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1. Introduction
The natural generalization of the classical Gauss’s hypergeometric function 2F1 is the

generalized hypergeometric function pFq with p numerator parameters and q denominator
parameters is defined by [1–3]

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
(1.1)

where (a)n is the well known Pochhammer’s symbol (or the shifted or raised factorial)
defined for every complex number a by

(a)n =
Γ(a+ n)

Γ(a)
=

{
a(a+ 1) . . . (a+ n− 1), n ∈ N
1, n = 0

(1.2)

in which
Γ(z) =

∫ ∞

0

e−xxz−1dx,
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denotes the well-known gamma function [4, p.500] for ℜ(z) > 0.
The series on the right hand side of (1.1) is indeed a Taylor series expansion for a function,
say f , as

∑∞
k=o ckz

k with ck = f(k)(0)
k! , for which the ratio of successive terms can be

written as:
ck + 1

ck
=

(a1 + k)(a2 + k) · · · (ap + k)

(b1 + k)(b2 + k) · · · (bq + k)

The convergence of the series (1.1) depend on the relation between the parameters of
both numerator and denominator. According to the ratio test we get the following cases
[1–3] :

i) If p ≤ q, then series(1.1) converge for all |z| < ∞.
ii) If p = q + 1, the series converges for |z| < 1, otherwise diverges.
iii) If p = q + 1, on the circle of convergence |z| = 1, the series is: absolutely
convergent if

Re

 q∑
j=1

bj −
p∑

j=1

aj

 > 0,

conditionally convergent if

−1 < Re

 q∑
j=1

bj −
p∑

j=1

aj

 ≤ 0, z ̸= 1,

divergent if

Re

(
q∑

n=1

bn −
p∑

n=1

an

)
≤ −1.

It is very interesting to mention here that whenever hypergeometric function 2F1 and
generalized hypergeometric functions pFq expressed in terms of Gamma function, the
results are very important from a theoretical and application point of view. Thus the
classical summation theorem such as those of Gauss, Gauss’s second, Kummer, and Bailey
for the series 2F1, Watson, Dixon, and Whipple for the series 3F2 and others play an
important role.

During 1992-1996, in a series of three interesting research papers, Lavoie, et al. [5–7]
have generalized the above mentioned classical summation theorems.

However, in our present investigation, we are interested in the following classical Wat-
son’s summation theorem [2, 3]

3F2

[
a, b, c

1
2 (a+ b+ 1) , 2c

; 1

]
=

√
π Γ

(
1
2 + c

)
Γ
(
a+b+1

2

)
Γ
(
c+ 1−a−b

2

)
Γ
(
1+a
2

)
Γ
(
1+b
2

)
Γ
(
c+ 1−a

2

)
Γ
(
c+ 1−b

2

) (1.3)

provided Re(2c− a− b) > −1 and its following generalization due to Lavoie, et al. [3]
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3F2

[
a, b, c

1
2 (a+ b+ i+ 1), 2c+ j

; 1

]

=
Ai,j 2

a+b+i−2 Γ
(
a+b+i+1

2

)
Γ
(
c+

[
j
2

]
+ 1

2

)
Γ
(
c− (a+b+|i+j|−j−1)

2

)
Γ
(
1
2

)
Γ(a)Γ(b)

×

 Bi,j Γ
(

a
2 + (1−(−1)i)

4

)
Γ
(
b
2

)
Γ
(
c− a

2 +
[
j
2

]
+ 1

2 − (−1)j

4 (1− (−1)i)
)

Γ
(
c− b

2 +
[
j
2

]
+ 1

2

)
+

Ci,j Γ
(

a
2 + (1+(−1)i)

4

)
Γ
(
b+1
2

)
Γ
(
c− a

2 +
[
j+1
2

]
+ (−1)j

4 (1− (−1)i)
)

Γ
(
c− b

2 +
[
j+1
2

])
 (1.4)

for i, j = 0,±1,±2

Here, [x] denotes the greatest integer less than or equal to x and its modulus is denoted
by |x| and Ai,j , Bi,j and Ci,j are as in Tables (1, 2), (3, 4) and (5, 6).

