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Abstract In this paper, we consider a Finsler space with a Randers change of Quartic metric F =
VoA + B4 + 3. The conditions for this space to be with reversible geodesics are obtained. Further, we
study some geometrical properties of F with reversible geodesics and prove that the Finsler metric F

induces a generalized weighted quasi-distance dp on M.
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1. INTRODUCTION

An interesting topic in Finsler geometry is to study the reversible geodesics of a Finsler
metric. Recall that, a Finsler space is said to have reversible geodesics if for every one of its
oriented geodesic paths, the same path traversed in the opposite sense is also a geodesic.
In the last decade many interesting and applicable results have been obtained on the
theory of Finsler spaces with reversible geodesics. In [1], Crampin discussed Randers
space with reversible geodesics. In ([2, 3]), Masca, Sabau and Shimada have discussed
reversible geodesics with («, $)-metric and two dimensional Finsler space with («, 3)-
metric to be with reversible geodesic, respectively. In [4], Sabau and Shimada have given
some important results on reversible geodesics. In [5], Shanker and Baby have discussed
reversible geodesics for generalized («, 8)-metric. Recently, Shanker and Rani [6] have
studied weighted quasi metric associated with Finsler spaces with reversible geodesics.
In this paper, we find conditions for a Finsler space (M, F) with Randers change of Quartic
metric F = /a* + 84+ 8 to be with reversible geodesics. The main results of this paper
lies in theorem 3.1, 4.1, 4.2, 5.2 and 5.6.
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2. PRELIMINARIES

Let F™ = (M, F) be a connected n-dimensional Finsler manifold and let TM =

U T.M denotes the tangent bundle of M with local coordinates u = (x, y) = (z¢,y%) €
zeM
0

Oxt’
If v : [0, 1] — M is a piecewise C°° curve on M, then its Finslerian length is defined

TM, where i =1, ..., n, y = y°

as

Li(y) = / F(y (1), 5(t))dt, (2.1)

and the Finslerian distance function dp : M x M — [0, c0) is defined by dgr(p,q) =
in fy L, where infimum is taken over all piecewise C'*° curves v on M joining the points p,
q € M. In general, this is not symmetric.

A curve v : [0, 1] — M is called a geodesic of (M, F) if it minimizes the Finslerian
length for all piecewise C'*° curves that keep their endpoints fixed. We denote the reverse
Finsler metric of F as F' : TM — (0, o), given by F(z,y) = F(x, —y). One can easily
see that F is also a Finsler metric.

Lemma 2.1. A Finsler metric is with a reversible geodesic if and only if for any geodesic
~v(t) of F, the reverse curve ¥(t) = ~y(1-t) is also a geodesic of F.

Lemma 2.2. Let (M, F) be a connected, complete Finsler manifold with associated dis-
tance function dp : M x M — [0, o). Then, dp is a symmetric distance function on
M x M if and only if F is a reversible Finsler metric, i.e., F(x,y) = F(x, —y).

Lemma 2.3. A smooth curve v : [0, 1] — M is a constant Finslerian speed geodesic
of (M, F) if and only if it satisfies % + 2 G*(y(t), 4(t)) = 0, i = 1, ..., n, where the
functions G : TM — R are given by

G'(z,y) = Tz, 9)y'y’, (2.2)

9" (8981’ 4 9095k _ af]jk)

with F;k(m,y) = 2 \ gk oxJ oxs

-0 0
Remark 2.4. It is well known [7] that the vector field I' = gfa - — QGZT7 is a vector
J;'L yl
field on TM, whose integral lines are the canonical lifts 5(t) = (v(t), ¥(¢)) of the geodesics
of . This vector field T is called the canonical geodesics spray of the Finsler space (M, F')

and G are called the coefficients of the geodesics spray I'.

Definition 2.5. If F and F are two different fundamental Finsler functions on the same
manifold M, then they are said to be projectively equivalent if their geodesics coincide as
set points.

Lemma 2.6. A Finsler structure (M, F) is with a reversible geodesic if and only if F
and its reverse function F are projectively equivalent.

3. REVERSIBLE GEODESICS FOR A FINSLER SPACE WITH RANDERS CHANGE
OF (QUARTIC METRIC.

Consider a Finsler space (M, F') with a special (o, 8)-metric F = /a* + %+ 3. Here,
F can be treated as the Randers change of Quartic-metric F' = {/a* + 3%. One can easily
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see that F(x,—y) = F(z,y).
As we know that [4] if (M, F) is a non-Riemannian n(n > 2)-dimensional Finsler space
with («, 8)-metric, which is not absolute homogeneous, then F is with reversible geodesics
if and only if F'(«, 8) = Fy(a, B) + €8, where Fy is absolute homogeneous («, 3)-metric, €
is a non-zero constant and S is a closed 1-form on the Manifold M.

