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1. Introduction and Preliminaries
A non-Archimedean valuation is a function | · | from a field K into [0,∞) such that

0 is the unique element having the 0 valuation, |rs| = |r| · |s| and the strong triangle
inequality holds, i.e., |r + s| ≤ max {|r|, |s|} for all r, s ∈ K. Any field endowed with
a non-Archimedean valuation is said to be a non-Archimedean field. Note that every
complete valued field is isomorphic to R or C or is non-Archimedean [1, Theorem 1].

In any such field we have |1| = | − 1| = 1 and |n × 1| ≤ 1 for all n ∈ N, where 1 is
the neutral element of the semigroup (K, ·), 1× 1 = 1 and (n+ 1)× 1 = (n× 1) + 1 for
n ∈ N.

A trivial example of a non-Archimedean valuation is the function | · | taking everything
except 0 into 1 and |0| = 0. Another example of a non-Archimedean valuation is the
function | · |q from a field K into [0,∞) with |0|q = 0, |r|q =

1

r
if r > 0 and |r|q =

−1

r
if r < 0, for any r ∈ K. Standard examples of such fields are fields of p-adic numbers
Qp. Let p be a prime, the set Qp is defined as a completion of the rational numbers Q
with respect to the norm | · |p from Q into R given by |0|p = 0 and |a|p = p−r if a ̸= 0,
here a = pr m

n such that r,m ∈ Z, n ∈ N, and m and n are coprime to the prime number
p. The absolute value | · |p is non-Archimedean. There are also many other examples of
non-Archimedean fields (see for example [2]).
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Definition 1.1. Let X be a linear space over a field K with a non-Archimedean non-
trivial valuation | · | that is non-trivial (i.e., we additionally assume that there is an
r0 ∈ K such that |r0| ̸= 0, 1). A function ∥ · ∥ : X → [0,∞) is said to be a non-
Archimedean norm if it is a norm over K with the strong triangle inequality (ultrametric),
i.e., ∥x + y∥ ≤ max {∥x∥, ∥y∥} for all x, y ∈ X. Then the pair (X, ∥ · ∥) is called a non-
Archimedean normed space.

By a complete non-Archimedean normed space or non-Archimedean Banach space we
mean a non-Archimedean normed space in which every Cauchy sequence is convergent.

Remark 1.2. If ∥x∥ ̸= ∥y∥ then ∥x+ y∥ = max{∥x∥, ∥y∥}. We may assume ∥x∥ < ∥y∥.
We need to show ∥x+ y∥ = ∥y∥. If not, we have ∥x+ y∥ < ∥y∥. But ∥y∥ = ∥y+x−x∥ ≤
max{∥y + x∥, ∥x∥} < ∥y∥, a contradiction. Note that this is a crucial property which is
proper to the non-Archimedeanity of the norm.

Definition 1.3. Let (A, ∥·∥) be a non-Archimedean Banach algebra over K. This means
that the norm ∥ · ∥ of the Banach algebra satisfies the non-Archimedean property, i.e.,
∥x+y∥ ≤ max {∥x∥, ∥y∥} for all x, y ∈ A (and ifA is unital, ∥1∥ = 1). A non-Archimedean
Banach space X is a non-Archimedean Banach A-bimodule if X is an A-bimodule which
satisfies max{∥xa∥, ∥ax∥} ≤ ∥a∥∥x∥ for all a ∈ A and x ∈ X .

There are many examples of such kind of spaces, see [3–5]. Let us consider some basic
examples of non-Archimedean Banach algebras.

Example 1.4. Let K be a non-Archimedean field and Kn := {x = (x1, . . . , xn) : xi ∈
K, i = 1, . . . , n}. Then Kn with a norm ∥x∥ = maxi |xi| and usual pointwise summation
and multiplication operations, is a non-Archimedean Banach algebra over K.

Example 1.5. Let K be as above and c0 := {x = {xn}n∈N : xn ∈ K, limn→∞ xn = 0}.
Then c0 with a norm ∥x∥ = max

n
|xn| and usual pointwise summation and multiplication

operations, is a non-Archimedean Banach algebra over K.

