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Abstract In this paper, we develop an iterative approach for obtaining a closed-form expansion for the
conditional expectation of the valuation process, defined by

Vt,T := e−
∫ T
t g(vs)dsf(vT ) +

∫ T

t
h(vs)e

−
∫ s
t g(vu)duds

for 0 ≤ t ≤ T , where vt is assumed to follow the extended Cox-Ingersoll-Ross process, for any smooth
real-valued functions f, g, and h. The novel analytical approach presented here at least serves for two
major purposes: (i) to avoid the requirement of numerical integration or Monte Carlo (MC) simulations
to compute the conditional expectation, which can substantially reduce the computational burden; (ii)
to provide a simple closed-form expansion for the conditional expectation, which can be easily used by
market practitioners. Furthermore, a multi-step closed-form expansion is constructed in order to improve
the accuracy of our approach. The performance of the current approach is demonstrated by comparing
our numerical results with some exact solutions and MC simulations from several examples.  
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1. Introduction
The extended Cox-Ingersoll-Ross (ECIR) process has a form of

dvt = κ(t)(θ(t)− vt)dt+ σ(t)
√
vtdWt, (1.1)

where vt is an instantaneous variance and Wt is a standard Brownian motion under a
probability space (Ω,F , P ) with a filtration (Ft)t⩾0. All of the parameters i.e., θ(t), κ(t),
and σ(t), are set to be smooth and bounded time dependent functions.
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A special class of the ECIR process is that of the class of Cox-Ingersoll-Ross (CIR)
process which has a form of

dvt = κ(θ − vt)dt+ σ
√
vtdWt (1.2)

where the parameters θ, κ, and σ are set to be constant.
Even though the CIR process is the most common model used to describe the dynamics

of the instantaneous variance or interest rates in the Heston model of stochastic volatility
or in stochastic interest rate models [1], there are many empirical evidences supporting
the theory that the data generating process governing the dynamics of many econom-
ics variables might vary over time, because of economic climate changes or time effects.
Following that case, the ECIR process is more suitable for describing the data than the
corresponding CIR process, because the ECIR process uses time dependent parameter
functions to represent possible time varying expected trends and volatilities of the mar-
ket and the economy. Consequently, many researchers in commodity markets such as
Schneider and Tavin [2], and Arismendi et al.[3], described seasonal stochastic volatility
by using the ECIR process in which θ(t) describes the long-term mean variance level of
commodity prices which is assumed to be a function of time.

Considering option pricing when the underlying process is assumed to follow the ECIR
process (1.1), we define the valuation process of a contingent claim (f, g, h) by

Vt,T := e−
∫ T
t

g(vs)dsf(vT ) +

∫ T

t

h(vs)e
−

∫ s
t
g(vu)duds (1.3)

for real-valued functions f, g, and h. In this context, the processes f(vt), g(vt), and h(vt)
for t ∈ [0, T ] represent, respectively, a terminal payoff, an interest rate process, and a
payoff rate process. According to the theorem for option pricing proposed by Karatzas
and Shreve [4] (see page 378), the fair price of the contingent claim (f, g, h) at a current
time t is the conditional expectation of the valuation process (1.3) with respect to the
risk-neutral probability measure P and current σ- field Ft, such as

EP [Vt,T |Ft] = EP [Vt,T |vt = v] (1.4)

for t ∈ [0, T ] and v > 0, where we denote by EP [X|Ft], the conditional expectation of a
random variable X with respect to the probability measure P and σ- field Ft.

We define

Xt,T := e−
∫ T
t

g(vs)ds (1.5)

Yt,T :=

∫ T

t

h(vs)e
−

∫ s
t
g(vu)duds (1.6)

for t ∈ [0, T ]. Hence, the valuation process (1.3) can be expressed as

Vt,T = Xt,T f(vT ) + Yt,T (1.7)

and the conditional expectation (1.4) can be explicitly written in terms of a triple integral
as

EP [Vt,T |vt = v] =

∫
DY

∫
DX

∫
DV

(xf(v) + y)pvxy(v, x, y, t+ τ |v, t)dvdxdy (1.8)



An Iterative Approach for Obtaining a Closed-form ... 213

for τ = T − t ≥ 0 where pvxy(v, x, y, t+ τ |v, t) denotes the joint-transition density of the
processes vt, Xt,T , and Yt,T defined on the domains DV ⊆ R+, DX ⊆ R+, and DY ⊆ R,
respectively.

Focusing on computation, various analytical or numerical methods can be adopted to
obtain exact or numerical solutions for the triple integral on the RHS of (1.8) providing
that the joint-transition density pvxy is available in closed-form. However, to derive pvxy
in closed-form, we need to solve the forward Kolmogorov equation, associated with the
processes vt, Xt,T , and Yt,T (see Karatzas and Shreve [4] on page 282) and this is a difficult
and complicated task in general for arbitrary real-valued functions f, g, and h. According
to literature, the conditional expectation (1.4) has closed-form formulas for some special
cases. For example, Dufresne [5] proposed a closed-form formula for the case f(v) = vγ

for any γ > −2κθ
σ2 and g = h = 0 in which vt is assumed to follow the CIR process (1.2).

Rujivan [6] extended Dufresne’s [5] work to the ECIR processes (1.1) for any γ ∈ R.
Sutthimat et al. [7] extended Rujivan’s [6] work to product of polynomial and exponential
function of affine transform. Thamrongrat and Rujivan [8] derived a closed-form formula
for the conditional expectation of the valuation process for f (v) = vγ1and h (v) = vγ2

for any γ1, γ2 ∈ R, and any integrable function g. Very recently, Rujivan [9] and Rujivan
and Rakwongwan [10] used the results proposed in [6, 8] to price variance swaps and
volatility swaps. Moreover, Thamrongrat and Rujivan [11] used the results proposed in
[7] to determine the fair prices of interest rate swaps in terms of bond prices under the
ECIR model (1.1), whereas Prathom and Rujivan [12] applied the results proposed in [6]
to derive the conditional moments of quadratic variance diffusion processes.

In terms of numerical methods based on simulations, as alternative to the methods
previously introduced, the Monte Carlo (MC) method is the most influential one which
can be directly adopted to obtain approximates for the conditional expectation (1.4).
Nevertheless, this approach consumes much computational time and effort to generate
sample paths of Vt,T which is a path dependence process, depending on the underlying
processes vt, Xt,T , and Yt,T . In this study, we present an iterative approach to derive
a closed-form expansion for the conditional expectation (1.4). Very interestingly, the
derivation of our approach has completely avoided the utilization of the joint-transition
density pvxy.

