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Abstract In this paper, we consider a Finsler space with a Randers change of Quartic metric F =
4
√

α4 + β4 + β. The conditions for this space to be with reversible geodesics are obtained. Further, we
study some geometrical properties of F with reversible geodesics and prove that the Finsler metric F
induces a generalized weighted quasi-distance dF on M.   
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1. Introduction
An interesting topic in Finsler geometry is to study the reversible geodesics of a Finsler

metric. Recall that, a Finsler space is said to have reversible geodesics if for every one of its
oriented geodesic paths, the same path traversed in the opposite sense is also a geodesic.
In the last decade many interesting and applicable results have been obtained on the
theory of Finsler spaces with reversible geodesics. In [1], Crampin discussed Randers
space with reversible geodesics. In ([2, 3]), Masca, Sabau and Shimada have discussed
reversible geodesics with (α, β)-metric and two dimensional Finsler space with (α, β)-
metric to be with reversible geodesic, respectively. In [4], Sabau and Shimada have given
some important results on reversible geodesics. In [5], Shanker and Baby have discussed
reversible geodesics for generalized (α, β)-metric. Recently, Shanker and Rani [6] have
studied weighted quasi metric associated with Finsler spaces with reversible geodesics.
In this paper, we find conditions for a Finsler space (M, F) with Randers change of Quartic
metric F = 4

√
α4 + β4 + β to be with reversible geodesics. The main results of this paper

lies in theorem 3.1, 4.1, 4.2, 5.2 and 5.6.
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2. Preliminaries
Let Fn = (M,F ) be a connected n-dimensional Finsler manifold and let TM =∪

x∈M

TxM denotes the tangent bundle of M with local coordinates u = (x, y) = (xi, yi) ∈

TM , where i = 1, ..., n, y = yi
∂

∂xi
.

If γ : [0, 1] −→ M is a piecewise C∞ curve on M, then its Finslerian length is defined
as

LF (γ) =

∫ 1

0

F (γ(t), γ̇(t))dt, (2.1)

and the Finslerian distance function dF : M × M −→ [0, ∞) is defined by dF (p, q) =
infγL, where infimum is taken over all piecewise C∞ curves γ on M joining the points p,
q ∈ M. In general, this is not symmetric.

A curve γ : [0, 1] −→ M is called a geodesic of (M, F) if it minimizes the Finslerian
length for all piecewise C∞ curves that keep their endpoints fixed. We denote the reverse
Finsler metric of F as F̃ : TM −→ (0, ∞), given by F̃ (x, y) = F (x,−y). One can easily
see that F̃ is also a Finsler metric.
Lemma 2.1. A Finsler metric is with a reversible geodesic if and only if for any geodesic
γ(t) of F, the reverse curve γ̃(t) = γ(1-t) is also a geodesic of F.
Lemma 2.2. Let (M,F ) be a connected, complete Finsler manifold with associated dis-
tance function dF : M × M −→ [0, ∞). Then, dF is a symmetric distance function on
M × M if and only if F is a reversible Finsler metric, i.e., F (x, y) = F (x,−y).
Lemma 2.3. A smooth curve γ : [0, 1] −→ M is a constant Finslerian speed geodesic
of (M,F ) if and only if it satisfies γ̈ + 2 Gi(γ(t), γ̇(t)) = 0, i = 1, ..., n, where the
functions Gi : TM −→ R are given by

Gi(x, y) = Γi
jk(x, y)y

iyj , (2.2)

with Γi
jk(x, y) =

gis

2

(∂gsj
∂xk

+
∂gsk
∂xj

− ∂gjk
∂xs

)
.

Remark 2.4. It is well known [7] that the vector field Γ = yi
∂

∂xi
− 2Gi ∂

∂yi
, is a vector

field on TM, whose integral lines are the canonical lifts γ̃(t) = (γ(t), γ̇(t)) of the geodesics
of γ. This vector field Γ is called the canonical geodesics spray of the Finsler space (M,F )
and Gi are called the coefficients of the geodesics spray Γ.
Definition 2.5. If F and F̃ are two different fundamental Finsler functions on the same
manifold M, then they are said to be projectively equivalent if their geodesics coincide as
set points.
Lemma 2.6. A Finsler structure (M,F ) is with a reversible geodesic if and only if F
and its reverse function F̃ are projectively equivalent.