In [6], the authors investigated the approximately additive mappings over p-adic fields.
The stability of the Cauchy and monomial functional equations in normed spaces over
fields with valuation was studied by Kaiser in [7, 8], see also [9, 10]. Interesting results
concerning almost derivations of non-Archimedean Banach algebras have been obtained
by many authors, see, e.g., [11, 12]). In the present paper we investigate the almost
n-derivations of order m from non-Archimedean Banach algebras into non-Archimedean
Banach modules and give some applications of our results.

2. Main Results
Let A be an algebra. An additive mapping f : A −→ A is called an n-Jordan derivation

if f satisfying

f (xn) =

n∑
i=1

xi−1f(x)xn−i

for all x ∈ A, where n > 1 is an integer. This is known as the nth power property (see,
among others, [13, 14]). For more details of the nth power property, n-Jordan derivations
and other applications, see, e.g., [14–18].
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Remark 2.1. The monomial f(x) = cxm on real numbers is a solution of the functional
equation

σyf(ax) = am−2σyf(x) + 2(a2 − 1)
(
am−2f(x)− κf(y)

)
, (2.1)

where a is an arbitrarily fixed nonzero integer different from −1 and 1, m is a positive
integer less than 5 and κ = 0, if m ̸= 4 and κ = 1, if m = 4. Here σyf(x) denotes
σyf(x) = f(x+ y)+ f(x− y). Every solution of the functional equation (2.1) is called an
m-mapping. The general solution of the functional equation (2.1) in vector spaces when
a = 2 obtained in [19] and when a ∈ Z \ {0,±1} obtained in [20].

Definition 2.2. We say that an m-mapping f : A −→ A is an n-derivation of order m
if f satisfying

f

(
n∏

i=1

xi

)
=

n∑
i=1

i−1∏
ı=1

xm
ı f(xi)

n∏
ı=i+1

xm
ı (2.2)

for all x1, . . . , xn ∈ A, where
∏l

ı=l+1 x
m
ı = 1 ∈ C with l ∈ {0, n}.

Putting m = 1 and replacing each xi by x in (2.2), we observe that f satisfies the nth
power property; that is, f is an n-Jordan derivation. Note that 2-derivations of order 1
are a derivation, in the usual sense.

Example 2.3. Let us consider the algebra of 3× 3 matrices

A =


 0 α β

0 0 γ
0 0 0

 : α, β, γ ∈ K

 .

Then the mapping f : A −→ A, defined by

f

 0 α β
0 0 γ
0 0 0

 =

 0 α2 β2

0 0 γ2

0 0 0

 ,

is an 3-derivation of order 2, while is not an 2-derivation of order 3 and is not a derivation.

Proposition 2.4. [4] A sequence {xn}n∈N in a non-Archimedean normed space (X, ∥ · ∥)
is Cauchy sequence if and only if limn→∞ ∥xn+1 − xn∥ = 0.

Note that, any non-Archimedean norm is a continuous function from its domain to real
numbers.

Proposition 2.5. Let E be a normed space and X be a non-Archimedean normed space.
Suppose f : E −→ X is a mapping and continuous at 0 ∈ E such that f(ax) = amf(x)
for all x ∈ E, where a ̸= 1 and m are arbitrarily fixed positive integers. Then, f = 0.

Proof. Since f is continuous at 0 ∈ E and f(0) = 0, for all ε > 0, there exists δ > 0 that,
for all x ∈ E with ∥x∥ ≤ δ,

∥f(x)− f(0)∥ = ∥f(x)∥ ≤ ε.

Also for any x ∈ E, there exists n ∈ N that
∥∥∥ x

an

∥∥∥ ≤ δ and hence

∥f(x)∥ =
∥∥∥amnf

( x

an

)∥∥∥ ≤
∥∥∥f ( x

an

)∥∥∥ ≤ ε

for all ε > 0 and all x ∈ E. Therefore, f = 0.
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From Remark 2.1 and Proposition 2.5, we deduce the following result.
Corollary 2.6. Let E be a normed space and X be a non-Archimedean normed space.
Suppose f : E −→ X is an m-mapping and continuous at 0 ∈ E. Then, f = 0.

Notice that the argument above is a special case of a general result for non-Archimedean
normed spaces, that is, every continuous function from a connected space to a non-
Archimedean normed space is constant. This is a consequence of totally disconnectedness
of every non-Archimedean normed space (see [4]).