There are two major contributions of this paper. First, our closed-form expansion
produces approximates for the conditional expectation (1.4) without employing numerical
integration or MC simulations. Clearly, this can substantially reduce the computational
burden which is a major drawback of numerical integration and MC method. Second, our
closed-form expansion has a simple form, which can be easily used by market practitioners.
With these contributions, our closed-form expansion should be valuable in both theoretical
and practical senses.

The approach presented here in this paper has a major difference from Rujivan’s [6]
approach as follows. Rujivan’s [6] work aimed to derive a closed-form formula for the
conditional moments of the ECIR processes. In other words, the arbitrary real-valued
functions were set to be f(v) = vγ and g(v) = h(v) = 0 for any γ ∈ R and v > 0.
Since f which is an initial condition for solving the associated PDE has a form as a
polynomial function in v, the solution of the associated PDE was assumed as a power series
in v, in which the coefficient functions depend only on time and can be determined by
solving a system of ordinary differential equations (ODE), recursively. On the other hand,
the current work aims to derive a closed-form expansion for the conditional expectation
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of the valuation process (1.3) based on the ECIR process (1.1) and for smooth real-
valued functions f, g, and h. It is clear that Rujivan’s [6] approach cannot be adopted
to derive the closed-form expansion when f, g, and h are not polynomial functions in
v. Furthermore, we apply the tower property to the conditional expectation (1.4) and
construct a multi-step closed-form expansion in order to improve the accuracy of our
approach.

The following two assumptions proposed by Maghsoodi [13] are needed, in order to
ensure that the stochastic differential equation (SDE) (1.1) has a pathwise unique strong
solution, in which vt avoids zero a.s. P for all t ∈ (0, T ].

Assumption 1.1. The parameter functions θ(t), κ(t), and σ(t) are strictly positive
and continuous on [0, T ] such that the dimension of the ECIR process (1.1), defined by
δ(t) := 4θ(t)κ(t)

σ2(t) , is bounded.

Assumption 1.2. The inequality δ(t) ≥ 2 holds for all t ∈ [0, T ].

Moreover, the following assumption ensures that the conditional expectation (1.8) ex-
ists for all t ∈ (0, T ] and v > 0.

Assumption 1.3. The functions f, g, and h are smooth functions and satisfy the poly-
nomial growth condition |f(v)|+ |g(v)|+ |h(v)| ≤ CvN for some constant C > 0, positive
integer N , and for all v > 0.

The organization of the paper is as follows. In Section 2, we prove the main theorem,
which shall be adopted to derive a closed-form expansion for the conditional expectation
(1.4), based on the CIR process (1.2) and ECIR process (1.1), respectively. We further
construct a multi-step closed-form expansion for the conditional expectation (1.4) in order
to improve the accuracy of the current approach. Under the special case of contingent
claims as previously introduced, we finish the section by deriving some closed-form for-
mulas for the conditional expectation (1.4), based on the ECIR process (1.1) and CIR
process (1.2), respectively. In Section 3, we study the accuracy of our current approach
by comparing our numerical results with some exact solutions and MC simulations from
several examples. We conclude the paper in the last section.

2. Main Results
In this section, we first present an iterative approach for obtaining a closed-form ex-

pansion for the conditional expectation (1.4), based on the CIR process (1.2).

2.1. Our closed-form expansion for the CIR process
Theorem 2.1. Suppose vt follows the CIR process (1.2). By assuming that Assumptions
1-3 hold, we denote

UC(v, τ) := EP [Vt,T |vt = v] (2.1)
for v > 0 and τ = T − t ≥ 0. Then, UC(v, τ) can be expressed as

UC(v, τ) =

∞∑
k=0

Ak(v)
τk

k!
(2.2)

for all (v, τ) ∈ DC where DC is a subset of (0,∞)× [0,∞),
A0(v) = f(v) (2.3)



An Iterative Approach for Obtaining a Closed-form ... 215

A1(v) =
1

2
σ2vA′′

0(v) + κ(θ − v)A′
0(v)− g(v)A0(v) + h(v) (2.4)

Ak(v) =
1

2
σ2vA′′

k−1(v) + κ(θ − v)A′
k−1(v)− g(v)Ak−1(v) (2.5)

for k = 2, 3, ..., and the derivatives are computed with respect to v.

Proof. Applying the Feynman-Kac theorem, UC satisfies the PDE:

−∂UC

∂τ
+

1

2
σ2v

∂2UC

∂v2
+ κ(θ − v)

∂UC

∂v
− g(v)UC(v, τ) + h(v) = 0 (2.6)

for all v > 0 and 0 < τ ≤ T , subject to the initial condition

UC(v, 0) = f(v) (2.7)

for all v > 0.
Next, we compute the partial derivatives of UC in (2.6) using the solution form (2.2).

Inserting the partial derivatives obtained into (2.6) gives

∞∑
k=1

−Ak(v)τ
k−1

(k − 1)!
+

1

2
σ2v

{ ∞∑
k=0

Ak
′′(v)τk

k!

}
+ κ(θ − v)

{ ∞∑
k=0

Ak
′(v)τk

k!

}

− g(v)

{ ∞∑
k=0

Ak(v)τ
k

k!

}
+ h(v) = 0.

(2.8)

It should be noted here that we need to impose an assumption on the infinite series on
the RHS of (2.2) and LHS of (2.8) in order to obtain (2.8) by interchanging the partial
derivative signs and infinite-sum signs in (2.6). The assumption is that there is a subset
DC of (0,∞)× [0,∞), such that the infinite series on the RHS of (2.2) and LHS of (2.8)
converge uniformly on DC with respect to (v, τ).

Under the assumption and initial condition (2.7), by collecting the coefficients of τk

in (2.8) for k = 0, 1, ..., and equating them to zero, the coefficient functions Ak(v), k =
0, 1, ..., must satisfy (2.3), (2.4), and (2.5), recursively.

2.2. Our closed-form expansion for the ECIR process
We need the following assumption in order to derive a closed-form expansion for the

conditional expectation (1.4), based on the ECIR process (1.1).

Assumption 2.2. For any T > 0, the Taylor expansions of the parameter functions
θ(·), κ(·), and σ(·) centered at T converge to θ(t), κ(t), and σ(t), respectively, for all
t ∈ [0, T + ϵ) for some ϵ > 0.

