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1. Introduction
After introducing the notion of hyperstructure in 1934 by F. Marty in [1], several re-

searchers were involved in this research area. Some worked on the theoretical part of
this area, where they generalized many algebraic structures’ concepts such as hyperfields,
hypervector spaces (see [2–6]). Other researchers worked on applications of this topic in
different fields of sciences (see [7]).

In [5], Roy et al. defined hypernorms on hypervector spaces over the real hyperfield. In
our paper, we extend their definition of hypernorms and consider hypernorms on hyper-
vector spaces over any valued hyperfield. The remainder part of this paper is constructed
as follows: After an Introduction, in Section 2 we present some definitions related to
hyperstructures and results related to both: hyperabsolute values of hyperfields and hy-
pervector spaces over hyperfields that are proved by the authors in [2, 3]. In Section 3,
we define hypernorms on hypervector spaces, investigate their properties and find a nec-
essary and sufficient condition for two hypernorms to be equivalent. Finally, in Section 4,
we discuss bounded linear transformation over hypervector spaces and find relationships
between bounded and continuous linear transformations.
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Throughout this paper, R is the set of real numbers, K is a Krasner hyperfield, −→0 is
the zero of the hypervector space V , 0 is the additive identity of K, | · | is the standard
absolute value of real numbers and / · / is hyperabsolute value of K.

2. Preliminaries
In this section, we present some definitions related to hyperstructures and results re-

lated to both: hyperabsolute values of hyperfields and hypervector spaces over hyperfields
that are used throughout this paper.

Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called a binary
hyperoperation on H, where P∗(H) is the family of all non-empty subsets of H. The
couple (H, ◦) is called a hypergroupoid. In this definition, if A and B are two non-empty
subsets of H and x ∈ H, then we define A ◦ B =

∪
a∈A,b∈B a ◦ b, x ◦ A = {x} ◦ A

and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is called: a semihypergroup if for every
x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z; a quasihypergroup if for every x ∈ H,
x ◦H = H = H ◦ x (this condition is called the reproduction axiom); a hypergroup if it is
a semihypergroup and a quasihypergroup. A Krasner hyperring is an algebraic structure
(R,+, ·) which satisfies the following axiom: (1) (R,+) is a commutative hypergroup; (2)
there exists 0 ∈ R such that 0 + x = {x} for all x ∈ R; (3) for every x ∈ R there exists
unique x′ ∈ R such that 0 ∈ x + x′; (x′ is denoted by −x); (4) z ∈ x + y implies that
y ∈ −x+ z and x ∈ z − y; (5) (R, ·) is a semigroup having zero as a bilaterally absorbing
element, i.e., x · 0 = 0 · x = 0; (6) the multiplication “·” is distributive with respect to
the hyperoperation “+”. Note that every ring is a Krasner hyperring. A subhyperring
A of a Krasner hyperring (R,+, ·) is a hyperideal of R if r · a ∈ A (a · r ∈ A) for all
a ∈ A, r ∈ R. A commutative Krasner hyperring (R,+, ·) with identity element “1” is a
hyperfield if (R \ {0}, ·) is a group. Different examples of finite and infinite hyperfields
were constructed.

Example 2.1. Let S = {0, 1, 2} and define (S,+) and (S, ·) by the following tables:

+ 0 1 2

0 0 1 2

1 1 1 S

2 2 S 2

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Then (S,+, ·) is a hyperfield.

We present the following examples of infinite hyperfields from [8, 9].

Example 2.2. (Triangle hyperfield) Let V be the set of non-negative real numbers
with the following hyperoperations:

a⊕ b = {c ∈ V : |a− b| ≤ c ≤ a+ b},

and

a⊙ b = ab.

Then (V,⊕,⊙) is a hyperfield. Here, the additive identity 0 = 0 and −a = a for all a ∈ V.
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Example 2.3. (Tropical hyperfield) Let T = R ∪ {−∞} with the following hyperop-
erations:

a⊕ b =

{
max{a, b}, if a ̸= b;
{c ∈ T : c ≤ a}, if a = b. ,

and
a⊙ b = a+ b.

