxOur).or(:))., A maxOr(). 072}
= ((Aronr) vV (Ar o dr))(z).

A max{Ar(y), (1 v 6r)(2)}

= wé\yzmax{)\l(y),maX{m(Z)ﬁI(Z)}}
= z:/\yzmax{max{/\j(y),nI(Z)}vmaX{/\I(Z/):‘SI(Z)}}

> wa{ A maxOu()m () A max(hn().616:))
= ((Aronr) VvV (Arodp))(@).

= v min {Ar(y), (nr A op)(2)}

= v min{Ae(y),minfnr (), 6r(2)})

= V min {min{)\F(y)777F(Z>}7min{)\F(y>v5F(Z>}}

T=yz

< wind v minQr()e(2). Y, minfe(), 552}
= ((Aronr) A(AFodr))(z).

Proposition 3.9. For any NC sets A = (jir, i1, i, A\, A1, ARY, B = (U1, U1, Up, m1, N1, MF)
and C' = <ZT,51,6F,5T,61,5F> in semigroup S, if AC B, then AR C E B® C and

CRACC®B.
Proof. Straightforward.

Proposition 3.10. For any non-empty subsets G and H of semigroup S, we have

(1) xG® xH = xGH
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= (HrxGORTYH, [t ,UIXGOMIXHa L GORFxH s ATxG © ATy H > AIxG © AxH» AFxG © AFyH)

= (WTxGH> RIxGH > s LFXGH s ATXGH s NIxGH s AFxGH)

(2) xGN XH XG NnH
= (Uryc N BryH, ,UIXG Ny, BExG U BEyH s ATxG V ATy H, AixG V Ay Hs APyG N APy H)
= (TxGNH > LIxGNH s s BFxGUH » N\TxGNH s ANIxGNH > AFxGUH )

(3) xGU XH XG UH
= (lirxa U iy i, Brxc U By s BExG OV EH MG N ATy H > AixG A Ay Arxa V ApyH)
= (UrxGUH s LEXGUH » s REXGNH s ATYGUH s NIxGUH » AFxGNH ) -

Proof. (1) Let a € S. If a € GH, then pipygru(a) = [1,1], frycu(a) = [1,1], firyar(a) =
[0,0], A\ryar(a) = 0, Arycr(a) = 0, Apycr(a) =1 and @ = zy for some a € G and b € H.
Thus

(firxG © firxm)(a) = rsup [rmin {firxc (%), firxn (y)}]
= rmin{piry(b), prym(c)} = [1,1]
(firye o firym)(a) = rsup [rmin {firyc(®), e (y)}]
= rmin{pirye (), frym(c)} = [1,1]
(ryc o prym)(a) = 7;@:7”;]; [rmax {fipyc (), firye (Y)}]
= rmaz {firxc(b), frym(c)} = [0,0]
and
(AryG © Arym)(a) = a:/\xy[max {Arxa (), Arxn (y)}]
S max {)\TxG(b)a )\TXH (C)} = 0

(Arxa © Aryr)(a) A max {Ane (@), A (9)}]

< max{Arg(0), Aryu(c)} =0
()‘FxG o )\FxH)(a) = a:\/a:y[min {)‘FxG(:L')v )\FxH(y)}]
> min{Apyg(b), Aryu(c)} = 1.
It follows that
(ﬁTxG o ﬁTxH) (CL) = [17 1]’
(ﬁ]xG o ﬁIXH)(a) = [17 1]7
(tryc o prym)(a@) = [0,0]
and
(ArxG o Arym)(a) = 0,
(Arxg o Arym)(a) = 0,
()\FXG © AFXH)(G) =1
Therefore
(BryG © ITxH, ATy G © ATxH) = (BTyGHs A\PXxGH)
(FrxG © BrxHs AixG © AiyH) =  (fIxGH> MNXxGH)

(BFxG © BExH, APxG © ApyH) = (UEyGH A\FXxGH)
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that is, xG ® xH = xGH. Assume that a ¢ GH. Then
firyau(a) = (0,0, Aryar(a) = [0,0], Apygr(a) = [1,1]
and
Aryar(a) =1, Ayar(a) = 1, Apyar(a) = 0.