Theorem 2.3. Suppose vt follows the ECIR process (1.1). By assuming that Assumptions
1-4 hold, we denote

UE(v, τ) := EP [Vt,T |vt = v] (2.9)
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for v > 0 and τ = T − t ≥ 0 and set α1(t) = σ2(t), α2(t) = κ(t)θ(t), and α3(t) = κ(t) for
t ≥ 0. Then, UE(v, τ) can be expressed as

UE(v, τ) =

∞∑
k=0

Bk(v)
τk

k!
(2.10)

for all (v, τ) ∈ DE where DE is a subset of (0,∞)× [0,∞),
B0(v) = f(v) (2.11)

B1(v) =
1

2
α1(T )vB0

′′(v) + {α2(T )− α3(T )v}B0
′(v)− g(v)B0(v) + h(v) (2.12)

Bk(v) =

k−1∑
j=0

cjk

{
1

2
α
(k−j−1)
1 (T )vBj

′′(v) + {α(k−j−1)
2 (T )− α

(k−j−1)
3 (T )v}Bj

′(v)

}
− g(v)Bk−1(v),

(2.13)

where cjk = (−1)k−j−1(k−1)!
j!(k−j−1)! for k = 2, 3, .... The (k − j − 1)th derivatives of αi(t), i =

1, 2, 3, are computed with respect to t while the derivatives Bj
′′(v) and Bj

′(v) are computed
with respect to v.

Proof. Similar to the proof of Theorem 2.1, we first apply the Feynman-Kac theorem and
obtain that UE satisfies the PDE:

−∂UE

∂τ
+

1

2
α1(t)v

∂2UE

∂v2
+ (α2(t)− α3(t)v)

∂UE

∂v
− g(v)UE(v, τ) + h(v) = 0 (2.14)

for all v > 0, 0 < τ ≤ T and 0 ≤ t < T , subject to the initial condition
UE(v, 0) = f(v) (2.15)

for all v > 0.
Following the procedure as presented in the proof of Theorem 2.1 gives

∞∑
k=1

−Bk(v)τ
k−1

(k − 1)!
+

α1(t)

2
v

{ ∞∑
k=0

Bk
′′(v)τk

k!

}
+ (α2(t)− α3(t)v)

{ ∞∑
k=0

Bk
′(v)τk

k!

}

− g(v)

{ ∞∑
k=0

Bk(v)τ
k

k!

}
+ h(v) = 0,

(2.16)
where we assume that there is a subset DE of (0,∞)× [0,∞) such that the infinite series

on the RHS of (2.10) and LHS of (2.16) converge uniformly on DE with respect to (v, τ).
Under Assumption 4, we have

αi(t) =

∞∑
k=0

α
(k)
i (T )

(−1)
k
τk

k!
(2.17)

for i = 1, 2, 3 for all t ∈ [0, T ]. Replacing these Taylor expansions into (2.16) and collecting
the coefficients of τk for k = 0, 1, ..., the coefficient function B0(v) must satisfy (2.11)
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derived by using the initial condition (2.15). Consequently, the remaining coefficient
functions Bk(v), k = 1, ..., must follow (2.12) and (2.13), recursively.

It should be noticed that (2.13) reduces to (2.5) when the parameter functions θ(t),
κ(t), and σ(t) are constants.

2.3. A multi-step closed-form expansion
This subsection constructs a multi-step closed-form expansion for the conditional ex-

pectation (1.4) by applying the tower property. We shall demonstrate later in Section 3
that the multi-step closed-form expansion produces more accurate results than the closed-
form expansion (2.10).

Let ℘n(t, T ) := {t0 = t, t1, ..., tn = T} be a partition on [t, T ] for any positive integer
n ≥ 2 and set τ(n) := {τi = ti − ti−1|i = 1, ..., n}. First, we define

xtj ,tk := e
−

∫ tk
tj

g(vs)dsf(vtk) (2.18)
for tj ≤ tk in ℘n(t, T ). By applying the tower property, we have

EP
t0 [xt0,tn ] = EP

t0 [e
−

∫ tn−1
t0

g(vs)dsEP
tn−1

[xtn−1,tn ]], (2.19)

where we denote EP
tj [xtk,tl ] := EP [xtk,tl |vtj ] for tj ≤ tk ≤ tl in ℘n(t, T ). Utilizing

Theorem 2.3, we have

EP
tn−1

[xtn−1,tn ] =

∞∑
kn=0

B
(1)
kn

(vtn−1
)
τkn
n

kn!
(2.20)

where B
(1)
0 (v) = f(v) and B

(1)
kn

(v), kn = 1, 2, ..., are computed using (2.12) with h(v) = 0

and (2.13), respectively. Inserting (2.20) into (2.19) and applying the tower property
again give us

EP
t0 [xt0,tn ] = EP

t0 [e
−

∫ tn−2
t0

g(vs)ds
∞∑

kn=0

EP
tn−2

[e
−

∫ tn−1
tn−2

g(vs)dsB
(1)
kn

(vtn−1
)]
τkn
n

kn!
].

(2.21)
By applying Theorem 2.3 to the conditional expectation with respect to tn−2 on the RHS
of (2.21), we obtain

EP
tn−2

[e
−

∫ tn−1
tn−2

g(vs)dsB
(1)
kn

(vtn−1
)] =

∞∑
kn−1=0

B
(1)
kn−1,kn

(vtn−2
)
τ
kn−1

n−1

kn−1!
, (2.22)

for all kn = 1, 2, ..., where B
(1)
0,kn

(v) = B
(1)
kn

(v) and B
(1)
kn−1,kn

(v), kn−1 = 1, 2, ..., are com-
puted using (2.12) with h(v) = 0 and (2.13), respectively. Inserting (2.22) into (2.21)
gives

EP
t0 [xt0,tn ] = EP

t0 [e
−

∫ tn−2
t0

g(vs)ds
∞∑

kn−1,kn=0

B
(1)
kn−1,kn

(vtn−2
)
τ
kn−1

n−1

kn−1!

τkn
n

kn!
]. (2.23)

Repeating the procedure for n times, we thus obtain

EP
t0 [xt0,tn ] =

∞∑
k1,...,kn=0

B
(1)
k1,...,kn

(v)

n∏
j=1

τ
kj

j

kj !

, (2.24)
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where B
(1)
k1,...,kn

(v) for k1, ..., kn = 0, 1, ..., are computed using (2.12) with h(v) = 0 and
(2.13), respectively, as previously demonstrated.

