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1. Introduction and Preliminaries
The study of stability problem of functional equations which had been raised by Ulam

[1] have been done by several authors on different functional equations (see [2–6]). In 1941
[7], Hyers solved the approximately additive mappings on the setting of Banach spaces.
Hyers theorem was generalized by Th. M. Rassias [8]. A generalization of the theorem
of Th. M. Rassias was obtained by Gǎvruta [9] by replacing a general control function
φ : X ×X −→ [0,∞).
One of the generalization version of Cauchy equation is the Pexider type g(a + b) =
g1(a) + g2(b). Jun et al. [10] proved the stability of Pexider equation. In [11], Eshaghi
Gordji et al. introduced the concept of orthogonally set.

Definition 1.1. [11] Let A ̸= ∅ and ⊥ ⊆ A × A be a binary relation. ⊥ is called an
orthogonally set (briefly O-set) and denotes it by (A,⊥) if ⊥ satisfies in

∃a0; (∀b; b⊥a0) or (∀b; a0⊥b),

If (A,⊥) is an O-set and (A, d) is a generalized metric space, then (A,⊥, d) is called
orthogonally generalized metric space.
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Definition 1.2. [11] Let (A,⊥, d) be an orthogonally metric space.
(i) A sequence {an}n∈N is called orthogonally sequence (briefly O-sequence) if

(∀n; an⊥an+1) or (∀n; an+1⊥an).
(ii) A mapping g from A into A is ⊥−continuous in a ∈ A if for all O-sequence {an}n∈N
in A with an → a, g(an) → g(a). Clearly, every continuous map is ⊥−continuous at any
a ∈ A.
(iii) (A,⊥, d) is orthogonally complete (briefly O-complete) if every Cauchy O-sequence
is convergent to a point in A.
(iv)A mapping g from A into A is ⊥-preserving if for all a, b ∈ A with a⊥b, then g(a)⊥g(b).
(v) A mapping g from A into A is called orthogonality contraction with Lipschitz constant
0 < λ < 1 if

d(g(a), g(b)) ≤ λ d(a, b) where a⊥b.

Theorem 1.3 ([12]). Suppose that (A, d,⊥) is an O-complete generalized metric space.
Let J : A → A be a ⊥-preserving, ⊥-continuous and ⊥-λ-contraction. Let a0 ∈ A satisfies
for all b ∈ A, a0 ⊥ b or for all b ∈ A, b ⊥ a0, and consider the “O-sequence of successive
approximations with initial element a0 ”: a0, J(a0), J2(a0), ..., Jn(a0), ... . Then, either

d(Jn(a0), J
n+1(a0)) = ∞ ∀ n ≥ 0

or there exists a positive integer n0 such that
d(Jn(a0), J

n+1(a0)) <∞
for all n > n0. If the second alternative holds, then
(1) The O-sequence of {Jn(a0)} converges to a fixed point a∗ of J .
(2) a∗ is the unique fixed point of J in A∗ = {b ∈ A : d(Jn(a0), b) <∞}.
(3) If b ∈ A, then

d(b, a∗) ≤ 1

1− λ
d(b, J(b)).

In this paper, by using the concept of orthogonally sets and orthogonally fixed point
theorem we prove the stability of orthogonally Pexider Lie homomorphisms and orthog-
onally Pexider Lie derivations in orthogonally Lie Banach algebras in section 2 and 3
respectively.

2. Orthogonally Pexider Lie Homomorphism
Let A be a Lie Banach algebra and ⊥⊆ A×A be an orthogonally set. (A,⊥) is called

orthogonally Lie Banach algebra.
Definition 2.1. Let (A,⊥) be an orthogonally Lie Banach algebra and let g, g1, g2 :
A −→ A be mappings satisfying g(a+ b) = g1(a) + g2(b),

g([a, b]) = [g1(a), g2(b)],
(2.1)

for all a, b ∈ A with a ⊥ b. The system of equations (2.1) is called an orthogonally Pexider
Lie homomorphism.