Then (T,⊕,⊙) is a hyperfield. Here, the additive identity 0 = −∞ and −a = a for all
a ∈ V. Moreover, the multiplicative identity is 0.

In [2], the authors defined hyperabsolute values of hyperfields as a generalization of the
notion of absolute values of fields. They presented some results related to it and provided
some examples.

Definition 2.4. [2] Let K be a hyperfield and R≥0 be the set of non-negative real
numbers. A hyperabsolute value of K is a function

/ · / : K −→ R≥0

satisfying the following conditions for all x, y ∈ K:
(1) /x/ = 0 if and only if x = 0;
(2) /xy/ = /x//y/;
(3) sup/z/z∈x+y ≤ /x/+ /y/. (Triangle inequality)

Proposition 2.5. [2] Let K be a finite hyperfield and / · / be a hypersbolute value of K.
Then / · / is the trivial hyperabsolute value of K. i.e., for all x ∈ K,

/x/ =

{
0, if x = 0;
1, otherwise.

Example 2.6. [2] Let (V,⊕,⊙) be the Triangle hyperfield and define / ·/ of V as follows:
For all x ∈ V, /x/ = x. Then / · / is a hyperabsolute value of V.

In [6], Tallini defined hypervector spaces over fields and many authors used her defi-
nition to define new concepts such as basis, linear transformation, hypernorm and many
other. In [3], the authors presented a different definition of hypervector spaces. They
defined hypervector spaces over hyperfields, studied their properties and presented some
examples.

Definition 2.7. [3] Let K be a Krasner hyperfield. A canonical hypergroup (V,+)
together with a map · : K × V → V , is called a hypervector space over K if for all
a, b ∈ F and x, y ∈ V , the following conditions hold: (1) a · (x + y) = a · x + a · y; (2)
(a + b) · x = a · x + b · x; (3) a · (b · x) = (ab) · x; (4) a · (−x) = (−a) · x = −(a · x); (5)
x = 1 · x.

Example 2.8. [3] Let (K,+, ·) be a hyperfield, E be a non-empty set and KE be the
set of all functions from E to K. Then KE is a hypervector space over K. Where
⋆ : K ×KE −→ KE is defined as follows: For all f, g ∈ KE , k, x ∈ K,

(f + g)(x) = f(x) + g(x) and (k ⋆ f)(x) = k · f(x).

Proposition 2.9. [3] Let K be a hyperfield and (V,+) be a hypervector space over K. A
non-empty subset W ⊆ V is subhyperspace of V if and only if a · x + b · y ⊆ W for all
x, y ∈ W and a, b ∈ K.
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Definition 2.10. [3] A subset S = {v1, v2, · · · , vn} of a hypervector space V over a
hyperfield K is said to basis for V if it is linearly independent and it spans V . We
say that V is finite dimensional if it has a finite basis. Otherwise, it is called infinite
dimensional.

3. Hypernormed Vector Spaces and Equivalent Hypernorms
Inspired by the definition of norm of a vector space, we define hypernorm of hypervec-

tor space, prove its properties and present some examples.
Throughout this section, V is a hypervector space over a valued hyperfield K with hy-
perabsolute value / · /.

3.1. Hypernormed Vector Spaces
A hypernormed vector space is a hypervector space where each vector is associated

with a “length”.

Definition 3.1. Let K be a hyperfield and V a hypervector space over K. A hypernorm
on V is a function

|| · || : V −→ R
satisfying the following conditions for all x, y ∈ V , a ∈ K:

(1) If ||x|| = 0 then x =
−→
0 ;

(2) ||ax|| = /a/||x||;
(3) sup||z||z∈x+y ≤ ||x||+ ||y||. (Triangle inequality)

Moreover, (V, || · ||) is called hypernormed vector space.

Proposition 3.2. Let K be a finite hyperfield and V be a hypervector space over K. If
there exists r > 0 such that for all x ∈ V :

||x|| =

{
r, if x ̸= −→

0 ;
0, if x =

−→
0 .