i⧹j -2 -1 0

2 1
2(c−1)(a−b−1)(a−b+1)

1
2(a−b−1)(a−b+1)

1
4(a−b−1)(a−b+1)

1 1
(c−1)(a−b)

1
(a−b)

1
(a−b)

0 1
2(c−1) 1 1

-1 1
(c−1) 1 2

-2 1
2(c−1) 1 1

Table 1. Table for Ai,j i = 0,±1,±2 and j = −2,−1, 0

i ⧹ j 1 2

2 1
4(a−b−1)(a−b+1)

1
8(c+1)(a−b−1)(a−b+1)

1 1
2(a−b)

1
2(c+1)(a−b)

0 1 1
2(c+1)

-1 2 2
(c+1)

-2 2 2
(c+1)

Table 2. Table for Ai,j i = 0,±1,±2 and j = 1, 2



248 Thai J. Math. Vol. 20 (2022) /K.S. Kumari et al.

i⧹j -2 -1 0

2 c(a+ b− 1)

−(a+ 1)(b+ 1) + 2
a+ b− 1

a(2c− a) + b(2c− b)

−2c+ 1

1 c− b− 1 1 1

0 (c− a− 1)(c− b− 1)

+(c− 1)(c− 2)
1 1

-1 2(c− 1)(c− 2)

−(a− b)(c− b− 1)
2c− a+ b− 2 1

-2 B−2,−2
2(c− 1)(a+ b− 1)

−(a− b)2 + 1

a(2c− a) + b(2c− b)

−2c+ 1

B−2,−2 = 2(c− 1)(c− 2)[(2c− 1)(a+ b− 1)− a(a+ 1)− b(b+ 1) + 2]

− (a− b− 1)(a− b+ 1)[(c− 1)(2c− a− b− 3) + ab]

Table 3. Table for Bi,j i = 0,±1,±2 and j = −2,−1, 0

i⧹j 1 2
2 2c(a+ b− 1)− (a− b)2 + 1 B2,2

1 2c− a+ b 2c(c+ 1)− (a− b)(c− b+ 1)

0 1 (c− a+ 1)(c− b+ 1) + c(c+ 1)

-1 1 c− b+ 1

-2 a+ b− 1 c(a+ b− 1)− (a− 1)(b− 1)

Table 4. Table for Bi,j i = 0,±1,±2 and j = 1, 2

B2,2 = 2c(c+ 1)[(2c+ 1)(a+ b− 1)− a(a− 1)− b(b− 1)]

− (a− b− 1)(a− b+ 1)[(c+ 1)(2c− a− b+ 1) + ab]

i⧹j −2 −1 0
2 -4 −(4c− a− b− 3) -8
1 −(c− a− 1) -1 -1
0 4 1 0
-1 (c− 1)(c− 2) + (a− b)(c− a− 1) 2c+ a− b− 2 1
-2 (2c− a+ b− 3)(2c+ a− b− 3) C−2,−1 8

C−2,−1 = 8c2 − 2(c− 1)(a+ b+ 7)− (a− b)2 − 7

Table 5. Table for Ci,j i = 0,±1,±2 and j = −2,−1, 0
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i⧹j 1 2
2 −[8c2 − 2c(a+ b− 1)− (a− b)2 + 1] −4(2c+ a− b+ 1)(2c− a+ b+ 1)

1 −(2c+ a− b) −[2c(c+ 1) + (a− b)(c− a+ 1)]

0 -1 -4
-1 1 c− a+ 1

-2 4c− a− b+ 1 4

Table 6. Table for Ci,j i = 0,±1,±2 and j = 1, 2

For i = j = 0, the result (1.4) reduce to classical Watson’s summation theorem (1.3).
In addition to this, we also require the following interesting integral due to MacRobert

[8] ∫ π
2

0

eω(α+β)θ (sin θ)α−1 (cos θ)β−1 dθ = e
ωπα

2
Γ(α)Γ(β)

Γ(α+ β)
(1.5)

provided Re(α) > 0, Re(β) > 0 and ω =
√
−1.