Second, we define

ytj ,tk :=

∫ tk

tj

h(vs)e
−

∫ s
t0

g(vu)duds (2.25)

for tj ≤ tk in ℘n(t, T ). By applying the tower property, we have

EP
t0 [yt0,tn ] = EP

t0 [yt0,tn−1
] + EP

t0 [E
P
tn−1

[ytn−1,tn ]], (2.26)

where we denote EP
tj [ytk,tl ] := EP [ytk,tl |vtj ] for tj ≤ tk ≤ tl in ℘n(t, T ). Utilizing Theorem

2.3, we have

EP
tn−1

[ytn−1,tn ] = EP
tn−1

[∫ tn

tn−1

h(vs)e
−

∫ s
t0

g(vu)duds

]

= e−
∫ tn−1
t0

g(vu)duEP
tn−1

[∫ tn

tn−1

h(vs)e
−

∫ s
tn−1

g(vu)du
ds

]

= e−
∫ tn−2
t0

g(vu)du
∞∑

kn=0

e
−

∫ tn−1
tn−2

g(vu)duB
(2)
kn

(vtn−1
)
τkn
n

kn!
, (2.27)

where B
(2)
0 (v) = 0, B

(2)
1 (v) = h(v) and B

(2)
kn

(v), kn = 2, 3, ..., are computed using (2.13).
Inserting (2.27) into the second term on the RHS of (2.26) and applying the tower prop-
erty, we obtain

EP
t0 [E

P
tn−1

[ytn−1,tn ]]

= EP
t0

[
e−

∫ tn−2
t0

g(vu)du
∞∑

kn=0

EP
tn−2

[
e
−

∫ tn−1
tn−2

g(vu)duB
(2)
kn

(vtn−1
)

]
τkn
n

kn!

]
.

(2.28)

Next, we apply Theorem 2.3 to the conditional expectation with respect to tn−2 on the
RHS of (2.28)

EP
tn−2

[
e
−

∫ tn−1
tn−2

g(vu)duB
(2)
kn

(vtn−1)

]
=

∞∑
kn−1=0

B
(2)
kn−1,kn

(vtn−2)
τ
kn−1

n−1

kn−1!
(2.29)

for all kn = 1, 2, ..., where B
(2)
0,kn

(v) = B
(2)
kn

(v) and B
(2)
kn−1,kn

(v), kn−1 = 1, 2, ..., are com-
puted using (2.12) and (2.13), respectively, with h(v) = 0. Inserting (2.29) into (2.28),
we obtain

EP
t0 [E

P
tn−1

[ytn−1,tn ]] = EP
t0

e− ∫ tn−2
t0

g(vu)du
∞∑

kn−1,kn=0

B
(2)
kn−1,kn

(vtn−2
)
τ
kn−1

n−1

kn−1!

τkn
n

kn!

 .

(2.30)

Repeating the procedure for n times, we thus obtain

EP
t0 [E

P
tn−1

[ytn−1,tn ]] =

∞∑
k1,...,kn=0

B
(2)
k1,...,kn

(v)

n∏
j=1

τ
kj

j

kj !

 (2.31)
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where B
(2)
k1,...,kn

(v) for k1, ..., kn = 1, 2, ...., are computed using (2.12) and (2.13), respec-
tively, with h(v) = 0, as previously demonstrated. Furthermore, we can show by following
the procedure for obtaining (2.31) that

EP
t0 [E

P
tl−1

[ytl−1,tl ]] =

∞∑
k1,...,kl=0

B
(2)
k1,...,kl

(v)

l∏
j=1

τ
kj

j

kj !

, (2.32)

for all l = 1, ..., n, where B
(2)
k1,...,kl

(v) for k1, ..., kl = 1, 2, ..., are computed using (2.12) and
(2.13), respectively, with h(v) = 0.

Using (2.32) and the tower property for n times, the conditional expectation on the
LHS of (2.26) can be written as

EP
t0 [yt0,tn ] =

n∑
l=1


∞∑

k1,...,kl=0

B
(2)
k1,...,kl

(v)

l∏
j=1

τ
kj

j

kj !


 . (2.33)

Theorem 2.4. Suppose vt follows the ECIR process (1.1) and n ≥ 2 is a positive inte-
ger. By assuming that Assumptions 1-4 hold, a multi-step closed-form expansion for the
conditional expectation (1.4) with respect to a partition ℘n(t, T ) = {t0 = t, t1, ..., tn = T}
can be written as

UE(v, τ(n);℘n) : =

∞∑
k1,...,kn=0

B
(1)
k1,...,kn

(v;℘n)

n∏
j=1

τ
kj

j

kj !


+

n∑
l=1


∞∑

k1,...,kl=0

B
(2)
k1,...,kl

(v;℘n)

l∏
j=1

τ
kj

j

kj !




(2.34)

for v > 0, where τ(n) = {τi = ti − ti−1|i = 1, ..., n}. Moreover, the formula (2.34)
reduces to (2.10) when n = 1.
Proof. Since Vt,T = xt0,tn + yt0,tn . From (2.24) and (2.33), we immediately obtain (2.34).
According to (2.12) and (2.13), the functions B

(1)
k1,...,kn

(v) and B
(2)
k1,...,kn

(v) for k1, ..., kn =

0, 1, ..., written in (2.24) and (2.33), respectively, must depend on all points in ℘n(t, T ).
Hence, we write B

(1)
k1,...,kn

(v;℘n) and B
(2)
k1,...,kn

(v;℘n) in (2.34) instead of B(1)
k1,...,kn

(v) and
B

(2)
k1,...,kn

(v), respectively.

The calculation of (2.34) can easily be done with the aid of a symbolic package, such
as Maple, Matlab, or Mathematica. For the reader’s convenience, all Mathematica codes
used in this paper are available from the authors on request.

2.4. Some closed-form solutions under a special case of contingent
claims

This subsection presents some closed-form formulas for the conditional expectation
(1.4), based on the ECIR process (1.1) and CIR process (1.2) derived by Thamrongrat
and Rujivan [8] for f (v) = vγ1and h (v) = vγ2 for any γ1, γ2 ∈ R, and any integrable
function g. They adopted the analytical approach presented by Rujivan [6] using the
Feynman-Kac theorem to obtain the simple closed-form formulas written in the following
theorems in which we shall use their formulas to demonstrate the accuracy of our current
approach in the next section.
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Theorem 2.5. Suppose vt follows the ECIR process (1.1) and a contingent claim (f, g, h)
satisfies f(v) = vγ1 , h(v) = vγ2 , and g(v) = r for some γ1, γ2, r ∈ R. By assuming that
Assumptions 1-4 hold, the conditional expectation (1.4) can be expressed as

UE(v, τ) = e−rτU
(γ1)
E (v, τ) +

∞∑
k=0

 T∫
t

Aγ2−k(s− t)e−r(s−t)ds

vγ2−k (2.35)

for v > 0 and τ = T − t ≥ 0 where the functions U
(γ1)
E (v, τ) and Aγ2−k(s− t), k = 0, 1, ...,

are given in Theorem 2.1 by Thamrongrat and Rujivan [8].
In particular, if γ1 = m and γ2 = n are nonnegative integers, then

UE(v, τ) = e−rτU
(m)
E (v, τ) +

n∑
j=0

 T∫
t

Aj(s− t;n)e−r(s−t)ds

vj (2.36)

for v > 0 and τ = T−t ≥ 0, where the functions U (m)
E (v, τ) and Aj(s−t;n), j = 0, 1, ..., n,

are given in Theorem 2.1 by Thamrongrat and Rujivan [8].