Let y, z € S be such that a = yz. Then we know that y ¢ G or z ¢ H.Assume that y ¢ G.
Then

(iryG o prxm)(a) = Ziﬁf[rmin {irxa(y), irxn (2)}]
= Ziz;;g[rmm {[0°0], firym (2)}]
= [0,0] = firycu(a)

(ine o fine)(a) = rsup [rmin {firG (). Fri (2))]

= Zizzz)[rmm {[0 0], 1y m (2)}]
= [070} = ﬁIXGH (a)

(ryc o prym)(a) = Zi@{[’"mm {nrxc(y), ipym(2)}]
- Zizvzj:[rmax {1, 1], ipyr(2)}]

= [1,1] = pirxcu(a)
and

(ArxgoArym)(@) = A [max{Aryc(y) Arxn(2)]]
= A a1 (] = 1= Mryen(@)

A o)) = A [max{AnG (), Arc (2)}]
= A max{LAns(2)}] = 1 = Anan(a)

(AryG © Apxm)(a) = asz[min {Arxc (W), Arxr (2)}]
= a:VyZ[min {0, A\ryu(2)}] = 0 = Apyou(a)

Similarly, if z ¢ H, then

(ﬁTXG o ﬁTXH)(a’) = [07 0] = ﬁTXGH(a)y
(firye © iy )(a) = [0,0] = fryeu(a),
(hrxcoprym)(a) = [L,1] = firyeu(a)
and
(Arxe o Adrym)(a) = 1= Aryeu(a),
(Arxc o Arxm)(a) = 1= Angul(a),
(Aryc o Apyu)(a) = 0= Apcu(a).

Therefore G ® xH = xGH. The proof of (2) and (3) are straightforward. u
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4. NEUTROSOPHIC CUBIC SUBSEMIGROUPS AND IDEALS
In this section, we define different types of Neutrosophic cubic ideals in semigroups.

Definition 4.1. A NC set A = (fr, fir, fiF, A7, A1, Ar) in semigroup S is called a NC
subsemigroup of S if it satisfies:

(Vz,y € S) pr(zy) = rmin{nr (x),pr (y)},
ar(zy) = rmin{a (z), 6 (y)}
fr(zy) = rmaz{ir (z), o (y)}-
Ar(zy) < max{Ar(z),Ar(y)},
Ar(zy) < max{Ar(x),\1(y)},
Ar(zy) > min{Ar(2), Ar(y)}.

Example 4.2. Consider a semigroup S = {a,b, ¢} with the following Cayley’s table

alblc
alc|c|c
blc|lcla
clelb|ec

Define a NC set A = (lir, fir, fip, A, A1, Ap) in S by

AT fir pF AT | A1 | AR
[0.3,0.6] | [0.5,0.7] | [0.6,0.7] | 0.4 | 0.6 | 0.8
0.2,0.4] [ [0.3,0.4] | [0.8,0.9] | 0.6 | 0.7 | 0.6
[0.7,0.9] | [0.8,0.9] | [0.5,0.6] | 0.2 | 0.3 | 0.9

Qo |n

Theorem 4.3. A NC set A = (ir, i1, iF, AT, A1, Ar) in semigroup S is a NC subsemi-
group of S if and only if A9 AC A.

Proof. Straightforward. [

Definition 4.4. A NC set A = (p, s, fiF, A7, A1, Ap) in a semigroup S is called a
right(left) NC ideal of S if V z,y € S it satisfies:

pr (zy) = pr(z) (gr (zy) = fr (),
pr(vy) = pr(z) (g (zy) = o (y)),
pr(zy) 2 pr (@) (Ar (vy) 2 or (y))
Ar(zy) < Ar(z) (Ar(zy) < Ar(y)),
Ar(zy) < Ar() (Ar(zy) < Ai(y)
Ar(zy) = Ar(@)(Ar(zy) > Ar(y))-

By a (two sided) NC ideal we mean a left and right NC ideal.

Example 4.5. Consider a semigroup S = {a,b, ¢} with the following Cayley’s table
b

S

Q||
[SRESRESRES)

a
a
a
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Define a NC set A = (lir, fir, fiF, AT, A1, Ap) in S by

S AT fr AF AT | A1 | AF
@ [10.7,09] | [0.8,0.9] [[0.1,0.3] | 0.2 0.3 | 0.9
b [ [0.2,04] [ [0.3,04] | [0.2,0.5] | 0.6 | 0.7 | 0.7
¢ [70.1,0.3] | [0.5,0.6] | [0.2,0.4] | 0.7 | 0.5 0.8

It is easy to verify that A = (r, fir, fir, A7, A1, Ar) is a NC ideal of S. Obviously, every
left (resp. right) NC ideal is a NC subsemigroup. But the converse may not be true as
seen in the following example.