The aim of this research paper is to obtain fifty new class of integrals involving gener-
alized hypergeometric function in the form of two master formulas.

More than one hundred interesting integrals have also been obtained as special cases
of our main findings. The results are established with the help of generalized Watson’s
summation theorem (1.4) and an interesting integral (1.5). The results obtained in this
paper are simple, significant, easily established and may be potentially useful.

2. Two Master Formulas
The two master formulas to be proved in this paper are given in the following theorems.

Theorem 2.1. For ℓ = 0,±1,±2, . . . and i = j = 0,±1,±2, the following results holds
true ∫ π

2

0

eω(2d+ℓ+1)θ(sin θ)d+ℓ(cos θ)d−1

× 4F3

[
a, b, c, 2d+ ℓ+ 1

1
2 (a+ b+ i+ 1), 2c+ j, d

; ; eωθ cos θ

]
dθ

=
Ai,j e

ωπ(d+ℓ+1)
2 Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)

×
2a+b+i−2Γ

(
a+b+i+1

2

)
Γ
(
c+

[
j
2

]
+ 1

2

)
Γ
(
c− (a+b+|i+j|−j−1)

2

)
Γ
(
1
2

)
Γ(a)Γ(b)

×

 Bi,jΓ
(

a
2 + (1−(−1)i)

4

)
Γ
(
b
2

)
Γ
(
c− a

2 +
[
j
2

]
+ 1

2 − (−1)j

4 (1− (−1)i)
)
Γ
(
c− b

2 +
[
j
2

]
+ 1

2

)
+

Ci,jΓ
(

a
2 + (1+(−1)i)

4

)
Γ
(
b+1
2

)
Γ
(
c− a

2 +
[
j+1
2

]
+ (−1)j

4 (1− (−1)i)
)
Γ
(
c− b

2 +
[
j+1
2

])
 . (2.1)
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provided Re(d) > 0, Re(d+ ℓ+ 1) > 0 and Re(2c− a− b+ i+ 2j + 1) > 0.

Theorem 2.2. For ℓ = 0,±1,±2, . . . and i = j = 0,±1,±2, the following results holds
true ∫ π

2

0

eω(2d+ℓ+1)θ(sin θ)d−1(cos θ)d+ℓ

× 4F3

[
a, b, c, 2d+ ℓ+ 1

1
2 (a+ b+ i+ 1), 2c+ j, d

; eω(θ−π
2 ) sin θ

]
dθ

=
Ai,j e

ωπd
2 Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)

×
2a+b+i−2Γ

(
a+b+i+1

2

)
Γ
(
c+

[
j
2

]
+ 1

2

)
Γ
(
c− (a+b+|i+j|−j−1)

2

)
Γ
(
1
2

)
Γ(a)Γ(b)

×

 Bi,jΓ
(

a
2 + (1−(−1)i)

4

)
Γ
(
b
2

)
Γ
(
c− a

2 +
[
j
2

]
+ 1

2 − (−1)j

4 (1− (−1)i)
)
Γ
(
c− b

2 +
[
j
2

]
+ 1

2

)
+

Ci,jΓ
(

a
2 + (1+(−1)i)

4

)
Γ
(
b+1
2

)
Γ
(
c− a

2 +
[
j+1
2

]
+ (−1)j

4 (1− (−1)i)
)
Γ
(
c− b

2 +
[
j+1
2

])
 . (2.2)

provided Re(d) > 0, Re(d+ ℓ+ 1) > 0 and Re(2c− a− b+ i+ 2j + 1) > 0.

Here, [x] denotes the greatest integer less than or equal to x and its modulus is denoted
by |x|. The coefficient Ai,j , Bi,j and Ci,j are as in Tables (1, 2), (3, 4) and (5, 6).