Proof. See Theorem 2.1 in Thamrongrat and Rujivan [8].

The integral terms on the RHS of (2.35)-(2.36) can be worked out when vt follows the
CIR process (1.2), as shown in the following theorem.

Theorem 2.6. According to Theorem 2.5, if vt follows the CIR process (1.2) then

UC(v, τ) =

∞∑
k=0

{
c
(γ1)
k

e−(r+γ1κ)τ

k!

(
eκτ − 1

κ

)}
vγ1−k

+

{
c
(γ2)
k

1

κk

k∑
i=0

(−1)
k−i+1

(k − i)!i!

(
e−(r+(γ2−i)κ)τ − 1

r + (γ2 − i)κ

)}
vγ2−k

(2.37)

for v > 0 and τ = T − t > 0, where we define c
(γ)
0 = 1 and

c
(γ)
k =

k∏
l=1

(γ − l + 1)( 12 (γ − l)σ2 + κθ)

for k = 1, 2, ..., and γ ∈ R.
In particular, if γ1 = m and γ2 = n are nonnegative integers, then

UC(v, τ) =

max(m,n)∑
j=0

{
d
(m)
j

e−(r+mκ)τ

(m− j)!

(
eκτ − 1

κ

)m−j
}
vj

+

max(m,n)∑
j=0

{
d
(n)
j

1

κn−j

n−j∑
i=0

(−1)
n−j−i+1

(n− j − i)!i!

(
e−(r+(n−i)κ)τ − 1

r + (n− i)κ

)}
vj

(2.38)

for v > 0 and τ = T − t > 0, where for any nonnegative integer N , we define d
(N)
j = 0

for j > N , d(N)
N = 1 and

d
(N)
j =

N−j∏
l=1

(N − l + 1)( 12 (N − l)σ2 + κθ)

for j < N .

Proof. See Theorem 2.2 in Thamrongrat and Rujivan [8].
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3. Numerical Results and Discussions
Here, we study the accuracy of the closed-form expansion (2.34) through numerical

simulations. In our numerical study, we consider the ECIR process:

dvt = κ

(
σ2
0de

2σ1t

4κ
− vt

)
dt+ σ0e

σ1t
√
vtdWt (3.1)

where κ(t) = κ, θ(t) = 1
4κσ

2
0de

2σ1t, and σ(t) = σ0e
σ1t, with κ, d, σ0, and σ1 are positive

constants. The transition density of vt, denoted by pV (w, t + τ |v, t) for all w > 0, was
found by Egorov et al. [14] (see page 121 of their paper).

For a special case, when g = h = 0, we can compute UE(v, τ) by using the formula:

UE(v, τ) = EP [f(vT )|vt = v] =

∫ ∞

0

f(w)pV (w, t+ τ |v, t)dw (3.2)

for all v > 0 and τ = T − t ≥ 0. As discussed in Rujivan [6], the semi-infinite integral
(3.2) may not be available in closed-form, and numerical integration may be employed
to approximate UE(v, τ). However, it must be remarked that when τ is very small, i.e.,
τ = 0.01 (year), the usual numerical integration methods cannot be performed well,
because pV behaves like a Dirac delta function, which has an infinitely thin spike at the
initial value v. To avoid this problem, one can employ Monte Carlo simulations in order
to approximate the value of UE(v, τ).

In general f, g, and h may not vanish; the calculation of the conditional expectation
(1.4) by integrating the joint-transition density of the two stochastic processes, xt,T and
yt,T defined in (2.18) and (2.25), is clearly not an easy task. In fact, the joint-transition
density of the two stochastic processes is a function of two state variables. This leads to
the computation of a semi-infinite double integral that is more time-consuming than the
simple case, when g = h = 0. Although MC simulations can also be employed under the
latter case, it would dramatically increase computational time from the simple case, since
a large number of sample points xti,T and yti,T for ti ∈ [t, T ] are needed to approximate
the integrals contained in (2.18) and (2.25), and a large number of sample paths of
xt,T and yt,T are required in order to achieve a prescribed accuracy. The present section
demonstrates one of the two major contributions of the paper such that the computational
time of using the closed-form formula (2.34) to compute the conditional expectation (1.4)
would be much less than that of the MC simulations.

Our MC simulations are based on a simple simulation of the ECIR processes by uti-
lizing the Euler-Maruyama discretization. Higham and Mao [15] proved that the Euler-
Maruyama discretization is an attractive method, providing qualitatively correct approx-
imations. Since our aim is primarily to obtain some benchmark values for the closed-form
expansion (2.34), we will not focus our attention on the use of other variance reduction
techniques that could further enhance the computational efficiency. In our MC simula-
tions, we have employed the simple Euler-Maruyama discretization for the ECIR process
(1.1)

vti = vti−1 + κ(ti−1)(θ(ti−1)− vti−1)∆t+ σ(ti−1)
√
vti−1

√
∆tWti (3.3)

where Wt is a standard normal random variable. The parameters are set to follow κ =
0.03, d = 3.40, σ0 = 0.01, and σ1 = 0.02 (unless otherwise stated). Our numerical
experiments are performed under Microsoft Windows 7 64-bit on a processor Intel(R)
Core(TM) i5-3210M 2.5 GHz machine with 8GB main memory.
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3.1. Notations

In what follows, we let U
(N,K1,K2)
E denote an N−step closed-form expansion of UE in

the form of (2.34), in which the partial sum of the infinite series (2.10) is used up to order
K1, with the Taylor expansion (2.17) up to order K2. Moreover, U

(M,Np)
E denotes an

approximate of UE , obtained by MC simulations with a number of sample paths is Np.
In the case that UE has a closed-form formula, we measure the level of accuracy of

our approach and of the MC simulations by using the percentage absolute relative errors
(RE) defined, respectively, by

R
(N,K1,K2)
E (v, τ) :=

∣∣∣∣∣UE(v, τ)− U
(N,K1,K2)
E (v, τ)

UE(v, τ)