Example 4.6. Consider a semigroup S = {a, b, ¢,d} with the following Cayley’s table

.lalb|c|d
alalalala
bla|lalala
clalalalb
dlalal|b|c

Define a NC set A = <;~LT,;7],;7F,AT,A], /\F> in S by

S| pr i1 [iF Ar | Ar | Ar
@ | [05,0.8] | [0.7,0.9] | [0.1,0.3] | 0.2 | 0.1 | 0.3
b 10.3,0.6] | [0.4,0.7] | [0.3,0.5] | 0.6 | 0.7 | 0.4
¢ 105,08 | [0.5,0.6] | [0.2,0.3] | 0.4 | 0.5 | 0.4
d1[0.2,0.4] [ [0.2,0.4] | [0.5,0.6] | 0.6 | 0.8 | 0.5

It is easy to verify that A = (ur, fir, fir, A7, A1, Ar) is a NC subsemigroup of S, but it
is not a left NC ideal of S since pir (de) = fir (b) = [0.3,0.6] % [0.5,0.8] = 7 (¢) and
Ar (dc) = Ar (b) =0.6>04=M\p (C) .

Theorem 4.7. For NC set A = (fir, fir, iF, A1, A1, Ap) in semigroup S, the following
statements are equivalent:

(1) A= </~14T7,EI>/7F7>\T,/\17)\F> s a left NC ideal Of S.

(2) S® ALC A.

Proof. Assume that A = (ur, ir, ip, Ar, Ar, Ap) is a left NC ideal of S. Let a € S. If
(S®Aﬂ®:<aaiﬁﬂﬂ%

then it is clear that S ® A T A. Otherwise, there exist x,y € S such that a = xy. Since
A= {lip, fir, ip, Ay A1, Ap) is a left NC ideal of S, we have

(IS ° ﬁT) (a) = rsup :Tmin {TS(I)» ﬁT(y)H

= rmin{[1,1],fr(zy)} = fir(a)
(Ts o ﬁI) (a) = rsup rmm {Ts(x), ﬁl(y)H

= rmin{[1,1], [ (zy)} = fis(a)
(53 o ﬁp) (a) = ZZ:Z{ :rmax {as($)7 ﬁF(y)}

= rmax {[0,0], fip(x)} = fir(a)
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and
(Os o Ar)(a) = oL, Tmax {0s (@), Ar(y)}
> max{\r(zy)} = Ar(a) = Ar(a)
Osor)(@) = A max{0s (x) Ar(y)}

> max{Ar(zy)} = Ar(a) = Ar(a)
v min{ls (1) Ar(y))
< min{Ap(zy)} = Ar(a) = Ap(a).

Therefore S ® A C A. Conversely, suppose that S ® A C A. For any elements xz,y of S,
let a = xy. Then

(1s o Ar)(a)

fir(ey) = fir(a) = (Ts o fir) (o) = rsup [rmin {Ts(0), ir(0) }
> Tmin{ ,MT(y} pr(y)
pr(zy) = pi(a) = (1sou ) @) =rsup [rmin{Ts(b),ﬂI(c)H

~

= rmin {Ls(2), fu(y) } = fir(v)
ir(ey) = fir(a) % (0sofir) (a) = rinf |rmax {05(0), fir(c)}|
= rmaz {Os(@).fir(y) | = fir(y)
and
Ar(zy) = Ar(a) <(0so Ar)(a) = /\ _max {05 (D), Ar(c)}
< max{0s (), Ar(y)} = A ()
Ar(zy) = Ar(a) < (0so Ar)(a)= A max{0s(b),Ar(c)}
< max{0s (), Ar1(y)} = Ar(y)
Ap(zy) = Ar(a) 2 (Iso Ap)(a) = Vv max{ls(b),Ar(c)}
> min{ls (z),Ar(y)} = Ar(y)
Hence A = (uur, fir, fir, Ary Ar, Ap) is a left NC ideal of S. ]

Similarly, we can induce the following theorem.

Theorem 4.8. For a NC set A = (T, [ir, iF, AT, A1, AF) in a semigroup S, the following
are equivalent:

(1) A= {pr, i, fr, A7, A1, Ap) is a right NC ideal of S.

(2) A®SLCA.