Then || · || is a hypernorm on V .

Proof. It is clear that if ||x|| = 0 then x =
−→
0 . Proposition 2.5 asserts that /k/ = 1 for

all k ∈ K \ {0}. We get now that ||kx|| = r = /k/||x||. Let z ∈ x + y. If x = y =
−→
0

then z =
−→
0 and hence ||z|| = 0 ≤ ||x||+ ||y||. If x ̸= −→

0 or y ̸= −→
0 then either ||z|| = 0 or

||z|| = r. Thus, ||z|| ≤ ||x||+ ||y||.

Example 3.3. Let K be a valued hyperfield. Define || · || on KE as follows: for all
f ∈ KE ,

||f || = sup{/f(x)/ : x ∈ E}.
We show that || · || is a hypernorm on KE . Let f, g ∈ KE and k ∈ K.

• If ||f || = 0 then /f(x)/ = 0 for all x ∈ E. It follows, from Definition 2.4, that
f(x) = 0 for all x ∈ E and hence, f is the zero of KE .

• ||kf || = sup{/af(x)/ : x ∈ E} = sup{/a//f(x)/ : x ∈ E} = /a/ sup{/f(x)/ : x ∈
E} = /a/||f ||.

• ||f + g|| = sup{/f(x) + g(x)/ : x ∈ E} ≤ sup{/f(x)/ : x ∈ E}+ sup{/g(x)/ : x ∈
E} = ||f ||+ ||g||.
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Example 3.4. Let V be a finite dimensional hypervector space over a valued hyperfield
K and B = {e1, . . . , en} be a basis for V . Define || · || on V as follows: for all v ∈ V ,

||v|| = ||
n∑

i=1

ciei|| = max{/ci/ : 1 ≤ i ≤ n}.

Then it easy to see that || · || is a hypernorm on V .
Definition 3.5. Let K be a hyperfield and V a hypervector space over K. A semi-
hypernorm of V is a function

|| · || : V −→ R
satisfying the following conditions for all x, y ∈ V , a ∈ K:

(1) If ||−→0 || = 0;
(2) ||ax|| = /a/||x||;
(3) sup||z||z∈x+y ≤ ||x||+ ||y||. (Triangle inequality)

Example 3.6. Let K be a valued hyperfield, a ∈ E and |E| ≥ 2. Define || · || on KE as
follows: for all f ∈ KE ,

||f || = /f(a)/.

Then it is clear that || · || is a semi-hypernorm on KE that is not a hypernorm.
Proposition 3.7. Let || · || be a (semi) hypernorm on V . Then

(1) ||−→0 || = 0;
(2) || − x|| = ||x||;
(3) inf ||kx− ky|| = /k/ inf ||x− y||;
(4) ||x|| ≥ 0.

Proof.
• Proof of 1. Since 0v =

−→
0 ([3]) for all v ∈ V , it follows that ||−→0 || = ||0v|| =

/0/||v|| = 0.
• Proof of 2. In [2], the authors proved that / − 1/ = 1 We get that || − x|| =
||(−1)x|| = /− 1/||x|| = ||x||;

• Proof of 3. Let z ∈ x − y, t ∈ kx − ky such that ||z|| = inf ||x − y|| and
||t|| = inf ||kx − ky||. Since z ∈ x − y, it follows that kz ∈ k(x − y) = kx − ky.
Thus, ||t|| = inf ||kx − ky|| ≤ ||kz|| = /k/||z||. Since t ∈ kx − ky, it follows that
k−1t ∈ k−1(kx− ky) = x− y. Thus, ||z|| = inf ||x− y|| ≤ ||k−1t|| = 1

/k/ ||t||.
• Proof of 4.−→0 ∈ −x + x for all x ∈ V . The Triangle inequality implies that
0 = ||−→0 || ≤ || − x||+ ||x|| = 2||x||.

Proposition 3.8. (Generalized Triangle inequality.) Let V be a hypervector space, n be
a positive integer greater than 1, || · || be a (semi) hypernorm on V and xi ∈ V for all
i = 1, 2, . . . , n. Then

sup||z||z∈x1+x2+...+xn
≤ ||x1||+ ||x2||+ . . .+ ||xn||.