Throughout the paper, suppose that A is an orthogonally Lie Banach algebra, ϕ, φ :
A2 → [0,∞) are mappings, i ∈ {−1, 1} and 0 < L < 1.
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Theorem 2.2. Let g, g1, g2 : A −→ A are mappings and g be an odd mapping for which
∥g(a+ b)− g1(a)− g2(b)∥ ≤ φ(a, b), (2.2)

∥g([a, b])− [g1(a), g2(b)]∥ ≤ ϕ(a, b), (2.3)
where

lim
n→∞

φ(2nia, 2nib)

2ni
= 0, (2.4)

lim
n→∞

ϕ(2nia, b)

2ni
= lim

n→∞

ϕ(a, 2nib)

2ni
= 0 (2.5)

where a ⊥ b. If there exists 0 < L < 1 such that for any fixed a ∈ A, and some va ∈ A
with a ⊥ va the mapping

a 7→ ψ(a, va) =φ(
a+ va

2
,
a− va

2
) + φ(0,

a− va
2

) + φ(
a+ va

2
, 0) + φ(

a

2
,
va
2
)

+ φ(
a

2
,
−va
2

) + 2φ(
a

2
, 0) + φ(0,

va
2
) + φ(0,

−va
2

)
(2.6)

has the property

ψ(a, va) ≤ L2iψ(
a

2i
,
va
2i

). (2.7)

Then there exists is a unique G : A −→ A orthogonally Lie homomorphism such that

∥g(a)−G(a)∥ ≤ L
1+i
2

1− L
ψ(a, va),

∥g1(a)− g1(0)−G(a)∥ ≤ L
1+i
2

1− L
ψ(a, va) + φ(a, 0),

∥g2(a)− g2(0)−G(a)∥ ≤ L
1+i
2

1− L
ψ(a, va) + φ(0, a)

(2.8)

for all a ∈ A.

Proof. First of all, since g is an odd, then ϕ(0, 0) = φ(0, 0) = 0. Let E be the set of all
mappings e : A → A such that for all a ∈ A, e(a)⊥ 1

2e(2a) or 1
2e(2a)⊥e(a) and e(0) = 0.

For any fixed a ∈ A and some va ∈ A with a ⊥ va define d : E2 −→ [0,∞) by

d(e1, e2) = inf
{
K ∈ R+ : ∥e1(a)− e2(a)∥ ≤ Kψ(a, va) ∀ e1⊥e2 and a⊥va

}
.

Clearly (E,⊥, d) is an O-complete generalized metric space. Define J : E −→ E, by
Je(a) = 1

2i e(2
ia) ∀ a ∈ A. J is a strictly ⊥-contractive mapping. Indeed, for given e1

and e2 in E with d(e1, e2) < K where K is a real number and for any fixed a, va ∈ A
with a ⊥ va, we have

∥e1(a)− e2(a)∥ ≤ Kψ(a, va)

∥ 1

2i
e1(2

ia)− 1

2i
e2(2

ia)∥ ≤ 1

2i
Kψ(2ia, 2iva)

∥ 1

2i
e1(2

ia)− 1

2i
e2(2

ia)∥ ≤ LKψ(a, va)

d(Je1, Je2) ≤ LK.
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Put K = d(e1, e2) +
1
n for n ∈ Z+. Then d(Je1, Je2) ≤ L(d(e1, e2) +

1
n ). Letting n→ ∞

then
d(Je1, Je2) ≤ Ld(e1, e2) ∀ e1, e2 ∈ E.

Let a, b = 0 in (2.2) and (2.3), we get
g(0) = 0 , g1(0) = g2(0) = 0. (2.9)

Put b = 0 in (2.2) and (2.9), respectively, so we obtain
∥g(a)− g1(a)− g2(0)∥ ≤ φ(a, 0),

∥g(a)− g1(a)− g1(0)
∥∥ ≤ φ(a, 0). (2.10)

Now by setting a = 0 in (2.2) and (2.9), respectively, we have
∥g(b)− g1(0)− g2(b)∥ ≤ φ(0, b)

∥g(b)− g2(b)− g2(0)
∥∥ ≤ φ(0, b). (2.11)

So , d(g, Jg) ≤ L = L1 <∞. By using the prove of Theorem 2.1 in [13], we have

∥g(a)− 2g(
a

2
)∥ ≤ ψ(a, va),

that is, d(g, Jg) ≤ 1 = L0 <∞.
By Theorem 1.3, since limn→∞ d(Jng, d) = 0, there exists G : A −→ A which is the
unique fixed point of J in the set

M = {e ∈ E : d(g, e) <∞}

such that

G(a) = lim
n→∞

g(2nia)

2ni
.