Theorem 4.9. If A = {jir, i1, ip, A\, A1, Ar) is a NC set in a semigroup S, then S ® A
(resp. A® S) is a left (resp. right) NC ideal of S.

Proof. Since S@(S® A) = (S®S)®ALC S® A, it follows from Theorem 4.7, that S® A
is a left NC ideal of S. Similarly A ® S is a right NC ideal of S. [
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Now we will consider the conditions for a left (resp. right) NC ideal to be constant.

Proposition 4.10. Let U be a left zero subsemigroup of a semigroup S. If
A = (i, i1, iF, A7, A1, Ap) is a left NC ideal of S, then A(x) = A(y) for all z,y € U.

Proof. Let x,y € U. Then zy = x and yxr = y. Thus

pr (x) = pr(zy) = pr (y) = pr (yz) = pr ()
pr (@) = pr(zy) = oo (y) = oo (yx) = o (x)
fp(z) = f(p(zy) = pe(y) = e (yz) 2 ar ()
and
Ar(z) = Ar(zy) < Ar(y) = Ar (zy) < Az (2)
Ar(z) = Ar(zy) < Ar(y) = Ar(zy) < Ar (o)
Ar(z) = Ap(zy) 2 Ap (y) = Ar (zy) = Ap (2)
Therefore A () = A(y) for all z,y € U. (]

Similarly, we have the following proposition.

Proposition 4.11. Let U be a right zero subsemigroup of a semigroup S. If A =
(i, i1, o, Ay Ay, Ar) s a right NC ideal of S, then A(x) = A(y) for all z,y € U.

Theorem 4.12. Let A = (lp, fir, iF, A, A1, Ap) is a left NC ideal of a semigroup S.
If the set of all idempotent elements of S forms a left zero subsemigroup of S, then
A (u) = A (v) for all idempotent elements u and v of S.

Proof. Let Idm (S) be the set of all idempotent elements of S and assume that Idm (S)
is a left zero subsemigroup of S. For any w,v € Idm (S), we have wv = v and wv = v.
Hence

pr(u) = fr(w) = pr (v) = fir (w) = pr (v)
pr(u) = pr(w) = pr(v) = pr(w) = ar (u)
pp (u) = pp(uw) = pr (v) = pe (w) 2 r (u)
and
Ar (w) Ar (wv) < Ap (v) = Ap (ww) < Ar (w)
Ar(w) = Ap(uww) < Ap(v) = Ar (ww) < A (u)
Ar(u) = Ap(uww) > Ap (v) = Ap (uv) > Ap (u)
Therefore A (u) = A (v) for all u,v € Idm (S). u

Similarly, we have the following theorem.

Theorem 4.13. Let A = (i, jif, fip, A, A1, Ar) is a right NC ideal of a semigroup S.
If the set of all idempotent elements of S forms a right zero subsemigroup of S, then
A (u) = A(v) for all idempotent elements v and v of S.

Theorem 4.14. Let S be a semigroup. Then the following properties hold:

(1) The intersection of two NC subsemigroups of S is a NC subsemigroup of S.
(2) The intersection of two left (resp. right) NC ideals of S is a left (resp. right)
NC ideals of S.
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Proof. (1) Let A = (i, i1, fir, A1, A1, Ar) and B = (g, vr, Vp, 0,11, MF) be two NC
subsemigroups of S. Let x and y be any elements of S. Then

(ar Nvr) (xy) = rmin{pr (zy), vr (zy)}

rmin {rmin {pr (x), pr ()}, rmin{vr (x) ,vr (y)}1}
rmin {rmin {ar (x),vr ()}, rmin {ir (y) . vr (y)}}
rmin{(ar Nvr) (z), (Ar N or) (y)}
rmin {pr (zy) , vy (zy)

rmin {rmin{p; (x

1Y

(1 Nvr) (zy)
) b (y)} s rmin{vr (z), 71 (y)}}

rmvin {rmin{py (z),vr ()}, rmin {fir (y) , vr () }}

rmin {(fir O o) (), (e N vr) (y)}

rmaz {fir (2y), Ur (vy)}

rmaz {rmaz {fir (), fir ()}, rmaz {vr (v) ,vr (y)}}

rmax {rmax {fir (z),0r ()}, rmaz {fr (y),Vr (y)}}
rmaz{(ir Urr) (z), (ir UDR) (y)}

1Y

(hrp Uvp) (zy)