In the rest of this paper, unless otherwise explicitly stated, we will assume that R+ is
the set of nonnegative real numbers, n is an integer greater than 1, m is a positive integer
less than 5, f : A → X is a mapping with f(0) = 0 whenever m = 4, κ = 0, if m ̸= 4 and
κ = 1, if m = 4, a ̸= 0,±1 is an arbitrarily fixed integer, A is a non-Archimedean Banach
algebra and X is a non-Archimedean Banach A-bimodule over a non-Archimedean field
of characteristic different from 2 and a.
Definition 2.7. A function ζ : R → R satisfying the equation ζ(xy) = ζ(x)ζ(y) is called
a multiplicative function, and ξ : R+ → R+ satisfying the inequality ξ(xy) ≤ ξ(x)ξ(y) is
called a submultiplicative function.
Definition 2.8. A mapping f : A → X is called an almost n-derivation of order m
if there exist functions ω : A × A −→ R+ and υ : A× · · · × A︸ ︷︷ ︸

n times
−→ R+ such that

limk→∞
ω(akx,aky)

|a|mk = 0 = limk→∞
υ(akx1,...,a

kxn)
(|a|mn)k

(
or limk→∞ |a|mkω

(
x
ak ,

y
ak

)
= 0 =

limk→∞(|a|mn)kυ
(
x1

ak , . . . ,
xn

ak

) )
and∥∥σyf(ax)− am−2σyf(x)− 2(a2 − 1)

(
am−2f(x)− κf(y)

)∥∥ ≤ ω(x, y) (2.3)

∥∥∥∥∥f
(

n∏
i=1

xi

)
−

n∑
i=1

i−1∏
ı=1

xm
ı f(xi)

n∏
ı=i+1

xm
ı

∥∥∥∥∥ ≤ υ(x1, . . . , xn) (2.4)

for all x, y, x1, . . . , xn ∈ A, where n ≥ 2. Also, f : A → X is called an (ε, ξ)-n-derivation
of order m if there exist a non-negative real number ε and a submultiplicative function
ξ such that (2.3) and (2.4) hold for ω(x, y) = ε (ξ(∥x∥) + ξ(∥y∥)) := ε

(
ξ∥x∥ + ξ∥y∥

)
and

υ(x1, . . . , xn) = ε
∏n

i=1 ξ(∥xi∥) := ε
∏n

i=1 ξ∥xi∥ for all x, y, x1, . . . , xn ∈ A.
We here present the following notion of n-derivations of order m on unital non-

Archimedean algebras.
Proposition 2.9. Suppose A is a unital non-Archimedean algebra, X is a unital non-
Archimedean A-bimodule and f : A → X is an n-derivation of order m. Then f is a
derivation of order m.
Proof. Since f satisfies (2.2), by setting each xi in (2.2) with 1 we have f (1n) = nf(1).
Thus, f(1) = 0. Substituting xi = 1 for all i = 3, 4, . . . , n in (2.2), we get

f (x1x2) = f

(
x1x2

n∏
i=3

1

)
= f(x1)x

m
2 1m · · ·1m + xm

1 f(x2)1
m · · ·1m + 0 + · · ·+ 0

= f(x1)x
m
2 + xm

1 f(x2)

for all x1, x2 ∈ A, so that f is a derivation of order m.
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Example 2.3 shows that Proposition 2.9 does not hold in general.

Theorem 2.10. Let f : A → X be an almost n-derivation of order m and set

Ω(x) := sup

{
ω
(
ajx, 0

)
|a|mj

: j ∈ N ∪ {0}

}
, (x ∈ A).

Then there exists a unique n-derivation of order m, Θm,n : A → X such that ∥f(x) −

Θm,n(x)∥ ≤ Ω(x)

|2am|
for all x ∈ A.

Proof. Setting y = 0 in (2.3) yields ∥f (ax)− amf (x)∥ ≤ ω(x,0)
|2| for all x,∈ A. Replacing x

by akx in the inequality above and then dividing by |a|mk+m gives
∥∥∥∥ f(ak+1x)

amk+m − f(akx)
amk

∥∥∥∥ ≤

ω(akx,0)
|2amk+m| for all x,∈ A. Combining the last inequality and limk→∞

ω(akx,0)
|a|mk = 0, we obtain

that
{

f(akx)
amk

}
is a Cauchy sequence. Since the space X is complete, this sequence is

convergent, and we define Θm,n(x) := limk→∞
f(akx)
amk .