Proof. The proof of our theorems are quite straight forward. For this, in order to prove
the result (2.1), denoting the left-hand side of (2.1) by I,expressing the 3F2 function as a
series, we have

I =

∫ π
2

0

eω(2d+ℓ+1)θ(sin θ)d+ℓ(cos θ)d−1

×
∞∑

n=0

(a)n(b)n(2d+ ℓ+ 1)n (c)n enωθ (cos θ)n

(d)n
(
a+b+1+i

2

)
n
(2c+ j)n n!

dθ,

Changing the order of integration and summation, which is easily seen to be justified due
to the uniform convergence of the series in the interval, so we have

I =

∞∑
n=0

(a)n(b)n(2d+ ℓ+ 1)n(
a+b+1+i

2

)
n
(2c+ j)n n!

×
∫ π

2

0

eω(2d+n+ℓ+1)θ(sin θ)d+ℓ(cos θ)d+n−1dθ,
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Evaluating the integral with the help of the MacRobert’s result (1.5), we have, after some
simplification

I = e
ωπ
2 (d+ℓ+1) Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)

∞∑
n=0

(a)n(b)n(c)n(
a+b+1+i

2

)
n
(2c+ j)n n!

,

Summing up the series; we get

I = e
ωπ
2 (d+ℓ+1) Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)

× 3F2

[
a, b, c

1
2 (a+ b+ i+ 1), 2c+ j

; 1

]
.

The 3F2 can now be evaluated with the help of generalized Watson’s summation theorem
(1.4) and we easily arrive at the right- hand side of (2.1).

This completes the proof of theorem(2.1). In exactly the same manner, we can establish
theorem(2.2).

3. Special Cases
In this section, we shall mention one hundred interesting results in the form of two

general integrals.
1. We observe here that if in (2.1)we let b = −2n and replace a by a + 2n or
we let b = −2n − 1 and replace a by a + 2n + 1, in each case, one of the two
terms appearing on the right-hand side of (2.1) will vanish and under the same
conditions of convergence, we get fifty interesting special cases, which are given
below in the form of two corollaries.

Corollary 3.1. For ℓ = 0,±1,±2, . . . and i = j = 0,±1,±2, the following twenty
five results holds true.

∫ π
2

0

eω(2d+ℓ+1)θ(sin θ)d+ℓ(cos θ)d−1

× 4F3

[
−2n, a+ 2n, c, 2d+ ℓ+ 1

1
2 (a+ i+ 1), 2c+ j, d

; eωθ cos θ

]
dθ

= e
ωπ
2 (d+ℓ+1) Di,j

Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)(
1
2

)
n

(
a
2 − c+ 3

4 − (−1)i

4 −
[
j
2 + (1−(−1)i)

4

])
n(

c+ 1
2 +

[
j
2

])
n

(
a
2 + (1+(−1)i)

4

)
n

(3.1)

where the coefficient Di,j are as in Tables (7) and (8)
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i⧹j -2 -1 0
2 (a+1)[(c−1)(a−1)+2n(a+2n)]

(c−1)(a+4n−1)(a+4n+1)
(a+1)(a−1)

(a+4n+1)(a+4n−1)
(a+1)[(a−1)(2c−a−1)−4n(a+2n)]

(2c−a−1)(a+4n+1)(a+4n−1)

1 a(c+2n−1)
(c−1)(a+4n)

a
a+4n

a
a+4n

0 1− 2n(a+2n)
(c−1)(2c−a−3) 1 1

-1 1− 2n(2c+a+4n−2)
(c−1)(2c−a−4) 1− 4n

(2c−a−2) 1
-2 D−2,−2 1− 8n(a+2n)

(a−1)(2c−a−3) 1− 4n(a+2n)
(a−1)(2c−a−1)

Table 7. Table for Di,j , i = 0,±1,±2 and j = −2,−1, 0

D−2,−2 = 1− 2an(6c+ a− 7)(2c− a− 3)− 4n2[5a2 − 4a− 21− 4c(3c− a− 8)]− 64n3(a+ n)

(c− 1)(a− 1)(2c− a− 3)(2c− a− 5)

i⧹j 1 2
2 (a+1)[(a−1)(2c−a−1)−8n(a+2n)]