∣∣∣∣∣× 100 (3.4)

and

R
(M,Np)
E (v, τ) :=

∣∣∣∣∣UE(v, τ)− U
(M,Np)
E (v, τ)

UE(v, τ)

∣∣∣∣∣× 100 (3.5)

for any (v, τ) ∈ (0,∞) × (0,∞), providing that UE(v, τ) ̸= 0. In addition, we use
U

(N,K1,K2)
C , U (M,Np)

C , R(N,K1,K2)
C and R

(M,Np)
C instead of U (N,K1,K2)

E , U (M,Np)
E , R(N,K1,K2)

E

and R
(M,Np)
E , respectively, when the ECIR process (3.1) becomes a CIR process under

some cases of parameter setting.
On the other hand, when UE has not been found in closed-form, for a fixed N , we

define a sequence of absolute relative errors as

ϵ(N,k)(v, τ) :=

∣∣∣∣∣U (N,k+1,k+1)
E (v, τ)− U

(N,k,k)
E (v, τ)

U
(N,k,k)
E (v, τ)

∣∣∣∣∣ (3.6)

for any (v, τ) ∈ (0,∞) × (0,∞), and k = 1, 2, ... providing that U
(N,k,k)
E (v, τ) ̸= 0.

Furthermore, we claim that if ϵ(N,k)(v, τ) < 0.5 × 10−n, then the current approximate
U

(N,k,k)
E (v, τ) of UE(v, τ) is correct to at least n significant digits, where n is a positive

integer.
The definite integrals contained in (2.18) and (2.25) are computed using the trapezoidal

rule, with the number of sample points being 1,000. In our numerical tests, we compute
the values of U (N,K1,K2)

E (v, τ) and U
(M,Np)
E (v, τ) at the initial values v ∈ {0.1, 0.2, ..., 2}.

In order to demonstrate the performance of our current approach, we divide our numerical
study into three parts as follows.

3.2. Comparison with some exact solutions
We first compare our numerical results with the exact solutions provided in Theorem

2.5.

Example 3.1. This example cosiders the closed-form formula (2.36) for ECIR processes
with m = 2 and n = 3. Using (2.34) with the parameter functions θ(t) =

σ2
0de

2σ1t

4κ ,
κ(t) = κ, and σ(t) = σ0e

σ1t, we obtain the N−step closed-form expansions for N = 1, 2
and K1 = K2 = 1 as

U
(1,1,1)
E (v, τ) = v2 +

1

2
v
(
(d+ 2)σ2

0e
2σ1T + 2v(−2κ− r + v)

)
τ (3.7)
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and
U

(2,1,1)
E (v, τ) = v2 + 1

4v
(
(d+ 2)σ2

0

(
eσ1(t+T ) + e2σ1T

)
+ 4v(−2κ− r + v)

)
τ

+ 1
32 (−2σ2

0ve
σ1T

{
eσ1t(4(d+ 2)κ+ 2(d+ 2)r − 3(d+ 4)v) + 2(d+ 2)(κ+ r)eσ1T

}
+ d(d+ 2)σ4

0e
σ1(t+3T ) + 8v2

(
4κ2 + r2 + 4κr − rv − 3κv

)
)τ2 (3.8)

where τ = T − t. The N−step closed-form expansions for N = 3, 4, 5, and K1 = K2 = 1
can further be obtained by using (2.34). The exact solution UE(v, τ) can be derived by
using (2.36) with m = 2 and n = 3.

By setting t = 0, T = 1, and r = 0.1, Figures 1-2 display the convergence of the
multi-step closed-form expansion (2.34) towards the exact solution UE when N increases
for all v ∈ (0, 2). We can clearly see that RE is reduced from 6.2%, with N = 1 being less
than 1.2% with N = 5. Moreover, as displayed in Figure 3, when the final time is smaller,
such as T = 0.5, U (5,1,1)

E (v, 0.5) perfectly matches the exact solution with R
(5,1,1)
E (v, 0.5)

being less than 0.6% for all v ∈ (0, 2).
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N=3

N=4

N=5

UE

Figure 1. Convergence of the multi-step closed-form expansion (2.34)
towards the exact solution when the number of steps is increased where
τ = 1 and the contingent claim is set in Example 1.

Example 3.2. In this example, we consider the closed-form formula (2.35) for ECIR
processes with γ1 = 1

2 and γ2 = − 1
2 . Using (2.34), with the same setting for the parameter

functions and times t and T used in the previous example, we obtain the one-step closed-
form expansions for K1 = K2 = K = 1, 2 as

U
(1,1,1)
E (v, τ) =

√
v +

(
(d− 1)σ2

0e
2σ1T − 4v(κ+ 2r) + 8

)
8
√
v

τ (3.9)

and
U

(1,2,2)
E (v, τ) = U

(1,1,1)
E (v, τ) + λτ2 (3.10)
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Figure 2. Convergence of the percentage absolute errors towards zero
when the number of steps in the multi-step closed-form expansion (2.34)
is increased where τ = 1 and the contingent claim is set in Example 1.
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Figure 3. Convergence of the percentage absolute errors towards zero
when the number of steps in the multi-step closed-form expansion (2.34)
is increased where τ is reduced to 0.5 and the contingent claim is set in
Example 1.

where
λ =

(16v(−(d−1)σ2
0(r+σ1)e

2σ1T+2κ−4r)−(d−3)σ2
0e

2σ1T ((d−1)σ2
0e

2σ1T+8)+16v2(κ+2r)2)
128v3/2 and τ =

T − t. The one-step closed-form expansions for K1 = K2 = K = 3, 4, 5, can also be
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Figure 4. Convergence of the one-step closed-form expansion (2.10)
towards the exact solution when the number of terms in the infinite
series (2.10) and (2.17) used up to order K, is increased where τ = 1 and
the contingent claim is set in Example 2.
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Figure 5. Convergence of the percentage absolute errors towards zero
when the number of terms in the infinite series (2.10) and (2.17) used up
to order K, is increased where τ = 1 and the contingent claim is set in
Example 2.
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Figure 6. The efficiencies of the one-step closed-form expansion U
(1,2,2)
E

(Red) with K = 2 and the two-step closed-form expansion U
(2,1,1)
E (Blue)

with K = 1 compared with two different time-step sizes τ = 5 and τ = 25
where the contingent claim is set in Example 2.

obtained by using (2.34). The exact solution UE(v, τ) can be deduced by using (2.35)
with γ1 = 1

2 and γ2 = − 1
2 .