Thus we have

d(g,G) ≤ 1

1− L
d(g, Jg)

which yields

∥g(a)−G(a)∥ ≤ L
1+i
2

1− L
ψ(a, va).

Further, using inequalities (2.10) and (2.11), we have
∥g1(a)− g1(0)−G(a)∥ ≤ ∥g(a)− g1(a)− g1(0)

∥∥+ ∥g(a)−G(a)∥

≤ L
1+i
2

1− L
ψ(a, va) + φ(a, 0),

∥g2(a)− g2(0)−G(a)∥ ≤ ∥g(a)− g2(a)− g2(0)
∥∥+ ∥g(a)−G(a)∥

≤ L
1+i
2

1− L
ψ(a, va) + φ(0, a)

as desired.
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The inequalities (2.10) and (2.11), imply that

∥2−nig(2nia)− 2−nig1(2
nia)− 2−njg1(0)

∥∥ ≤ 2−niφ(2nia, 0),

∥2−nig(2nia)− 2−nig2(2
nia)− 2−nig2(0)

∥∥ ≤ 2−niφ(0, 2nia)

for all a ∈ A, whence

G(a) = lim
n→∞

g1(2
nia)− g1(0)

2ni
= lim

n→∞

g2(2
nia)− g2(0)

2ni
. (2.12)

Let a, b ∈ A with a ⊥ b. By Definition 1.1 we have 2nia ⊥ 2nib for all n ∈ N and from
(2.2), (2.4) and (2.12), we get

∥2−njg(2ni(a+ b))− 2−ni(g1(2
nia) + g1(0))− 2−nj(g2(2

nib) + g2(0)
)
∥

= ∥2−nig
(
2ni(a+ b)

)
− 2−nig1(2

nia)− 2−nig2(2
nib)∥

≤ 2−niφ(2nia, 2nib).

Letting n→ ∞, then G(a+b)−G(a)−G(b) = 0. Therefore G is an orthogonally additive.
Now, we claim that the mapping G is an orthogonally Lie homomorphism. Define

t : A −→ A by

t([a, b]) = g([a, b])− [g1(a), g2(b)] ∀ a, b ∈ A, a ⊥ b.

By (2.5), we have

lim
n→∞

t(2nia, b)

2ni
= 0. (2.13)

Utilizing the relations (2.12), (2.13), we have

G([a, b]) = lim
n→∞

g
(
2ni([a, b])

)
2ni

= lim
n→∞

g
(
[2nia, b]

)
2ni

= lim
n→∞

[2nig1(2
nia), g2(b)] + t([2nia, b])

2na

= lim
n→∞

(
[g1(2

nia), g2(b)] +
t([2nia, b])

2ni

)
= [G(a), g2(b)],

(2.14)

for all a, b ∈ A witha ⊥ b. Now, let n ∈ N be fixed and a, b ∈ A with a ⊥ b . By using
(2.14) and orthogonal additivity of G, one obtains

[G(a), g2(2
nib)] = G

(
[a, (2nib])

)
= G

(
[(2nia), b]

)
= [G(2nia), g2(b)] = 2ni[G(a), g2(b)]

which yields

[G(a),
g2(2

nib)

2ni
] = [G(a), g2(b)]. (2.15)

A comparison of the (2.15) relation with (2.14) shows that

G([a, b]) = [G(a),
g2(2

nib)

2ni
].

