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1 Introduction

In 1940, S.M. Ulam [8] proposed the stability problem of the additive func-
tional equation: f(x + y) = f(x) + f(y). One year later, D.H. Hyers [3] gave
the positive answer to the problem as follows. “Let f : E → E′ be a function
from a Banach space to a Banach space which satisfies the inequality ‖f(x + y)−
f(x) − f(y)‖ ≤ ε for all x, y ∈ E. Then there exists a unique additive function
ϕ satisfying the inequality ‖f(x) − ϕ(x)‖ ≤ ε.” In 1978, a generalized version of
Hyers’ result was proven by Th. M. Rassias in [6] where f : E → E′ satisfies the
inequality ‖f(x+y)−f(x)−f(y)‖ ≤ θ (‖x‖p + ‖y‖p) for all x, y ∈ E and for some
constants θ ≥ 0 and 0 ≤ p < 1.

In 1979, J. Baker, J. Lawrence, and F. Zorzitto [2] introduced that if f satisfies
the inequality |E1(f) − E2(f)| ≤ ε, then either f is bounded or E1(f) = E2(f).
This concept is now known as the superstability. In 1980, J. A. Baker [1] observed
the superstability of the well-known cosine functional equation

f(x + y) + f(x− y) = 2f(x)f(y). (A)

The following functional equations are some generalized forms of the above func-
tional equation:

f(x + y) + f(x− y) = 2f(x)g(y), (Afg)
f(x + y) + f(x− y) = 2g(x)f(y). (Agf )
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The superstability of (Afg) and (Agf ) were also studied in [4, 5, 7].
In this paper, we investigate the superstability of the pexiderized cosine func-

tional equation
f1(x + y) + f2(x− y) = 2g1(x)g2(y),

where f1, f2, g1, and g2 are functions from R to C.

2 Main Results

We will study the superstability of the pexiderized cosine functional equation
by starting with Theorem 1 where the unboundedness of g1 is assumed.

Theorem 1. Let f1, f2, g1, g2 : R→ C be functions satisfying

|f1(x + y) + f2(x− y)− 2g1(x)g2(y)| ≤ δ, (2.1)

for all x, y ∈ R. Then either g1 is bounded or there exists an even function
h : R→ C with h(0) = 1 such that

g2(x + y) + g2(x− y) = 2g2(x)h(y) ∀x, y ∈ R.

Proof. Suppose that g1 is unbounded. Then we can choose a sequence {xn} such
that 0 6= |g1(xn)| → ∞ as n → ∞. For each n ∈ N, setting x = xn in (2.1) and
dividing both sides of the resulting inequality by |2g1(xn)|, we have

∣∣∣∣
f1(xn + y) + f2(xn − y)

2g1(xn)
− g2(y)

∣∣∣∣ ≤
δ

|2g1(xn)| .

The right-hand side approaches to 0 as n →∞. Therefore,

g2(y) = lim
n→∞

f1(xn + y) + f2(xn − y)
2g1(xn)

∀y ∈ R. (2.2)

Substituting (x, y) = (xn +y, x) and then (x, y) = (xn−y, x) in (2.1), we obtained

|f1((xn + y) + x) + f2((xn + y)− x)− 2g1(xn + y)g2(x)| ≤ δ

and
|f1((xn − y) + x) + f2((xn − y)− x)− 2g1(xn − y)g2(x)| ≤ δ.

By the triangle inequality, the last two inequalities lead to
∣∣∣∣
f1(xn + (x + y)) + f2(xn − (x + y))

2g1(xn)

+
f1(xn + (x− y)) + f2(xn − (x− y))

2g1(xn)

−2
(

g1(xn + y) + g1(xn − y)
2g1(xn)

)
g2(x)

∣∣∣∣ ≤
2δ

|2g1(xn)| . (2.3)
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We notice that the right-hand side converges to zero as n →∞. So we define

h(y) = lim
n→∞

g1(xn + y) + g1(xn − y)
2g1(xn)

for all y ∈ R.

Notice that h is even and h(0) = 1.
Then, by letting n →∞ in (2.3), we see that

g2(x + y) + g2(x− y) = 2g2(x)h(y) for all x, y ∈ R

as desired.

In the other way around, we will look at the case g2 is unbounded.

Theorem 2. Let f1, f2, g1, g2 : R→ C be functions satisfying

|f1(x + y) + f2(x− y)− 2g1(x)g2(y)| ≤ δ, (2.4)

for all x, y ∈ R. Then either g2 is bounded or there exists an even function
h : R→ C with h(0) = 1 such that

g1(x + y) + g1(x− y) = 2g1(x)h(y) ∀x, y ∈ R.