PN

and
(Ar Var) (zy) = max{Ar (zy),nr (zy)}
< max{max {Ar (), r (y)}, max {nr (z) ,nr (y)}}
max {max {Ar () ,nr (z)}, max {A\r (y) , 17 (y)}}
max {(Ar V nr) (), (Ar Vr) (y)}
Arvor) (zy) = max{Ar(zy),nr (vy)}
< max{max {A; (z), A1 (y)},max {ns () ,nr (y)}}
max {max {7 (z),nr (¥)}, max {Ar (y) ,nr (y)}}
max {(Ar V nr) (z), (Ar V) ()}
ArAnp) (zy) = min{Ar (2y),nr (zy)}
> min{min {Ar (z),Ar (y)},min {nr (z),9r (y)}}

= min{min {\r (z),nr (z)} ,min {A\r (y),9r (y)}}
= min{(Ar Anr) (z),(Ar Anr) (y)}

Therefore AN B = <ﬁT N ﬁT,,[NLI n aj,ﬁp Uvp, A7V Ny A1V nr, Ap A 77F> is a NC sub-
semigroup of S.
The second property can be proved in a similar manner. [ ]

Proposition 4.15. If A = (jr, iif, fip, A1, A1, Ar) is right NC ideal and
B = (vr,vr,Vp,nr,,n1,MF) 5 a left NC ideal of a semigroup S, then A® BC AN B.

Proof. Let A = (fir, iy, i, Ar, A1, Ap) is right NC ideal and B = (vp, Uy, Up, 1, M1, NF)
is any NC ideal of S. Then by Theorem 4.7 and Theorem 4.8 we have AQ BC AQSLC A
and AR BCS®@BL B. Thus AQ BC AN B. =

Proposition 4.16. If S is a reqular semigroup, then A® B = AN B for every right NC
ideal A = (pip, ir, fop, A, A1, Ar) and every left NC ideal B = (vp, v, Up, 07,01, MF) Of
S.
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Proof. Let a be any element of S. Since S is regular, there exist an element x € S such
that @ = axa. Hence we have

(ir oFr) (@) = rsup{rmin (i (v) e (2)}} > rmin {fir (ax) . 7r (o)}
= rmin{jr (a),vr (a)} = (ir Nvr) (0)
(hrovy)(a) = rsup {rmin{n; (y),vi (2)}} = rmin{p; (ax), vy (a)}
= rmin{j (a),vr (a)} = (ur N71) (a)
(Arovr)(a) = Tfiﬁ,f {rmaz{pr (y),vr (2)}} 2 rmaz {ir (ax), vF (a)}
= rmaz{ir (a),vr (a)} = (ir UvF)(a)
and
(Aronr)(a) = A max{Ar(y),nr(2)} < max{r (az),nr (a)}
< max{Ar (a),nr (a)} = (Ar Nnr) (a)
(Aromp)(a) = A max{Ar(y),nr(2)} < max{Ar(az),nr (a)}
< max{\;(a),nr (a)} = (A1 Nnr) (a)
Owour)(@) = v min{r (), 7p (2)} 2 min {or (a2) 5 ()}
> min{Ar (a),nr (@)} = (ArUnr) (a)
and so A® B J AN B. It follows from Proposition 4.15 that A ® B = AN B. [

We now discuss the converse of Proposition 4.16. We first consider the following lem-
mas.

Lemma 4.17. [2] For a semigroup S, the following conditions are equivalent.
(1) S is regular.
(2) RN L= RL for every right ideal R of S and every left ideal L of S.

Lemma 4.18. For a non-empty subset G of a semigroup S, we have

(1) G is a subsemigroup of S if and only if the characteristic NC set
X = (BT, By BEx, ATy Ays AFy) of G in S is a NC subsemigroup of S.
(2) G is a left (right) ideal of S if and only if the characteristic NC set
X = (LT, By BFx> ATxs Alys AFy) of G in S is a left (resp. right) NC ideal of S.

Proof. Straightforward. n

Theorem 4.19. For every right NC ideal A = {fir, fir, fiF, A1, A1, Ap) and every left NC
ideal B = (vp,vr,vp,nr,,n1,MF) of a semigroup S, if A® B= AN B, then S is regular.