In our case, Fy = F, which is absolute homogeneous. If 3 is a closed 1-form, then F
is with reversible geodesics. Further, a necessary and sufficient condition for F' to have
reversible geodesics is that [4]

f(aF) oF (3.1)

oyi)  Oxi -

where T is the reverse of T, the geodesic spray of F; moreover I is geodesic spray of F.

We have F = F + f, where, F = {/a% + .

Therefore,
(o5) - o
=1(. az+ Bagf)_F‘*g;_Fﬁgfi
= M)+ Fol () + 0 (g37) + £t (557) = s = P
= Mg+ B[ (5) - o] + P+ B[P () - 5l 62)
For the Riemannian metric «, the Euler-Lagrange equation gives f‘( 8;) — g; = 0.
Also, one knows [4] that if (M, F(a,()) is a Finsler space with («, ()-metric, then

o
Few)ys
functlons fand g on TM. It is known that, if 8 is closed and F' is projectively equivalent

+ g(z,y)b; =0,V i=1, 2, ..., n, implies that f = g = 0, for any smooth

a—ci + T(Fs)b; = 0 and hence by using lemma
~ - Y
2.7 of [4], we find that I'(F,) = 0,I'(Fg) = 0.

63

Again, since F' = /a* + p* + 3, therefore Fg =14+ ———
(ot +pY)5

Now, using the above results, the equation (3.2) reduces to the form

to the Riemannian metric a, then T'(F,)

(5) -~ 3 = BalF 57~ i
= (14 ) 100 g’
= (" o) [y~ 5]
=1+ (a f354)2) [Sﬁa - giﬂ ’ (3.3)
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3
b 5 can not be zero. Therefore, from equation (3.1) and (3.3) we conclude

(at+ 8}

o . L . (Ob;  Objy

that F is with reversible geodesics if and only if ( - — ,)yJ =
oxi Oz

i.e., F is with reversible geodesic if and only if 8 is closed 1-form. Hence, we have the
following theorem:

Now, 1+

Theorem 3.1. A Finsler space (M, F) with Randers change of Quartic metric F =
F + B, where, F = {/(a* + B4), is with reversible geodesics if and only if the differential
1-form B is closed on M.

4. PROJECTIVE FLATNESS OF RANDERS CHANGE OF QUARTIC METRIC

A Finsler space (M, F') is called (locally) projectively flat if all its geodesics are straight
lines [3]. An equivalent condition is that the spray coefficients G* of F' can be expressed
1 oF

= o5 a.rY
2F Oxk
An equivalent characterization of projective flatness is the Hamel’s relation [9]

as G* = P(z,y)y", where P(x,y)

O*F ., OF
drmayk? T gk

Recall that ([5], [0]) if F = Fy + € § is a Finsler metric, where Fy is an absolute homo-
geneous («, §)-metric, then any two of the following properties imply the third one:

(1) F is projectively flat;

(2) Fp is projectively flat;

(2) B is closed.

In our case, F = F + 3, where F = {/ (a* 4+ B*), which is absolute homogeneous. Hence,
we have the following theorem:

Theorem 4.1. Let (M, F) be a Finsler space with Randers change of Quartic metric F
= (a*+ B*)+ B. Then, F is projectively flat if and only if F is projectively flat.

Proof. Let (M, F) be projectively flat, then by Hamel’s relation for projective flatness,
we have

CF . OF
axmayk Y 8xk'

The proof directly follows from it. [ ]

Theorem 4.2. Let (M, F) be a Finsler space with Randers change of Quartic metric. If
F is projectively flat, then it is with reversible geodesics.

Proof. Applying Hammel’s equation, one can easily see that F is projectively flat if and
only if F is projectively flat, which implies that both F and F' are projectively equivalent
to the standard FEuclidean metric and therefore F must be projective to F. Thus, F must
be with a reversible geodesic. n
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5. WEIGHTED QUASI METRIC ASSOCIATED WITH RANDERS CHANGE OF
QUARTIC METRIC

It is well known that the Riemannian spaces can be represented as metric spaces.
Indeed, for a Riemannian space (M, «), one can define the induced metric space (M, d,)
with the metric

b
ot M X M — [0,09), dalir,9) = _inf / a(y(8), 5 (1)) dt, (5.1)

where I'y,, = {v : [a, b] — M | ~ is piecewise, v(a) = z, y(b) = y} is the set of curves
joining x and y, ¥(t) is the tangent vector to v at v(t). Then d,, is a metric on M satisfying
the following conditions:

1. Positiveness : do(z,y) > 0,if x # vy, do(z, ) = 0, z, y € X.

2. Symmetry : do(z, y) = do(y, ), ¥V 2, y € M.

3. Triangle inequality: do (2, y) < do(x, z) + du(z, y), V z, y, 2 € M.
Similar to the Riemannian space, one can induce the metric dp to a Finsler space (M,
F), given by

b
dp : M x M — [0,00),dp(x,y) = vgll“fl / F(y(t),5(t))dt. (5.2)

But in this case unlike the Riemannian case, dp lacks the symmetric condition. In fact,
dp is a special case of quasi metric defined below:

Definition 5.1. A quasi metric d on a set X is a function d : X x X — [0, oo) that
satisfies the following axioms:

1. Positiveness : d(z, y) > 0, if ¢ # y, d(z, ) =0, z, y € X.

2. Triangle inequality : d(z, y) < d(z, 2) + d(z y),V z, y, z € X.

3. Separation axiom : d(z, y) = d(y, 2) =0=>z =y, Vz,y € X.
One special class of quasi metric spaces are the so called weighted quasi metric spaces
(M, d, w), where d is a quasi-metric on M and for each d, there exist a function w: M
— [0, 00), called the weight of d that satisfies

4. Weightability : d(z, y) + w(z) = d(y, ©) + w(y), V z, y € M.
In this case, the weight function w is R-valued, and is called generalized weight.

Theorem 5.2. Let (M, F') be an n-dimensional simply connected smooth Finsler manifold
with F as Randers change of Quartic metric. Then, F induces generalized weighted quasi
metric dp on M.

Proof. We consider that (M, F) is a Finsler space with F = 8 + {/(a* + 84), which can
be written as F = F + 3, where F = {/(a* + %) is an absolute homogeneous Finsler
metric on M and 8 an exact 1-form.

Let 74y € I'zy be an F-geodesic, which is in the same time F-geodesic, then from
equation (5.2), we get

b
dr(,y) = / F(y(t),4(8))dt
b

:/ (+ Vi@ +39)at
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b

a4+ﬂ4 dt—i—/ Bdt

[ (v
A Ve )+ [ B (5.3)

Ty Yy

Consider a fixed point a € M and define the function w, : M — R by w,(x) :=
dF(CL,SC) - dF(xv CL).
From the equation (5.2) it follows that

wa)= [ - %a[a’:—?/ B, (5.4)

ax Ta

where we have used the Stokes theorem for the 1-form 8 on the closed domain D with

boundary 9D := .. U Yaa-

It can be easily seen that w, is an anti-derivative of 5. This is well defined if and only if

the integral in the R.H.S. of equation (5.4) is path independent, i.e., 8 must be exact.
Then dp is a weighted quasi-metric with generalized weight w,. Next we have

dr(x,y) +we(x) = /

[ (vem) - [ e[ s (55)

where we have again used the Stokes theorem for the one form 3 on the closed domain

with boundary Yez U Yey U Yya-
Similarly,

drwa) v = [ (VerTm) - [ - [ 8 (56)

yx Yya za

From the equations (5.5) and (5.6) we conclude that dp is weighted quasi-metric with
generalized weight w,. This completes the proof. ]

Next, recall the following lemma:

Lemma 5.3. ([10], [L1]) Let (M, d) be any quasi-metric space. Then d is weightable if
and only if there exists w : M — [0, co) such that

1
where p is the symmetrized distance function of d. Moreover, we have
Slw(@) —wy)] < p(z,y),Ye,y € M. (5.8)
The proof is trivial from the definition of weighted quasi-metric.

Remark 5.4. If (M, F) is a Finsler space with a special («, 8)-metric F' = {/(a* + 84)+
B, then the induced quasi-metric dp and the symmetrized metric p induced the same
topology on M. This follow immediately from ([7], [8]).

Remark 5.5. From lemma 5.3, It can be seen that the assumption of w to be smooth is
not essential.

Next, we discuss an interesting geometric property concerning the geodesic triangles.
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Theorem 5.6. Let (M, F) be a Finsler space with the Randers change of Quartic-metric
F = Y (a*+ p*) + B. Then the parameteric length of any geodesic triangle on M does
not depend on the orientation, that is,

dF(xvy) + dF(yaZ) + dF(Za‘r) = dF(QS',Z) + dF(Zay) + dp(y,x),Vx,y,z eEM.

Proof. Since the Randers change of Quartic metric F = {/(a* 4+ %) + 3 can be treated
as the Randers change of absolute homogeneous Finsler metric F = {/ (ot 4+ 54), ie, F
= F + B with d = 0, from theorem 5.2 it follows that the quasi-metric is weightable
and therefore equation (5.7) holds good. By using the formula (5.7), a simple calculation
gives the required result. [
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