Proof. Suppose that g2 is unbounded. Then we choose a sequence {yn} such that
0 6= |g2(yn)| → ∞ as n →∞. It can be shown similarly to the above theorem that

g1(y) = lim
n→∞

f1(x + yn) + f2(x− yn)
2g2(yn)

∀y ∈ R. (2.5)

We set (x, y) = (xn + y, x) and (x, y) = (xn − y, x), respectively, in (2.4) and
proceed the same fashion of the previous proof. We are led to defining a function
h as follows

h(y) = lim
n→∞

g2(yn + y) + g2(yn − y)
2g2(xn)

for all y ∈ R

and we then have

g1(x + y) + g1(x− y) = 2g1(x)h(y) for all x, y ∈ R

as desired. Also, note that h is even and h(0) = 1.

Remark. The continuous solutions f : R→ R of the functional equation

f(x + y) + f(x− y) = 2f(x)g(y)

have been thoroughly investigated [9] and they fall into 4 categories:

• f(x) = c cosαx + d sin αx, g(x) = cos αx;

• f(x) = c coshαx + d sinhαx, g(x) = cosh αx;
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• f(x) = c + dx, g(x) ≡ 1;

• f(x) ≡ 0, and g arbitrary, where α, c, d ∈ R.

Notice that if we further assume the evenness of f , then either f ≡ 0 or f̂(x) :=
f(x)
f(0) is equal to the cosine, the cosine hyperbolic, or the constant function 1 which
satisfies the cosine functional equation. The following lemma which is easy to
verify shows that the similar argument holds without assuming the continuity. To
make it easy to write, we continue using this notation f̂ and note that it is legel
only when f(0) 6= 0.

Lemma 1. Let f, g : R→ C be functions satisfying

f(x + y) + f(x− y) = 2f(x)g(y) for all x, y ∈ R.

If f is an even function, then either f ≡ 0 or f̂(x) satisfies (A).

We now apply the preceding lemma to obtain the following theorems.

Theorem 3. Let f1, f2, g1, g2 : R→ C be functions such that

|f1(x + y) + f2(x− y)− 2g1(x)g2(y)| ≤ δ,

for all x, y ∈ R. Suppose that g2 is an even function and g2 6≡ 0. Then either g1

is bounded or ĝ2 satisfies (A).

Proof. Assume that g1 is unbounded. It follows from Theorem 1 that there is a
function h such that, for every x, y ∈ R,

g2(x + y) + g2(x− y) = 2g2(x)h(y).

Then, by the use of Lemma 1, we conclude that ĝ2 satisfies (A).

Similarly, we come to the next theorem.

Theorem 4. Let f1, f2, g1, g2 : R→ C be functions such that

|f1(x + y) + f2(x− y)− 2g1(x)g2(y)| ≤ δ,

for all x, y ∈ R. Suppose that g1 is an even function and g1 6≡ 0. Then either g2

is bounded or ĝ1 satisfies (A).

From this point onwards, we observe the stability of the special cases of the
proposed functional equation as corollaries. We also have to refer to the definitions
of g1 and g2 in the proofs of the first two theorems.

Corollary 1. Let f, g1, g2 : R→ C be functions such that

|f(x + y) + f(x− y)− 2g1(x)g2(y)| ≤ δ,

for all x, y ∈ R. Suppose that g2 6≡ 0. Then either g1 is bounded or ĝ2 satisfies
(A).



The Stability of the Pexiderized Cosine... 43

Proof. Taking f1 = f2 = f in Theorem 3, we infer the evenness of g2 from its
definition in (2.2) which completes the proof.

Corollary 2. Let f, g1, g2 : R→ C be functions such that

|f(x + y) + f(x− y)− 2g1(x)g2(y)| ≤ δ,

for all x, y ∈ R. Suppose that f is even and g1 6≡ 0. Then either g2 is bounded or
ĝ1 satisfies (A).

Proof. Take f1 = f2 = f in Theorem 3. The evenness of f and the definition of
g1 in (2.5) lead to the evenness of g1 which completes the proof.

Corollary 3. Let f, g : R→ C be functions such that

|f(x + y) + f(x− y)− 2f(x)g(y)| ≤ δ,

for all x, y ∈ R. Then either f is bounded or g satisfies (A).

Proof. Take g1 = f and g2 = g in Corollary 1 and recall (2.2), where f1 and f2

are substituted by f . We see that g is even and g(0) = 1; therefore, g, which is
equal to ĝ, satisfies (A).

Corollary 4. Let f, g : R→ C be functions such that

|f(x + y) + f(x− y)− 2g(x)f(y)| ≤ δ,

for all x, y ∈ R. Then, provided that f is even, either f is bounded or g satisfies
(A).

Proof. Take g1 = g and g2 = f in Corollary 2 and recall (2.5), where f1 and f2

are substituted by f . The evenness of g follows from the evenness of f . Also, we
see that g(0) = 1. Thus, g, which is equal to ĝ, satisfies (A).

By taking g = f in Corollary 3, we obtain the stability of the cosine functional
equation.

Corollary 5. Let f : R→ C be functions such that

|f(x + y) + f(x− y)− 2f(x)f(y)| ≤ δ, (2.6)

for all x, y ∈ R. Then either f is bounded or f satisfies (A).
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