3. Reversible Geodesics for a Finsler Space with Randers Change
of Quartic metric.
Consider a Finsler space (M,F ) with a special (α, β)-metric F = 4

√
α4 + β4+β. Here,

F can be treated as the Randers change of Quartic-metric F̃ = 4
√
α4 + β4. One can easily
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see that F̃ (x,−y) = F̃ (x, y).
As we know that [4] if (M,F ) is a non-Riemannian n(n ≥ 2)-dimensional Finsler space
with (α, β)-metric, which is not absolute homogeneous, then F is with reversible geodesics
if and only if F (α, β) = F0(α, β) + ϵβ, where F0 is absolute homogeneous (α, β)-metric, ϵ
is a non-zero constant and β is a closed 1-form on the Manifold M.

In our case, F0 = F̃ , which is absolute homogeneous. If β is a closed 1-form, then F
is with reversible geodesics. Further, a necessary and sufficient condition for F to have
reversible geodesics is that [4]

Γ̃
(∂F

∂yi

)
− ∂F

∂xi
= 0, (3.1)

where Γ̃ is the reverse of Γ, the geodesic spray of F; moreover Γ̃ is geodesic spray of F̃ .
We have F = F̃ + β, where, F̃ = 4

√
α4 + β4.

Therefore,

Γ̃
(∂F

∂yi

)
− ∂F

∂xi

= Γ̃
(
Fα

∂α

∂yi
+ Fβ

∂β

∂yi

)
− Fα

∂α

∂xi
− Fβ

∂β

∂xi

= Γ̃(Fα)
∂α

∂yi
+ FαΓ̃

( ∂α

∂yi

)
+ Γ̃(Fβ)

( ∂β

∂yi

)
+ FβΓ̃

( ∂β

∂yi

)
− Fα

∂α

∂xi
− Fβ

∂β

∂xi

= Γ̃(Fα)
∂α

∂yi
+ Fα

[
Γ̃
( ∂α

∂yi

)
− ∂α

∂xi

]
+ Γ̃(Fβ)

∂β

∂yi
+ Fβ

[
Γ̃
( ∂β

∂yi

)
− ∂β

∂xi

]
. (3.2)

For the Riemannian metric α, the Euler-Lagrange equation gives Γ̃
( ∂α

∂yi

)
− ∂α

∂xi
= 0.

Also, one knows [4] that if (M, F(α, β)) is a Finsler space with (α, β)-metric, then
f(x, y)

∂α

∂yi
+ g(x, y)bi = 0, ∀ i = 1, 2, ..., n, implies that f = g = 0, for any smooth

functions f and g on TM. It is known that, if β is closed and F is projectively equivalent
to the Riemannian metric α, then Γ̃(Fα)

∂α

∂yi
+ Γ̃(Fβ)bi = 0 and hence by using lemma

2.7 of [4], we find that Γ̃(Fα) = 0, Γ̃(Fβ) = 0.

Again, since F = 4
√
α4 + β4 + β, therefore Fβ = 1 +

β3

(α4 + β4)
3
4

.

Now, using the above results, the equation (3.2) reduces to the form

Γ̃
(∂F

∂yi

)
− ∂F

∂xi
= Fβ

[
Γ̃
∂β

∂yi
− ∂β

∂xi

]
=

(
1 +

β3

(α4 + β4)
3
4

)[
Γ̄(bi)−

∂bj
∂xi

yj
]

=
(
1 +

β3

(α4 + β4)
3
4

)[ ∂bi
∂yj

yj − ∂bj
∂xi

yj
]

=
(
1 +

β3

(α4 + β4)
3
4

)[ ∂bi
∂xj

− ∂bj
∂xi

]
yj . (3.3)
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Now, 1+ β3

(α4 + β4)
3
4

can not be zero. Therefore, from equation (3.1) and (3.3) we conclude

that F is with reversible geodesics if and only if
( ∂bi
∂xj

− ∂bj
∂xi

)
yj = 0.

i.e., F̃ is with reversible geodesic if and only if β is closed 1-form. Hence, we have the
following theorem:

Theorem 3.1. A Finsler space (M,F ) with Randers change of Quartic metric F =
F̃ + β,where, F̃ = 4

√
(α4 + β4), is with reversible geodesics if and only if the differential

1-form β is closed on M.