(2c−a−1)(a+4n+1)(a+4n−1)
D2,2

1 a(2c−a−4n)
(2c−a)(a+4n)

a[(c+1)(2c−a)−2n(2c+a+4n+2)]
(c+1)(2c−a)(a+4n)

0 1 1− 2n(a+2n)
(c+1)(2c−a+1)

-1 1 1 + 2n
(c+1)

-2 1 1 + 2n(a+2n)
(c+1)(a−1)

Table 8. Table for Di,j , i = 0,±1,±2 and j = 1, 2

D2,2 =

(a+ 1)

(
(a− 1)(c+ 1)(2c− a+ 1)(2c− a− 1)− 2an(6c+ a+ 5)(2c− a+ 1)

+4n2(5a2 + 4a− 5− 4c(3c− a+ 4)) + 64n3(a+ n)]

)
(c+ 1)(2c− a+ 1)(2c− a− 1)(a+ 4n+ 1)(a+ 4n− 1)

Corollary 3.2. For ℓ = 0,±1,±2, . . . and i = j = 0,±1,±2, the following twenty
five results holds true.

∫ π
2

0

eω(2d+ℓ+1)θ(sin θ)d+ℓ(cos θ)d−1

× 4F3

[
−2n− 1, a+ 2n+ 1, c, 2d+ ℓ+ 1

1
2
(a+ i+ 1), 2c+ j, d

; eωθ cos θ

]
dθ

= e
ωπ
2

(d+ℓ+1) Ei,j
Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)(
3
2

)
n

(
a
2
− c+ 5

4
+ (−1)i

4
−
[
j
2
+ (1+(−1)i)

4

])
n(

c+ 1
2
+
[
j+1
2

])
n

(
a
2
+ (3−(−1)i)

4

)
n

(3.2)

where the coefficient Ei,j are as in Tables (9) and (10).



On a new class of finite integrals involving generalized hypergeometric function 253

i⧹j 1 2
2 E2,1

(a+1)(2c+a+4n+3)(2c−a−4n−1)
(c+1)(2c−a−1)(a+4n+1)(a+4n+3)

1 (2c+a+4n+2)
(2c+1)(a+4n+2)

(c+a+2)(2c−a)−2n(3a−2c+4n+2)
(c+1)(2c−a)(a+4n+2)

0 1
(2c+1)

1
(c+1)

-1 −(2c−a)
a(2c+1)

−(c−a−2n)
a(c+1)

-2 −(4c−a+1)
(a−1)(2c+1)

−(2c−a+1)
(a−1)(c+1)

E2,1 =
(a+ 1)[(4c+ a+ 3)(2c− a− 1)− 8n(a+ 2n+ 2)]

(a+ 4n+ 1)(a+ 4n+ 3)(2c+ 1)(2c− a− 1)

Table 10. Table for Ei,j i = 0,±1,±2 and j = 1, 2

i⧹ j -2 -1 0
2 (a+1)(2c−a−3)

(c−1)(a+4n+1)(a+4n+3)
(a+1)(4c−a−3)

(a+4n+1)(a+4n+3)(2c−1)
2(a+1)

(a+4n+1)(a+4n+3)

1 (c−a−2n−2)
(c−1)(a+4n+2)

2c−a−2
(a+4n+2)(2c−1)

1
a+4n+2

0 −1
(c−1)

−1
(2c−1)

0
-1 E−1,−2

−(2c+a+4n)
a(2c−1)

−1
a

-2 −(2c+a+4n−1)(2c−a−4n−5)
(a−1)(c−1)(2c−a−5)

E−2,−1
−2

(a−1)

Table 9. Table for Ei,j i = 0,±1,±2 and j = −2,−1, 0

E−2,−1 = − [(4c+ a− 1)(2c− a− 3)− 8n(a+ 2n+ 2)]

(a− 1)(2c− 1)(2c− a− 3)