Proof. We prove by induction on the value of n. For n = 2, the proof follows from
Definitions 3.1 and 3.5, Condition 3. Suppose that sup||z||z∈x1+x2+...+xn−1

≤ ||x1|| +
||x2|| + . . . + ||xn−1|| and let t ∈ x1 + x2 + . . . + xn−1 + xn. Then there exists z ∈
x1 + x2 + . . . + xn−1 such that t ∈ z + xn. Condition 3 in both Definitions 3.1 and 3.5,
asserts that ||z|| ≤ ||t||+ ||xn||. Thus, ||z|| ≤ ||x1||+ ||x2||+ . . .+ ||xn−1||+ ||xn||.
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Proposition 3.9. Let V be a hypervector space, || · || be a (semi) hypernorm on V and
x, y ∈ V . Then

inf ||z||z∈x−y ≥ |||x|| − ||y|||.
Proof. Suppose that z ∈ x− y. By using the definition of a hypervector space, we obtain
that x ∈ z + y and y ∈ x − z. The Triangle inequality implies that ||x|| ≤ ||z|| + ||y||
and that ||y|| ≤ ||x|| + || − z|| = ||x|| + ||z||. We get that ||x|| − ||y|| ≤ ||z|| and that
||y|| − ||x|| ≤ ||z||. Thus, ||z|| ≥ |||x|| − ||y|||.

Proposition 3.10. Let || · || be a semi-hypernorm on V and define N as follows:
N = {v ∈ V : ||v|| = 0}.

Then N is a subhyperspace of V .
Proof. Let u, v ∈ N , a, b ∈ K. Then 0 ≤ ||au+bv|| ≤ ||au||+||bv|| = /a/||u||+/b/||v|| = 0.
We get that ||au+ bv|| = 0 and hence, au+ bv ⊆ N .

Proposition 3.11. Let || · || be a semi-hypernorm on V and N = {v ∈ V : ||v|| = 0}.
Define || · ||′ on V/N as follows:

||v +N ||′ = ||v||.
Then || · ||′ is a hypernorm on the quotient hypevector space V/N .
Proof. We show that the conditions of Definition 3.1 are satisfied for || · ||′. Let u, v ∈ V
and a ∈ K.

• Condition 1. Let ||v +N ||′ = 0. We get that ||v|| = 0, and hence, v ∈ N . Thus,
v +N = N .

• Condition 2. ||a(v +N)||′ = ||av +N ||′ = ||av|| = /a/|v|| = /a/||v +N ||′.
• Condition 3. {sup ||z + N ||′ : z + N ∈ u + N + v + N} = {sup ||z|| : z + n′ ⊆

u + v + n for some n, n′ ∈ N}. The latter implies that there exists t ∈ z + n′

such that t ∈ u + v + n. We get now that z ∈ t − n′ ⊆ u + v + n − n′. Since
||z|| ≤ ||u||+ ||v||+ ||n||+ ||n′|| and ||n′|| = ||n|| = 0, it follows that ||z +N ||′ ≤
||u+N ||′ + ||v +N ||′.

Therefore, || · ||′ is a hypernorm on V/N .

3.2. Equivalent Hypernorms
Definition 3.12. Let V be a hypervector space and d : V × V −→ R≥0. Then (V, d) is
called hypermetric space if for all x, y, z ∈ V , the following conditions are satisfied.

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z).

Example 3.13. Let V be any hypervector space and define d : V ×V −→ R≥0 as follows:

d(x, y) =

{
0, if x = y;
1, otherwise.