As displayed in Figures 4-5, the current example demonstrates the convergence of the
one-step closed-form expansion (2.10) towards the exact solution UE . It can be easily
seen from Figure 5 that RE converges rapidly to zero when K is increased to 2, ..., 5,
respectively, for all v ∈ (0, 2). The numerical results illustrate that the one-step closed-
form expansion (2.10) is feasible and effective for approximating the exact solution UE .

From our numerical results presented in Examples 1 and 2, an interesting question
could be addressed, namely of what we should increase between N and K to improve
the accuracy of our current approach when τ is large. Figure 6 shows that the two-step
closed-form expansion U

(2,1,1)
E gives better approximates for the exact solution than the

one-step closed-form expansion U
(1,2,2)
E when τ is large. Although one can increase both

N and K to obtain much better approximates for the exact solution, it might take a very
long time for symbolic computation to obtain a closed-form expansion when N and K
are too large.

In the next example, we compare our current approach with MC simulations in terms
of computational time by using the exact solutions provided in Theorem 2.6.

Example 3.3. Let us consider the closed-form formula (2.38) for CIR processes with
m = 3 and n = 4. By setting σ1 = 0, the ECIR process (3.1) becomes a CIR process
with the parameter functions θ(t) =

σ2
0d
4κ , κ(t) = κ, and σ(t) = σ0. Therefore, we set

K2 = 0. Using (2.34), one can obtain the N−step closed-form expansions for N = 3, 4, 5
and K1 = 2. The exact solution UC(v, τ) under this case can be obtained by using the
closed-form formula (2.38) with the replacing rule (κ → κ, θ → σ2

0d
4κ , σ → σ0).

By setting t = 0, T = 1, and r = 0.1, we plot R
(N,2,0)
E (v, τ) against R

(M,Np)
E (v, τ) for

v ∈ {0.1, 0.2, ..., 2}, as shown in Figure 7 with N = 3, 4, 5 and Np = 103, 104, 105. Figure
7 also shows the computational times written in the parentheses, obtained by using our
current approach and MC simulations.
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From Figure 7, when Np reaches 1, 000, R(M,Np)
C (v, τ) is less than 0.30% already for all

v ∈ {0.1, 0.2, ..., 2}. Such a relative error is further reduced when the number of paths is
increased, demonstrating the convergence of the MC simulation towards the exact solution
UC . This is similar to our approach when the number of step in the multi-step closed-form
expansion (2.34) is increased, as shown in Example 1.

On the other hand, in terms of computational time, the MC simulation takes a much
longer time than the multi-step closed-form expansion (2.34). For example, in order to
obtain RC being less than 0.06% for all sample points v ∈ {0.1, 0.2, ..., 2}, U (3,2,0)

C con-
sumed roughly 23.4 million folds of reduction in computational time (seconds), compared
with U

(M,105)
C . Furthermore, it is clear from Figure 7 that our current approach is more

efficient and robust than the MC simulation.
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Figure 7. Convergences of the percentage absolute errors towards zero
obtained from the multi-step closed-form expansion (2.34) and MC simu-
lation with the computational times (seconds) written in the parentheses
where the contingent claim is set in Example 3.

3.3. Comparison with Monte Carlo simulations
In this subsection, MC simulations are conducted to illustrate the accuracy of our cur-

rent approach for some cases of contingent claims in which the corresponding conditional
expectations, written in the form of (1.4), have not been found in closed-form.

Example 3.4. We choose f(v) = sin(v), g(v) = v
v+1 and h(v) = cos(ev). Using (2.10)

with the contingent claim (f, g, h) and the same setting for the parameter functions used
Example 1, we obtain the one-step closed-form expansion for K1 = K2 = 1 as

U
(1,1,1)
E (v, τ) = sin(v)

+
(σ2

0(v+1)e2σ1T (d cos(v)−2v sin(v))−4v(κ(v+1) cos(v)+sin(v))+4(v+1) cos(ev))
4(v+1) τ

(3.11)
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where τ = T−t. Utilizing (2.34), we can further obtain U
(1,k,k)
E (v, τ) for k = 2, ..., 5, which

shall also be used to investigate the accuracy of our current approach in this example.
As displayed in Figure 8, we can clearly observe that our numerical results obtained

by using our one-step closed-form expansion (3.11) perfectly match the results from the
MC simulation with Np = 10, 000 at the initial values v ∈ {0.1, 0.2, , 2} and τ = 0.1.
According to the convergence of the MC simulation towards the exact solution when Np

approaches infinity as presented in Example 3, this guarantees that our one-step closed-
form expansion (3.11) also produces accurate approximates for the exact solution for
v ∈ {0.1, 0.2, , 2} and τ = 0.1, but consumes a very much shorter time than the MC
simulation.

Since the exact solution UE has not been found in closed-form under this setting of
contingent claim (f, g, h), it would also be interesting to investigate the level of accuracy
of our one-step closed-form expansion (3.11) through the sequence of absolute relative
errors ϵ(1,k)(v, τ) introduced in (3.6). Therefore, we have tabulated the absolute relative
errors for τ = 0.01, 0.1 and k = 1, ..., 5, in Table 1, where we set the initial value v to be
varied from 0.0001 to 2.0.

By fixing τ and v, Table 1 illustrates that the accuracy of our one-step closed-form
expansion (3.11) improves when k increases. Furthermore, we can conclude from our
numerical results shown in Table 1 that using k = 1 is sufficient for obtaining an accurate
approximation for the exact solution when τ is small.

UE
H1,1,1LHv,0.1L H0.078sL

UE
IM,104MHv,0.1L H11,540sL

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

v

Figure 8. Comparison between the approximates for the exact solution
UE(v, 0.1) obtained by using the one-step closed-form expansion (3.11)
and MC simulation, where the computational times (seconds) are written
in the parentheses and the contingent claim is set in Example 4.