Using induction, it is easy to prove that∥∥∥∥∥f(x)− f
(
akx

)
amk

∥∥∥∥∥ ≤ 1

|2am|
max

{
ω
(
ajx, 0

)
|a|mj

: 0 ≤ j < k

}

for all k ∈ N and all x ∈ A. Letting k → ∞ in this inequality, and using the fact that

lim
k→∞

max

{
ω
(
ajx, 0

)
|a|mj

: 0 ≤ j < k

}
= sup

{
ω
(
ajx, 0

)
|a|mj

: j ∈ N ∪ {0}

}
,

we see that ∥f(x)−Θm,n(x)∥ ≤ Ω(x)

|2am|
for all x ∈ A.

Substituting x = akx and y = aky in (2.3), dividing by |a|mk, taking k to approach
infinity in the resultant inequality and utilizing limk→∞

ω(akx,aky)
|a|mk = 0, we find that

Θm,n satisfies (2.1). So, by Remark 2.1, Θm,n is an m-mapping. Also, it follows from the
definition of Θm,n and (2.4) that∥∥∥∥∥Θm,n

(
n∏

i=1

xi

)
−

n∑
i=1

i−1∏
ı=1

xm
ı Θm,n(xi)

n∏
ı=i+1

xm
ı

∥∥∥∥∥
= lim

k→∞

1

(|a|mn)k

∥∥∥∥∥f
(

n∏
i=1

(akxi)

)
−

n∑
i=1

i−1∏
ı=1

(akxı)
mf(akxi)

n∏
ı=i+1

(akxı)
m

∥∥∥∥∥
≤ lim

k→∞

υ
(
akx1, . . . , a

kxn

)
(|a|mn)k

= 0,

and so Θm,n satisfies (2.2). Therefore, Θm,n is an n-derivation of order m.
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Let us finally assume that Θ∗
m,n : A → X is another n-derivation of order m such that

∥f(x)−Θ∗
m,n(x)∥ ≤ Ω(x)

|2am| for all x ∈ A. Then for all x ∈ A, we have

∥∥Θm,n(x)−Θ∗
m,n(x)

∥∥ = lim
ȷ→∞

1

|a|mȷ

∥∥Θm,n (a
ȷx)−Θ∗

m,n (a
ȷx)
∥∥

≤ lim
ȷ→∞

1

|a|mȷ
max

{
∥Θm,n (a

ȷx)− f (aȷx)∥ ,
∥∥f (aȷx)−Θ∗

m,n (a
ȷx)
∥∥}

≤ 1

|2am|
lim
ȷ→∞

lim
k→∞

max

{
ω
(
ajx, 0

)
|a|mj

: ȷ ≤ j < k + ȷ

}

=
1

|2am|
lim
ȷ→∞

1

|a|mȷ
sup

{
ω
(
ajx, 0

)
|a|mj

: j ∈ N ∪ {0}

}

=
1

|2am|
lim
ȷ→∞

sup

{
ω
(
ajx, 0

)
|a|mj

: ȷ ≤ j < ∞

}
= 0,

and thus Θm,n(x) = Θ∗
m,n(x).

From Proposition 2.9 and Theorem 2.10, we deduce the following result.

Corollary 2.11. If, under the conditions of Theorem 2.10, we assume in addition A is
a unital non-Archimedean algebra and X is a unital non-Archimedean A-bimodule, then
there exists a unique derivation of order m, Υm : A → X such that ∥f(x) − Υm(x)∥ ≤
Ω(x)

|2am|
for all x ∈ A.

Corollary 2.12. Let f : A → X be an (ε, ξ)-n-derivation of order m, a > 1 be a constant
natural number and ξ be a submultiplicative function satisfying ξ|a| < |a|α, where α is
a fixed real number in (m,∞). Then there exists a unique n-derivation of order m,

Θm,n : A → X such that ∥f(x)−Θm,n(x)∥ ≤
εξ∥x∥

|2am|
for all x ∈ A.