Proof. Assume that AQ B = ANB for every right NC ideal A = (fir, fir, fiF, A1, A1, AF)
and every left NC ideal B = (vr, vy, Up, nr,, 01, nr) of a semigroup S. Let R and L be any
right and left ideal of S, respectively. In order to see that RNL C RL holds, let a be any el-
ement of RNL. Then the characteristic NC sets x,, = (Aryp, BIxns BFxr> Mxrs Mxns \xr)
and x, = (Wryp s Boxs» BFxr> AMxr» Mxz» APy, ) are a right NC ideal and a left NC ideal
of S, respectively, by Lemma 4.18. It follows from the hypothesis and Proposition 3.10,
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that
ﬁTXRL (a) = (/J“TXR © ,UTXL) (a) (/J’TXR N ZZTXL) (a)
= 'uTXRmL ( ) [1’ 1]
/jIXRL (a) = (/’LTXR ° :U’TXL) (a’) (/‘LTXR N ﬁTXL) (a’)
= ,LLTXRmL ( ) [1, 1]
IZZFXRL (a) = (I’LTXR ° MTXL) (a) (:U'TXR U ﬁTXL) (a)
= IU’TXRUL( ) [0 O]
and
Muns (@) = (M, 00, ) (@) = (Ary, N1y, ) (0)
ATxpar (@) =0
s (@) = (A 0 A ) (@) = (Ar, Ny ) (0)
= Alxpne (@) =0
A (@) = (A, 0 Arx ) (@) = (Ary, Ury, ) (0)

= APFxnuc (a) =1
and so that a € RL. Thus RN L C RL. Since the inclusion in the other direction always
holds, we obtain that RN L = RL. It follows from Lemma 4.17 that S is regular. [

Definition 4.20. Let A = (ur, fis, fiF, A7, A1, Ar) be a NC set in X. For any s,0,g €
[0,1] and ¢, 4, feD [0,1], we define U (A; <?,Z, f,s. o,g>) as follows:

U (A; <f,;, /, s,o,g>)
= {rex|(fir@) =i @) = jir (0) 2 F A (2) < 5.0 (2) S 0.0k (2) 2 9) |

and we say it is a NC level set of A = (i, i1, fiF, A7y A1, Ap) .

Theorem 4.21. For a NC set A = (pr, iy, ip, A7, A1, Ap) in a semigroup S, the follow-
ing statements are equivalent:

(1) A= (g, s, fir, A1, A1, AF) is a NC subsemigroup of S.

(2) Every non-empty NC level set of A = (lir, i1, i, AT, A1, AF) is a subsemigroup of
S.

Proof. Assume that A = (g, iir, fiF, A, A1, Ap) is a NC subsemigroup of S. Let x,y €
U (A; <t~,z, f,s. 0,g>) for all s,0,g € [0,1] and %,7, f € D[0,1]. Then

fir(x) = tjir(z) =i fip(z) < f
Ar(z) < s, Ai(z) <o, Ap(2) > 9,
fr(y) = thrly) =4, fie(y) < f
AMr(y) < s,A1(y) <o, Ar(y) > g.
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It follows form Definition 4.1, that

pr(zy) = rmin{pr (z),or (y)} =t
fir(zy) = rmin{fir (z),fi (y)} =7
fir(ey) = rmaz{jir (@), fir ()} < f
and
Ar(zy) < max{Ar (z),Ar (y)} <,
Ar(zy) < max{A;(x),Ar (v)} <o,
Ar(zy) = min{Ap (z),Ar(y)} 29

Hence xy € U (A; <£Z, f s, 0, g>) and thus U <A; <£Z, f s, 0, g>) is a subsemigroup of S.
]

Conversely, let s,0, g € [0,1] and i1, fe DJ0, 1] be a such that U (A; <;fv,z f, s,0, g>) £ (),

and U (A; <£Z f, s,o,g>) is a subsemigroup of S. Suppose that Definition 4.1 is false.
Then there exist a,b € S such that

pir (ab) f rmin {fir (a), pir (b)}
pir(ab) #  rmin{jr (a),pr (b)}
fir(ab) £ rmazx {fir (a), fir (b)}

and

)\T(ab
/\](ab
Ar(ab) # min{Ar (a),\r (b)}.