Example 3.5. Let f(v) = |v − 1|, g(v) = sin(v) and h(v) = v. This example presents
how to adopt the multi-step closed-form expansion (2.34) when Assumption 3 is violated,
such that the function f(v) = |v−1| of the contingent claim (f, g, h) is not differentiable at
v = 1. According to the study of PDE of parabolic type, the existence and uniqueness of
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ϵ(1,k)(v, τ), τ = 0.01
k v = 0.0001 v = 0.001 v = 0.01 v = 0.1 v = 1.0 v = 1.5 v = 2.0
1 0.12 E-05 0.46 E-05 0.17 E-04 0.17 E-04 0.44 E-04 0.16 E-04 0.26 E-04
2 0.11 E-08 0.55 E-09 0.18 E-08 0.63 E-08 0.79 E-07 0.91 E-08 0.13 E-06
3 0.47 E-12 0.38 E-12 0.54 E-13 0.20 E-11 0.11 E-09 0.25 E-10 0.35 E-09
4 0 0 0 0.53 E-15 0.12 E-12 0.80 E-13 0.60 E-12

ϵ(1,k)(v, τ), τ = 0.10
k v = 0.0001 v = 0.001 v = 0.01 v = 0.1 v = 1.0 v = 1.5 v = 2.0
1 0.12 E-04 0.54 E-04 0.40 E-03 0.13 E-02 0.51 E-02 0.17 E-02 0.26 E-02
2 0.11 E-06 0.65 E-07 0.43 E-06 0.46 E-05 0.92 E-04 0.98 E-05 0.13 E-03
3 0.48 E-09 0.44 E-09 0.13 E-09 0.14 E-07 0.13 E-05 0.27 E-06 0.35 E-05
4 0.10 E-11 0.10 E-11 0.66 E-12 0.41 E-10 0.14 E-07 0.87 E-08 0.61 E-07

Remark: Zeros in the table signify ϵ(1,k)(v, τ) < 0.5× 10−16.
Table 1. Sequences of absolute relative errors with different time-step
sizes τ = 0.01 and τ = 0.10 obtained by using the one-step closed-form
expansion (2.10) where the contingent claim is set in Example 4.

the solution of the PDE (2.14) subject to an initial condition, which is a piecewise smooth
function, is guaranteed by Theorem 12 in Friedman [16]. Since the exact solution under
this case of contingent claims has not been found in closed-form, MC simulations can
be employed to obtain an approximate, denoted by U

(M,Np)
E,f (v, τ), for the exact solution

UE,f (v, τ) for any v > 0 and τ > 0.
Although the derivative of f at v = 1 does not exist for all n = 1, 2, ..., we shall

demonstrate that the multi-step closed-form expansion (2.34) is applicable to obtain good
approximates for the exact solution UE,f (v, τ) for any v > 0 and τ > 0.

In order to test our hypothesis, we define f−(v) := 1− v and f+(v) := v− 1 for v > 0.
Since f− and f+ are smooth functions. We can use the multi-step closed-form expansion
(2.34) with the contingent claims (f−, g, h) and (f+, g, h) to derive U

(N,K,K)
E,f− (v, τ) and

U
(N,K,K)
E,f+ (v, τ), respectively, for any N,K = 1, 2, .... Nevertheless, for a fixed τ and

sufficient large values of N and K, we shall justify that

UE,f (v, τ) ≈

{
U (N,K,K)

E,f− (v, τ) ; v < vτ

U
(N,K,K)
E,f+ (v, τ) ; v > vτ

(3.12)

for some vτ > 0 depending on τ .
In our numerical test, we first compute U

(1,2,2)
E,f− (v, τ) and U

(1,2,2)
E,f+ (v, τ) for τ = τ1 = 0.1

and 100 values of v, sampled uniformly in a neighborhood of the non-differentiable point
v = 1, i.e. (1 − ϵ, 1 + ϵ) for ϵ = 0.05. Next, we compare our numerical results with
U

(M,Np)
E,f (v, τ) for all sampled points v where we set Np = 10, 000 in MC simulation. In

other words, we claim that UE,f (v, τ) ≈ U
(M,104)
E,f (v, τ) for any v > 0 and τ > 0.

Figure 9 illustrates that U
(1,2,2)
E,f− (v, τ1) for v < vτ1 and U

(1,2,2)
E,f+ (v, τ1) for v > vτ1 per-

fectly match U
(M,104)
E,f (v, τ1) in the neighborhood where vτ1 ≈ 1.003 is determined by
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the intersection point between the two curves. When we set τ = τ2 = 1, however,
U

(1,2,2)
E,f− (v, τ2) and U

(1,2,2)
E,f+ (v, τ2) are away from U

(M,104)
E,f (v, τ2), as shown in Figure 10.

To obtain better approximates for UE,f (v, τ2) , we increase the values of N and K to
2 and 4, respectively. Next, we compute U

(2,4,4)
E,f− (v, τ2) and U

(2,4,4)
E,f+ (v, τ2) for all sampled

points v. As displayed in Figure 11, U
(2,4,4)
E,f− (v, τ2) for v < vτ2 and U

(2,4,4)
E,f+ (v, τ2) for

v > vτ2 perfectly match U
(M,104)
E,f (v, τ2) in the neighborhood where vτ2 ≈ 1.0304.

Furthermore, our numerical results lead to a conclusion that U
(N,K,K)
E,f− (vτ , τ) and

U
(N,K,K)
E,f+ (vτ , τ) converge to the exact solution UE,f (vτ , τ) when τ approaches zero. On

the other hand, when τ is large, as shown in Figures 10-11, we need to increase the values
of N and K in order to improve the accuracy of the approximation (3.12).
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UE,f
IM,104MHv,0.1L

Figure 9. Comparison between the approximates for the exact solution
UE,f (v, 0.1) obtained by using the contingent claims (f−, g, h), (f+, g, h)
with N = 1,K = 2 in (2.34) and MC simulation in Example 5.
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Figure 10. Comparison between the approximates for the exact solution
UE,f (v, 1) obtained by using the contingent claims (f−, g, h), (f+, g, h)
with N = 1,K = 2 in (2.34) and MC simulation in Example 5.
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Figure 11. Comparison between the approximates for the exact solution
UE,f (v, 1) obtained by using the contingent claims (f−, g, h), (f+, g, h)
with N = 2,K = 4 in (2.34) and MC simulation in Example 5.

4. Conclusions
This paper has proposed an iterative approach for obtaining a closed-form expansion for

the conditional expectation of the valuation process, defined by Vt,T := e−
∫ T
t

g(vs)dsf(vT )+∫ T

t
h(vs)e

−
∫ s
t
g(vu)duds for 0 ≤ t ≤ T , where vt is assumed to follow the extended Cox-

Ingersoll-Ross process, for any smooth real-valued functions f, g, and h. Our closed-form
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expansion has a simple form, assisting market practitioners to easily compute approxi-
mates for the conditional expectation. The accuracy and efficiency of the current approach
have been tested by several examples, demonstrating its superiority over the MC method
in terms of computational time and effort. Moreover, a multi-step closed-form expansion
has been constructed in order to improve the accuracy of the current approach when the
time-step size T − t is large. Finally, we have presented how to adopt our approach for
obtaining a closed-form expansion for the conditional expectation when f is a piecewise
smooth function. Of course, how to resolve this problem when g and h so are piecewise
smooth functions may be a limitation of this work. An extension to the present paper to
solve the problem by utilizing the approximation technique as demonstrated in our last
example may be a potential topic in the future.
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