Taking the limit as n→ ∞, then G([a, b]) = [G(a), G(b)].
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Corollary 2.3. Let θ, ε ≥ 0 and g, g1, g2 : A −→ A be mappings such that g is an odd
mapping for which

∥g(a+ b)− g1(a)− g2(b)∥ ≤ ε(∥a∥q + ∥b∥q)

∥g([a, b])− [g1(a), g2(b)]∥ ≤ θ∥a∥s∥b∥r

where a ⊥ b and q, s, r are real numbers. Then there exists a unique orthogonally Lie
homomorphism G : A −→ A such that

∥g(a)−G(a)∥ ≤ 2
i(1+i)(q−1)

2

1− 2i(q−1)
ε

(
2∥a+ va∥q + 2∥a− va∥q + 4∥a∥q + 4∥va∥p

)
,

∥g1(a)− g1(0)−G(a)∥ ≤ ε

{
2

i(1+i)(q−1)
2

1− 2i(q−1)
(2∥a+ va∥q + 2∥a− va∥q + 4∥a∥q + 4∥va∥q)

+ (∥a∥q)
}
,

∥g2(a)− g2(0)−G(a)∥ ≤ ε

{
2

i(1+i)(q−1)
2

1− 2i(q−1)
(2∥a+ va∥q + 2∥a− va∥q + 4∥a∥q + 4∥va∥q)

+ (∥a∥q)
}

for any fixed a ∈ A and some va ∈ A with a ⊥ va, where q, s < 1 for i = 1 and q, s > 1
for i = −1.

In the next theorem, we investigate the hyperstability of orthogonally Pexider Lie
homomorphisms.

Theorem 2.4. Assume that g, g1, g2 : A −→ A satisfying the system

∥g(a+ b)− g1(a)− g2(b)∥ ≤ φ(a, b),

∥g([a, b])− [g1(a), g2(b)]∥ ≤ ϕ(a, b),

where ϕ, φ satisfying in (2.4) and (2.5) for all a, b ∈ A with a ⊥ b. Let g1(0) = g2(0) = 0
and A be an orthogonally Lie Banach algebra without order, i.e. Aa = 0 or aA = 0
implies that a = 0. If g is an odd mapping, ϕ(0, 0) = φ(0, 0) = 0 such that for all a ∈ A
that is fixed, and some va ∈ A with a ⊥ va and ψ ((2.6) in Theorem 2.2) has the property

ψ(a, va) ≤ L2iψ(
a

2i
,
va
2i

). (2.16)

Then two mappings g1, g2 are orthogonally Lie homomorphisms, and if either φ(0, a) = 0
or φ(a, 0) = 0, then g is an orthogonally Lie homomorphism.

Proof. By Theorem 2.2, mapping G : A −→ A is an orthogonally Lie homomorphism
such that

G(a) = lim
n→∞

g(2nia)

2ni
= lim

n→∞

g1(2
nia)

2ni
= lim

n→∞

g2(2
nia)

2ni
∀ a ∈ A. (2.17)

Since g1(0) = g2(0) = 0, then by applying (2.17) in (2.15), we conclude that G(a)(G(b)−
g2(b)) = 0 for all a, b ∈ A. Therefore, G = g2.
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Let a, b ∈ A with a ⊥ b and t be the mapping which defined in Theorem 2.2. By (2.5)

lim
n→∞

r(a, 2nib)

2ni
= 0. (2.18)

Using (2.17) and (2.18), we have
G([a, b]) = [g1(a), g2(a)]. (2.19)

According to proof of Theorem 2.2, we get

[
g1(2

nia)

2ni
, g2(b)] = [g1(a), g2(b)].

By applying (2.17) in the above relation we conclude that g1 = G. By applying (2.16) to
the either relation (2.10) or relation (2.11) satisfy in last hypothesis of this theorem, then
g is orthogonally Lie homomorphism.

3. Orthogonally Pexider Lie Derivation
In this section, we investigate the stability and hyperstability of the orthogonally Pex-

ider Lie derivations on orthogonally Lie Banach algebras by using the orthogonally fixed
point approach.

Definition 3.1. Let (A,⊥) be an orthogonally Lie Banach algebra and let d, d1, d2 :
A −→ A be mappings satisfying d(a+ b) = d1(a) + d2(b),

d([a, b]) = [d1(a), b] + [a, d2(b)],
(3.1)

for all a, b ∈ A with a ⊥ b. The system (3.1) is called an orthogonally Pexiderized Lie
derivation.