If fir(ab) # rmin{fir (a),fir (b)}, then fip(ab) < t < ermin {fir (a),fir (b)} for some
t € D[0,1]. Hence a,b € U (A; <t~,;, f, s, o,g>) ,but ab ¢ U (A; <t~,7, :fv, s,o,g>) . It is im-

possible. Similar results can be deduced for any component U ( A; <£Z ]F”V7 s, 0, g>) . Hence

Definition 4.1 is valid, and therefore A = (i, iy, fip, A7, A1, Ar) is a NC subsemigroup
of S. [

Theorem 4.22. For a NC set A = (i, fif, fiF, A7, A1, AF) in a semigroup S, the follow-
ing statements are equivalent:

(1) A= {gr,pfr, pr, A, A1, Ar) is a left (resp. right) NC ideal of S.

(2) Every non-empty NC level set of A = (fir, fir, ip, A1, A1, Ar) @s a left (resp. right)
NC ideal of S.

Proof. Tt can be easily verified by the similar way to the proof of Theorem 4.21. [ ]

5. NEUTROSOPHIC CUBIC TRANSFORMATIONS OF SEMIGROUPS

In this section, we present some results related with neutrosophic cubic transformations
and inverse neutrosophic cubic transformations of semigroups.

Denote by N(X) the family of NC sets in a set X. Let X and Y be two classical sets.
A mapping h: X — Y induces two mappings Ny, : N(X) — N(Y), A — Np(A), and
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NN N(X),B+— N;!

rsup fir (x
y h(x)

y=h(=)
[0,0],

{ rsup fir (),

TZTLf ;EF (l’),

Ni(pr)(y) = {y—h@c)
[1’ 1]3

inf A
A (@),

1

)

inf Ar(z),
N}L AI y=h(z)

L,

sup Ap (z),

N(Ap)(y) = v= h(m)

(B), where N, (A) is given by
“Hy) #0,

otherwise,

it h

if K1 (y) # 0,

otherwise,

if h='(y) # 0,

otherwise,

if h=(y) # 0,

otherwise,

if h='(y) #0,

otherwise,

if h='(y) # 0,

otherwise,

for all y € Y and N, 1(B ) is defined by

N, ' (or)(x) = or(h(z)), N

and

Ny (nr) () = nr(h(x)), Ny
Then the mapping Nj, (resp. N,

(n1)(x) = nr(h(@)), N, *

) is called a NC transformation (resp.
transformation) induced by h. A NC set A =

n (O)(@) = Tr(h(2), Ny (0r) () = U (h(x))

(nr)(z) = nr(h(x)) for all x € X.

inverse NC
<ﬁT7ﬁI;ﬁF,>\Ta)\Ia>\F> in X has the NC

property if for any subset C of X there exists zy € C such that

fir(20) = rsupjiz (¢) , fir (vo) = rsupfi (z) , fir (w0) = rinfiir ()

zeC

and

)\T (xo) =

Theorem 5.1. For a homomorphism h : X — Y of semigroups, let Nj

N(Y) and N; !
tion, respectively, induced by h.

(1) IfA=

zeC zeC

mnel(fj)\T (), Ar(xo) = ;Ielg)\[ (z), Ar(x0) = supAr ().

zeC

: N(X) —

: N(Y) — N(X) be the NC transformation and inverse NC transforma-

(Ur, fr, g, ATy A1, Ar) € N(X) is a NC subsemigroup of X which has the

NC property, then Np(A) is a NC subsemigroup of Y.

(2) If B=
is a NC subsemigroup of X.

(Ur,vr,vp,mr,,n1,nr) € N(Y) is a NC subsemigroup of Y, then N,

'(B)
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Proof. (1) Given h(z),h(y) € h(X), let zop € h=!(h(x)) and yo € h~(h(y)) be such
that

fir(xo) = rsup [fir(a),fir(zo) = rsup [if(a),fir(zo) = rinf fip(a)
ach=1(h(z)) a€h=1(h(z)) a€h=1(h(x))
A = inf Ap(a), Mlwo)=  inf  Ar(a), Ap(wo) = A
o) = Iy @A) = I M@ de(m) = e A
and
pr(yo) = rsup fir (b),pi(yo) =  rsup iy (b),pip(yo) =  rinf e (D)
beh=1(h(y)) beh=(h(y)) beh=1(h(y))
A = inf  Ap(b),Ar(yo) = inf  Ar(b),A = A (b
7(Y0) vennd o T 0 Arlwo) = inf - Ar (B) Ar(yo) s r (b)

respectively. Then

Nu i) (@) = rsup i (2)