Proof. Since 1
|a|m ξ|a| <

|a|α
|a|m = |a|α−m < 1, taking ω(x, y) = ε

(
ξ∥x∥ + ξ∥y∥

)
and

υ(x1, . . . , xn) = ε
∏n

i=1 ξ∥xi∥ for all x, y, x1, . . . , xn ∈ A, we have

lim
k→∞

υ
(
akx1, . . . , a

kxn

)
(|a|mn)k

≤ lim
k→∞

ξnk|a|

(|a|m)nk
υ (x1, . . . , xn)

≤ lim
k→∞

|a|(α−m)nkυ (x1, . . . , xn) = 0,

and limk→∞
ω(akx,aky)

|a|mk ≤ limk→∞

(
ξ|a|
|a|m

)k
ω (x, y) = 0. Also,

Ω(x) = sup

{
ω
(
ajx, 0

)
|a|mj

: j ∈ N ∪ {0}

}
= ω (x, 0) = εξ∥x∥,
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and

lim
ȷ→∞

lim
k→∞

max

{
ω
(
ajx, 0

)
|a|mj

: ȷ ≤ j < k + ȷ

}
= lim

ȷ→∞
sup

{
ω
(
ajx, 0

)
|a|mj

: ȷ ≤ j < ∞

}

= lim
ȷ→∞

ω (aȷx, 0)

|a|mȷ

≤ lim
ȷ→∞

(
ξ|a|

|a|m

)ȷ

ω (x, 0) = 0

for all x ∈ A. Hence, the result follows by Theorem 2.10.

Remark 2.13. Let f : A → X be an almost n-derivation of order m and set

℧ (x) := sup
{
|a|mjω

( x

aj+1
, 0
)
: j ∈ N ∪ {0}

}
, (x ∈ A).

By limk→∞ |a|mkω
(

x
ak ,

y
ak

)
= 0 = limk→∞(|a|mn)kυ

(
x1

ak , . . . ,
xn

ak

)
and a similar method

to the proof of Theorem 2.10, one can show that there exists a unique n-derivation of
order m, Φm,n := limk→∞ amkf

(
x
ak

)
from A to X such that ∥f(x)− Φm,n(x)∥ ≤ ℧ (x)

|2|
for all x ∈ A.

For the case ω(x, y) := ε
(
ξ∥x∥ + ξ∥y∥

)
and υ(x1, . . . , xn) := ε

∏n
i=1 ξ∥xi∥ (where a > 1

is a constant natural number and ξ is a submultiplicative function satisfying ξ 1
|a|

< |a|−α

and α is a fixed real number in (−∞,m)), there exists a unique n-derivation of order m,

Φm,n such that ∥f(x)− Φm,n(x)∥ ≤
εξ∥x∥

|2aα|
for all x ∈ A.

Example 2.14. The classical example of the function ξ in Corollary 2.12 (Remark 2.13)
is the mapping ξ(t) = tp, t ∈ [0,∞), where p > α (p < α) with the further assumption
that |a| < 1.

Here we present some conditions for an almost n-derivation of orderm to be a derivation
of order m.

Theorem 2.15. If f : A → X is an almost n-derivation of order m, ω(x, y) is replaced
by ω(0, y) and |a| < 1, then f is an n-derivation of order m.

Proof. Letting x = y = 0 in (2.3), we obtain
∥∥2 (am + κ(1− a2)− 1

)
f (0)

∥∥ ≤ ω(0, 0).

But since limk→∞ |a|−mkω (0, 0) = 0, it follows that ω(0, 0) = 0. Thus, f(0) = 0. Setting
y = 0 in (2.3) and using f(0) = 0, we get f(ax) = amf(x) for all x ∈ A. So we will prove
by induction that f(akx) = amkf(x); that is,

f(x) =
1

amk
f(akx) (2.5)

for all x ∈ A and k ∈ N. On the other hand, by Theorem 2.10, the mapping Θm,n : A → X
defined byΘm,n(x) := limk→∞

f(akx)
amk . is a unique n-derivation of orderm. Then it follows

from (2.5) that f = Θm,n. Therefore, the mapping f is an n-derivation of order m.

The following result is due to Proposition 2.9 and Theorem 2.15.

Corollary 2.16. If A is a unital non-Archimedean algebra, X is a unital non-Archimedean
A-bimodule, f : A → X is an almost n-derivation of order m, ω(x, y) is replaced by ω(0, y)
and |a| < 1, then f is a derivation of order m.
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