Theorem 3.2. Let d, d1, d2 : A −→ A be mappings, d is odd and satisfying inequalities
∥d(a+ b)− d1(a)− d2(b)∥ ≤ φ(a, b), (3.2)

∥d([a, b])− [d1(a), b]− [a, d2(b)]∥ ≤ ϕ(a, b), (3.3)
where ϕ, φ satisfy in (2.4) and (2.5) for all a, b ∈ A with a ⊥ b. If d is an odd mapping,
ϕ(0, 0) = φ(0, 0) = 0 and there exists 0 < L < 1 such that for any fixed a ∈ A and some
va ∈ A with a ⊥ va, the mapping ψ ((2.6) in Theorem 2.2) has the property

ψ(a, va) ≤ L2iψ(
a

2i
,
va
2i

).

Then there exists is a unique orthogonally Lie derivation D : A −→ A such that

∥d(a)−D(a)∥ ≤ L
1+i
2

1− L
ψ(a, va),

∥d1(a)− d1(0)−D(a)∥ ≤ L
1+i
2

1− L
ψ(a, va) + φ(a, 0),

∥d2(a)− d2(0)−D(a)∥ ≤ L
1+i
2

1− L
ψ(a, va) + φ(0, a).
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Proof. According to the proof of Theorem 2.2, there exists a mapping D which is the
fixed point of J and satisfying

∥f(a)−D(a)∥ ≤ L
1+i
2

1− L
ψ(a, va).

for all fixed a, va ∈ A with a ⊥ va. Moreover,

D(a) = lim
n→∞

d(2nia)

2ni
= lim

n→∞

d1(2
nia)

2ni
= lim

n→∞

d2(2
nia)

2ni
. (3.4)

for all a ∈ A.
To show that the mapping D is a Lie derivation, define t : A −→ A by t([a, b]) =

d([a, b])− [d1(a), b]− [a, d2(b)] for all a, b ∈ A with a ⊥ b. It follows from (2.5) that

lim
n→∞

t([2nia, b])

2ni
= 0. (3.5)

Therefore from (3.4) and (3.5), we get

D([a, b]) = lim
n→∞

d
(
[2nia, b]

)
2ni

= lim
n→∞

[d1(2
nia), b] + [2nia, d2(b)] + t([2nia, b])

2ni

= [D(a), b] + [a, d2(b)]

(3.6)

where a ⊥ b. Now let n ∈ N be fixed and a, b ∈ A with a ⊥ b. By (3.6) and additivity of
D, it can be shown that

[D(a), 2nib] + [a, d2(2
nib)] = D([a, 2nib]) = D([2nia, b]) = [D(2nia), b] + [2nia, d2(b)]

= [2niD(a), b] + [2nia, d2(b)]

and then [D(a), b] + [a, d2(2
nia)

2ni ] = D([a, b]). So

D([a, b] = [D(a), b] + [a,D(b)].

whenever n→ ∞. This completes the proof.

In the Next corollary, the result of Th. M. Rassias can be generalized if, we define

φ(a, b) = ε(∥a∥q + ∥b∥q),

ϕ(a, b) = θ∥a∥s∥b∥r

where q, s, r and θ, ε ≥ 0 are real numbers. As a consequence of Theorem 2.4, we have
hyperstability of orthogonally Pexider Lie derivation.

Theorem 3.3. Let mappings d, d1, d2 : A −→ A satisfying

∥d(a+ b)− d1(a)− d2(b)∥ ≤ φ(a, b),

∥d([a, b])− [d1(a), b]− [a, d2(b)]∥ ≤ ϕ(a, b),

where ϕ, φ satisfy in (2.4) and (2.5) for all a, b ∈ A with a ⊥ b. Let d1(0) = d2(0) = 0 and
A be an orthogonally Lie Banach algebra without order, i.e. Aa = 0 or aA = 0 implies
that a = 0. If d is an odd mapping, ϕ(0, 0) = φ(0, 0) = 0 and there exists 0 < L < 1 such
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that for any fixed a ∈ A and some va ∈ A with a ⊥ va, the mapping ψ ((2.6) in Theorem
2.2) has the property

ψ(a, va) ≤ L2iψ(
a

2i
,
vi
2i
),

then two mappings d1, d2 are orthogonally Lie derivations, and if either φ(0, a) = 0 or
φ(a, 0) = 0 for all a ∈ A, then d is an orthogonally Lie derivation.
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