Then (V, d) is a hypermetric space.
Proposition 3.14. Let (V, ||·||) be a hypernormed vector space. Define d on V as follows:

d(x, y) = inf ||x− y||.
Then (V, d) is a hypermetric space.
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Proof. Let x, y, z ∈ V . We show that conditions of Definition 3.12 are satisfied.
• Having −→

0 ∈ x − x for all x ∈ V implies that d(x, x) = inf ||x − x|| = ||−→0 || = 0.
Let d(x, y) = inf ||x − y|| = 0. Then there exists z ∈ x − y such that ||z|| = 0.
The latter implies that z =

−→
0 and having −→

0 ∈ x− y implies that x = y.
• Since inf ||kx−ky|| = /k/ inf ||x−y|| for all k ∈ K (Proposition 3.7) and /−1/ = 1,

it follows that d(x, y) = inf ||x− y|| = inf ||y − x|| = d(y, x).
• To prove that d(x, z) = inf ||x− z|| ≤ d(x, y)+ d(y, z) = inf ||x− y||+ inf ||y− z||,

we may use a proof that is similar to that of Theorem 3.4 in [5].

In what follows, the hypermetric space that we are using is that induced by the hyper-
norm on the hypervector space V , i.e., d(x, y) = inf ||x− y|| for all x, y ∈ V .

Definition 3.15. Let (V, d) be a hypermetric space. We define the open balls, Br(x) in
V as follows: For x ∈ V, r > 0,

Br(x) = {y ∈ V : d(x, y) < r}.

Open subsets in V are defined to be union of open balls in V .

Example 3.16. Let K be a finite hyperfield and (V, || · ||) be the hypernormed vector
space over K that is defined in Proposition 3.2. Let x ∈ V and s > 0. Then

Bs(x) =

{
{x}, if s ≤ r;
V, if s > r.

Thus, || · || induces the power set topology on V . (Every singleton set in V is open).

Definition 3.17. Let V be a hypernormed vector space and || · ||1, || · ||2 be hypernorms
on V . Then || · ||1 and || · ||2 are equivalent hypernorms on V if they induce same metric
topology in V .

Lemma 3.18. Let || · || and || · ||′ be hypernorms on V . If there are positive real numbers
A,B such that A||x|| ≤ ||x||′ ≤ B||x|| for all x ∈ V . Then || · || and || · ||′ are equivalent
hypernorms on V .

Proof. It suffices to show that open balls in (V, || · ||) are open subsets in (V, || · ||′) and
vice-versa. Let x ∈ V and r, s > 0, Br(x) = {y ∈ V : inf ||x− y|| < r} is an open ball in
(V, || · ||) and B′

s(x) = {y ∈ V : inf ||x− y||′ < s} is an open ball in (V, || · ||′). We need to
show that Br(x) is open in (V, || · ||′) and that B′

s(x) is open in (V, || · ||). Since ||x|| < r
B

implies that ||x||′ < r, it follows that inf ||x − y|| < r
B implies that inf ||x − y||′ < r.

Thus, any open ball around x in (V, || · ||′) contains an open ball around x in (V, || · ||).
We deduce that any open ball in (V, || · ||′) is an open subset in (V, || · ||). In a similar
manner, we prove that any open ball around x in (V, || · ||) contains an open ball around
x in (V, || · ||′).

Lemma 3.19. Let K be a hyperfield with non-trivial hyperabsolute value, V be a hy-
pervector space over K and || · ||, || · ||′ be equivalent hypernorms on V . Then there are
positive real numbers A,B such that A||x|| ≤ ||x||′ ≤ B||x|| for all x ∈ V .

Proof. Let || · ||, || · ||′ be equivalent hypernorms on V . Then B1(
−→
0 ) is open in (V, || · ||′)

and B′
1(
−→
0 ) is open in (V, || · ||). We get that there exist r, s > 0 such that

{v ∈ V : ||v||′ < r} ⊆ {v ∈ V : ||v|| < 1} = B1(
−→
0 ),
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and

{v ∈ V : ||v|| < s} ⊆ {v ∈ V : ||v||′ < 1} = B′
1(
−→
0 ).