4. Projective Flatness of Randers Change of Quartic Metric
A Finsler space (M,F ) is called (locally) projectively flat if all its geodesics are straight

lines [8]. An equivalent condition is that the spray coefficients Gi of F can be expressed
as Gi = P (x, y)yi, where P (x, y) = 1

2F

∂F

∂xk
yk.

An equivalent characterization of projective flatness is the Hamel’s relation [9]

∂2F

∂xm∂yk
ym − ∂F

∂xk
= 0.

Recall that ([5], [6]) if F = F0 + ϵ β is a Finsler metric, where F0 is an absolute homo-
geneous (α, β)-metric, then any two of the following properties imply the third one:

(1) F is projectively flat;
(2) F0 is projectively flat;
(2) β is closed.

In our case, F = F̃ + β, where F̃ = 4
√
(α4 + β4), which is absolute homogeneous. Hence,

we have the following theorem:

Theorem 4.1. Let (M,F ) be a Finsler space with Randers change of Quartic metric F
= 4

√
(α4 + β4) + β. Then, F is projectively flat if and only if F̃ is projectively flat.

Proof. Let (M,F ) be projectively flat, then by Hamel’s relation for projective flatness,
we have

∂2F

∂xm∂yk
ym − ∂F

∂xk
= 0.

The proof directly follows from it.

Theorem 4.2. Let (M,F ) be a Finsler space with Randers change of Quartic metric. If
F is projectively flat, then it is with reversible geodesics.

Proof. Applying Hammel’s equation, one can easily see that F is projectively flat if and
only if F̃ is projectively flat, which implies that both F and F̃ are projectively equivalent
to the standard Euclidean metric and therefore F must be projective to F̃ . Thus, F must
be with a reversible geodesic.
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5. Weighted Quasi Metric Associated with Randers Change of
Quartic Metric
It is well known that the Riemannian spaces can be represented as metric spaces.

Indeed, for a Riemannian space (M, α), one can define the induced metric space (M, dα)
with the metric

dα : M ×M −→ [0,∞), dα(x, y) = inf
γ∈Γxy

∫ b

a

α(γ(t), γ̇(t))dt, (5.1)

where Γxy = {γ : [a, b] −→ M | γ is piecewise, γ(a) = x, γ(b) = y} is the set of curves
joining x and y, γ̇(t) is the tangent vector to γ at γ(t). Then dα is a metric on M satisfying
the following conditions:

1. Positiveness : dα(x, y) > 0, if x ̸= y, dα(x, x) = 0, x, y ∈ X.
2. Symmetry : dα(x, y) = dα(y, x), ∀ x, y ∈ M.
3. Triangle inequality: dα(x, y) ≤ dα(x, z) + dα(z, y), ∀ x, y, z ∈ M.

Similar to the Riemannian space, one can induce the metric dF to a Finsler space (M,
F), given by

dF : M ×M −→ [0,∞), dF (x, y) = inf
γ∈Γxy

∫ b

a

F (γ(t), γ̇(t))dt. (5.2)

But in this case unlike the Riemannian case, dF lacks the symmetric condition. In fact,
dF is a special case of quasi metric defined below:
Definition 5.1. A quasi metric d on a set X is a function d : X × X −→ [0, ∞) that
satisfies the following axioms:

1. Positiveness : d(x, y) > 0, if x ̸= y, d(x, x) = 0, x, y ∈ X.
2. Triangle inequality : d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X.
3. Separation axiom : d(x, y) = d(y, x) = 0 ⇒ x = y, ∀ x, y ∈ X.