E−1,−2 = − [(c+ a)(2c− a− 4)− 2n(3a− 2c+ 4n+ 6)]

a(c− 1)(2c− a− 4)

In particular, in (3.1), if we take i = j = 0, we get the following result∫ π
2

0

eω(2d+ℓ+1)θ(sin θ)d+ℓ(cos θ)d−1

× 4F3

[
−2n, a+ 2n, c, 2d+ ℓ+ 1

1
2 (a+ 1), 2c, d

; eωθ cos θ

]
dθ

= e
ωπ
2 (d+ℓ+1) Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)

(
1
2

)
n

(
a
2 − c+ 1

2

)
n(

c+ 1
2

)
n

(
a
2 + 1

2

)
n

(3.3)

Further, if we take ℓ = −1, it reduces to∫ π
2

0

e2dωθ(sin θ cos θ)d−1

3F2

[
−2n, a+ 2n, c, 2d

1
2 (a+ 1), 2c, d

; eωθ cos θ

]
dθ

= eωπdΓ(d)Γ(d)

Γ(2d)

(
1
2

)
n

(
a
2 − c+ 1

2

)
n(

c+ 1
2

)
n

(
a
2 + 1

2

)
n

(3.4)
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Similarly, in (3.2), if we take i = j = 0, we get the following interesting result∫ π
2

0

eω(2d+ℓ+1)θ(sin θ)d+ℓ(cos θ)d−1

× 4F3

[
−2n− 1, a+ 2n+ 1, 2d+ ℓ+ 1, c

1
2 (a+ 1), 2c, d

; eωθ cos θ

]
dθ

= 0 (3.5)
for all ℓ = 0,±1,±2, . . ..

2. In (2.2), we let b = −2n and replace a by a + 2n or we let b = −2n − 1 and
replace a by a+2n+1, in each case, one of the two terms appearing on the right-
hand side of (2.2)will vanish and under the same conditions of convergence, we get
fifty interesting special cases, which are given below in the form of two corollaries.

Corollary 3.3. For ℓ = 0,±1,±2, . . . and i = j = 0,±1,±2, the following twenty
five results holds true∫ π

2

0

eω(2d+ℓ+1)θ(sin θ)d−1(cos θ)d+ℓ

× 4F3

[
−2n, a+ 2n, 2d+ ℓ+ 1, c

1
2 (a+ i+ 1), 2c+ j, d

; eω(θ−π
2 ) sin θ

]
dθ

= e
ωπd
2 Di,j

Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)(
1
2

)
n

(
a
2 − c+ 3

4 − (−1)i

4 −
[
j
2 + (1−(−1)i)

4

])
n(

c+ 1
2 +

[
j
2

])
n

(
a
2 + (1+(−1)i)

4

)
n

(3.6)

where the coefficient Di,j are as in Tables (7) and (8)

Corollary 3.4. For ℓ = 0,±1,±2, . . . and i = j = 0,±1,±2, the following twenty
five results holds true∫ π

2

0

eω(2d+ℓ+1)θ(sin θ)d−1(cos θ)d+ℓ

× 4F3

[
−2n− 1, a+ 2n+ 1, 2d+ ℓ+ 1, c

1
2 (a+ i+ 1), 2c+ j, d

; eω(θ−π
2 ) sin θ

]
dθ

= e
ωπ
2 (d+ℓ+1) Ei,j

Γ(d)Γ(d+ ℓ+ 1)

Γ(2d+ ℓ+ 1)(
3
2

)
n

(
a
2 − c+ 5

4 + (−1)i

4 −
[
j
2 + (1+(−1)i)

4

])
n(

c+ 1
2 +

[
j+1
2

])
n

(
a
2 + (3−(−1)i)

4

)
n

(3.7)

where the coefficient Ei,j are as in Table (9) and (10)
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3. In the results(2.1) and (2.2) of theorems 1 and 2, if we take d = c, we get two
general results obtained very recently by Rakha et al. [9]

4. In the results (3.1) to (3.7), if we take d = c, we get results obtained recently
by Rakha et al. [9]

Similarly, other results can be obtained.
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