Having / · / a non-trivial hyperabsolute value on K implies that there exist γ ∈ K with
/γ/ ̸= 1. If /γ/ < 1 then /γ−1/ = 1

/γ/ > 1. Thus, there exists γ ∈ K such that /γ/ > 1.
One can easily see that /γ/n −→ ∞ as n −→ ∞ and /γ/n −→ 0 as n −→ −∞ (as
/γ/ > 1). We deduce that every positive real number is either equal to /γ/n for some
n ∈ N or between /γ/n and /γ/n+1 for some n ∈ N. Let v ∈ V . Then there exist n ∈ N
such that

/γ/n ≤ 1

s
||v|| ≤ /γ/n+1.

We get that || 1
γn+1 v|| = 1

/γn+1/ ||v|| < s. Since {v ∈ V : ||v|| < s} ⊆ {v ∈ V : ||v||′ < 1}, it
follows that || 1

γn+1 v||′ < 1. The latter implies that ||v||′ < /γn+1/ = /γ//γ/n ≤ /γ/
s ||v||.

Thus, B = /γ/
s . In a similar manner, we find A = /γ/

r .

Theorem 3.20. Let K be a hyperfield with non-trivial hyperabsolute value, V be a hy-
pervector space over K. Then || · ||, || · ||′ be equivalent hypernorms on V if and only if
there are positive real numbers A,B such that A||x|| ≤ ||x||′ ≤ B||x|| for all x ∈ V .

Proof. The proof results from Lemmas 3.18 and 3.19.

Corollary 3.21. The relation || · ||1 ∼ || · ||2 ⇔ || · ||1 and || · ||2 are equivalent hypernorms
on V , is an equivalence relation.

Proof. The proof is straightforward by using Theorem 3.20.

4. Bounded Linear Transformations
In this section, we define bounded linear transformation over hypernormed vector

spaces, use the definitions of Cauchy and convergent sequences and find the relation-
ships between them and bounded (continuous) linear transformations.

Definition 4.1. [3] Let U, V be two hypervector spaces over a hyperfield K and T : U →
V . Then T is a linear transformation if for all x, y ∈ U and a ∈ K: (1) T (x + y) =
T (x) + T (y); (2) T (ax) = aT (x).

Proposition 4.2. [3] Let U, V be two hypervector spaces over a hyperfield K and T :
U → V . Then T is a linear transformation if and only if T (ax+ by) = aT (x)+ bT (y) for
all x, y ∈ U and a, b ∈ K:

Proposition 4.3. [3] Let T : U → V be a linear transformation. Then ker(T ) = {x ∈
U : T (x) =

−→
0 } is a subhyperspace of U .

Definition 4.4. [5] Let B be a hypernormed vector space, || · || be a hypernorm on V
and (xn) be a sequence in V . Then (xn) is said to converge to x ∈ V (xn −→ x) if the
following assertion holds:

For every ϵ > 0, there exists a natural number N such that inf ||xn − x|| < ϵ for all
n ≥ N .
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Definition 4.5. [5] Let B be a hypernormed vector space, || · || be a hypernorm on V
and (xn) be a sequence in V . Then (xn) is said to be Cauchy if the following assertion
holds:

For every ϵ > 0, there exists a natural number N such that inf ||xm − xn|| < ϵ for all
m,n ≥ N .

Example 4.6. Let V be a hypernormed vector space, || · || be a hypernorm on V and
x ∈ V . The constant sequence (x) is convergent. This is because d(x, x) = inf ||x− x|| =
0 < ϵ.

Proposition 4.7. [5] Let V be a hypernormed vector space, || · || be a hypernorm on V .
Then every convergent sequence in V is Cauchy.

Proposition 4.8. Let V be a hypernormed vector space, || · || be a hypernorm on V . Then
every convergent sequence in V has a unique limit.

Proof. Let x and y be two limits for (xn) and let ϵ > 0. Then there exists a natural
number N such that inf ||xn − x|| < ϵ/2 and inf ||xn − y|| < ϵ/2 for all n ≥ N . Since
inf ||x− y|| ≤ inf ||xn − x||+ inf ||xn − y|| < ϵ, it follows that there exists z ∈ x− y such
that ||z|| = 0. We get that −→

0 = z ∈ x− y. Thus, x = y.