= ur (xoyo) = rmin {ir (o), i (yo)}

= rmm{ rsup pr(a), rsup pr (b)}

ach—1(h(z)) beh=1(h(y))
= rmin {Ny (r) (h(2)), N (1) (R (y))}
Np (r) (h(z) h(y)) = rsup  fig (2)

zeh=1(h(x)h(y))
= pr (zoyo) = rmin{fir (xo) , fir (o)}

= rmin{ rsup pr(a), rsup i (b)}

ach—1(h(z)) beh=1(h(y))
= rmin{Ny, (ur) (b (z)), Ny (1) (R (y))}
N () (h(2) h(y)) = rinf  fr(2)

zeh=1(h(z)h(y))
= pr (zoyo) = rmax {fir (x0), fr (o)}

= Tmaa:{ rinf pp(a), rinf [ (b)}

ach=1(h(z)) beh=1(h(y))
= rmazx {Ny (ir) (h(x)), Np (ir) (h(y))} -

6. APPLICATION

In this section, we consider the problem of evaluation of its students by an institution.
The committee form consisting of both internal and external evaluators is considered as a
semigroup S. The internal evaluator is the subset A which may be dealt as subsemigroup
if both evaluators are internal. The set A is ideal (left or right), if one is internal and the
other is external evaluator. Before providing the example we give the following definitions.

Definition 6.1. The sum of two neutrosophic cubic sets
A = <ﬁTaﬁ17ﬁF7)\T7>\I7/\F>7Where ﬁT = [O’LaaUL/jI = [vabU]hD:F = [CLaCU]v

AZ = <\AI}T7CI}IaCI;F7¢Ta¢Ia¢F>, where \AI;T = [UL7UU]3 CI}I? [wL,wU]a \AI}F = [vaxU]
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is defined as
[a® + ol — aFol,al + U — aUuV),
bL-I-wL—bL L,bU+w bUU}U,
A1@A2—<[ [LL UU] ] :
ATOT, A1@1, AF + OF — ApdF

Definition 6.2. The scalar multiplication of a neutrosophic cubic set
Al = <XT7 XI7XF'7 3 )\Ta )‘17 >\F> aWhere S\iT = [a/L7 aU]a XI = [bL7 bU]7 XF = [CL7 CU]7
with a scalar k defined by
[1-(1—-da)k1-(1-a")],
[1—(1-0M)F 1 (1-b")4,
k'Al - |:( )k: , (CU)ki| .
)‘]7€‘>/\]I€7 - (1 - )‘F)k

Definition 6.3. Neutrosophic cubic weighted average operator (NCWA) is defined as

NCWA:R™ — R by NCW Ay(A1, Az, ..., A) = Y wiA;,
i=1
where W = (wy, wa, ..., w,,)T is weight of A;(i = 1,2,3,...,m), such that w; € [0,1] and
m

> w; = 1, first all the neutrosophic cubic values are weighted then aggregated.
i=1

Example 6.4. A = (ir, i1, iF, A7, A1, Ap) in S ={a, b, c} defined by

AT A AF Ar | At | Ar
[0.3,0.6] | [0.5,0.7] | [0.6,0.7] | 0.4 | 0.6 | 0.8
[0.2,0.4] | [0.3,0.4] | [0.8,0.9] | 0.6 | 0.7 | 0.6
0.7,0.9] | [0.8,0.9] | [0.5,0.6] | 0.2 | 0.3 | 0.9

SRR E=N )

is a subsemigroup (see Example 4.2). Let W = (0.25,0.35,0.40)” be given weight. Then
the aggregated value of A is

Agg(A) = ([0.359,0.606] , [0.155,0.755] , [0.590, 0.678] , 0.468, 0.484, 0.855) .

This idea can be extended to ideals (left, right) as well.

Conclusion: In this paper we proposed a new notion of neutrosophic cubic sub-
semigroups and neutrosophic cubic left (resp. right) ideals are introduced and several
properties are investigated. Relations between neutrosophic cubic subsemigroups and
neutrosophic cubic left (resp. right) ideals are discussed. Characterizations of neutro-
sophic cubic left (resp. right) ideals are considered and how the images or inverse images
of neutrosophic cubic subsemigroups and cubic left (resp. right) ideals become neutro-
sophic cubic subsemigroups and neutrosophic cubic left (resp. right) ideals, respectively,
are studied and aggregation operator is applied. In the future, our aim is to study neutro-
sophic cubic («, 8)-ideals in semigroups and neutrosophic cubic aggregations operators.
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