One special class of quasi metric spaces are the so called weighted quasi metric spaces
(M, d, w), where d is a quasi-metric on M and for each d, there exist a function w : M
−→ [0, ∞), called the weight of d that satisfies

4. Weightability : d(x, y) + w(x) = d(y, x) + w(y), ∀ x, y ∈ M.
In this case, the weight function w is R-valued, and is called generalized weight.
Theorem 5.2. Let (M, F) be an n-dimensional simply connected smooth Finsler manifold
with F as Randers change of Quartic metric. Then, F induces generalized weighted quasi
metric dF on M.
Proof. We consider that (M, F) is a Finsler space with F = β + 4

√
(α4 + β4), which can

be written as F = F̃ + β, where F̃ = 4
√
(α4 + β4) is an absolute homogeneous Finsler

metric on M and β an exact 1-form.
Let γxy ∈ Γxy be an F-geodesic, which is in the same time F̃ -geodesic, then from

equation (5.2), we get

dF (x, y) =

∫ b

a

F (γ(t), γ̇(t))dt

=

∫ b

a

(
β + 4

√
(α4 + β4)

)
dt
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=

∫ b

a

(
4
√
(α4 + β4)

)
dt+

∫ b

a

βdt

=

∫
γxy

(
4
√

(α4 + β4)
)
+

∫
γxy

β. (5.3)

Consider a fixed point a ∈ M and define the function wa : M −→ R by wa(x) :=
dF (a, x)− dF (x, a).
From the equation (5.2) it follows that

wa(x) =

∫
γax

β −
∫
γxa

β = −2

∫
γxa

β, (5.4)

where we have used the Stokes theorem for the 1-form β on the closed domain D with
boundary ∂D := γax

∪
γxa.

It can be easily seen that wa is an anti-derivative of β. This is well defined if and only if
the integral in the R.H.S. of equation (5.4) is path independent, i.e., β must be exact.

Then dF is a weighted quasi-metric with generalized weight wa. Next we have

dF (x, y) + wa(x) =

∫
γxy

(
4
√
(α4 + β4)

)
−

∫
γxa

β −
∫
γya

β, (5.5)

where we have again used the Stokes theorem for the one form β on the closed domain
with boundary γax

∪
γxy

∪
γya.

Similarly,

dF (y, x) + wa(y) =

∫
γyx

(
4
√
(α4 + β4)

)
−
∫
γya

β −
∫
γxa

β. (5.6)

From the equations (5.5) and (5.6) we conclude that dF is weighted quasi-metric with
generalized weight wa. This completes the proof.

Next, recall the following lemma:

Lemma 5.3. ([10], [11]) Let (M, d) be any quasi-metric space. Then d is weightable if
and only if there exists w : M −→ [0, ∞) such that

d(x, y) = ρ(x, y) +
1

2
[w(x)− w(y)],∀x, y ∈ M, (5.7)

where ρ is the symmetrized distance function of d. Moreover, we have
1

2
[w(x)− w(y)] ≤ ρ(x, y),∀x, y ∈ M. (5.8)

The proof is trivial from the definition of weighted quasi-metric.

Remark 5.4. If (M, F) is a Finsler space with a special (α, β)-metric F = 4
√
(α4 + β4)+

β, then the induced quasi-metric dF and the symmetrized metric ρ induced the same
topology on M. This follow immediately from ([7], [8]).

Remark 5.5. From lemma 5.3, It can be seen that the assumption of w to be smooth is
not essential.

Next, we discuss an interesting geometric property concerning the geodesic triangles.
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Theorem 5.6. Let (M, F) be a Finsler space with the Randers change of Quartic-metric
F = 4

√
(α4 + β4) + β. Then the parameteric length of any geodesic triangle on M does

not depend on the orientation, that is,
dF (x, y) + dF (y, z) + dF (z, x) = dF (x, z) + dF (z, y) + dF (y, x),∀x, y, z ∈ M.

Proof. Since the Randers change of Quartic metric F = 4
√
(α4 + β4) + β can be treated

as the Randers change of absolute homogeneous Finsler metric F̃ = 4
√
(α4 + β4), i.e., F

= F̃ + β with dβ = 0, from theorem 5.2 it follows that the quasi-metric is weightable
and therefore equation (5.7) holds good. By using the formula (5.7), a simple calculation
gives the required result.
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