Definition 4.9. [5] Let V be a hypernormed vector space, || · || be a hypernorm on V .
A sequence (xn) in V is said to be bounded if there exists M > 0 such that ||xn|| ≤ M
for all n ∈ N.

Proposition 4.10. [5] Let V be a hypernormed vector space, || · || be a hypernorm on V .
Then every convergent sequence in V is bounded.

Proposition 4.11. [5] Let V be a hypernormed vector space, || · || be a hypernorm on V .
Then every Cauchy sequence in V is bounded.

We present an example of a bounded sequence in a hypernormed space that is not
convergent.

Example 4.12. Let E = {a, b} and S = {0, 1, 2} be the hyperfield defined in Example
2.1. Let f, g : E −→ K be defined by: f(a) = 0, f(b) = 1, g(a) = 1, g(b) = 0. Define
the hypernorm || · || defined in Example 3.4 on KE = {0, f, g, 2f, 2g, f + g, f + 2g, 2f +
g, 2f +2g}. Let {f, g, f, g, . . .} be a sequence in KE . It is clear {f, g, f, g, . . .} is bounded
as ||f || = ||g|| = 1. To prove that it is not convergent, it suffices to show that it is not
Cauchy. The latter is clear as inf ||f − g|| = 1.

Proposition 4.13. Let V,W be hypervector spaces over K and L(V,W ) be the set of all
linear transformations from V to W . Then L(V,W ) is a hypervector space over K.

Proof. One can easily see that the properties of hypervector space presented in Definition
2.7 are satisfied for L(V,W ).

Definition 4.14. Let (V, || · ||1), (W, || · ||2) be hypernormed vector spaces over K and
T ∈ L(V,W ). Then T is a bounded linear transformation if there exists M > 0 such that
||T (x)||2 ≤ M ||x||1 for all x ∈ V .

Proposition 4.15. Let (V, || · ||1), (W, || · ||2) be hypernormed vector spaces over K and
BL(V,W ) be the set of all bounded linear transformations from V to W . Then BL(V,W )
is a subhyperspace of L(V,W ).
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Proof. Let S, T ∈ BL(V,W ), x ∈ V and a, b ∈ K. Then there exist M > 0 such
that ||T (x)||2, ||S(x)||2 ≤ M . We need to show that aS + bT ∈ BL(V,W ). ||(aT +
bS)(x)||2 = ||aT (x) + bS(x)||2. Since (W, || · ||2) is a hypernormed vector space, it follows
that ||(aT + bS)(x)||2 ≤ /a/||T (x)||2 + /b/||S(x)||2 ≤ (/a/ + /b/)M . Thus, aS + bT is
bounded.

Definition 4.16. Let (V, || · ||1), (W, || · ||2) be hypernormed vector spaces over K and
T ∈ BL(V,W ). The norm of T is defined as follows:

||T || = sup{ ||T (x)||2
||x||1

: x ∈ V \ {−→0 }}.

Proposition 4.17. Let (V, || · ||1), (W, || · ||2) be hypernormed vector spaces over K and
T : V −→ W be a bounded linear transformation. Then ||T || = sup{||T (x)||2 : ||x||1 =
1 and x ∈ V }. Moreover, ||T || = min{M > 0 : ||T (x)||2 ≤ M ||x||1 for all x ∈ V }.

Proof. The proof is straightforward.

Proposition 4.18. Let T, S be a bounded linear transformations such that S◦T is defined.
Then ||S ◦ T || ≤ ||S||||T ||.

Proof. Let T : (U, ||·||1) −→ (V, ||·||2), T : (V ||·||2) −→ (W, ||·||3) and x ∈ U . We have that
||S ◦ T (x)||3 = ||S(T (x))||3 ≤ ||S||||T (x)||2 ≤ ||S||||T ||||x||1. Thus, ||S ◦ T || ≤ ||S||||T ||.

Definition 4.19. Let (V, || · ||1), (W, || · ||2) be hypernormed vector spaces over K, x0 ∈ V
and T : V −→ W . Then T is said to be continuous at x0 if for all ϵ > 0 there exist δ > 0
such that the following holds:

||x− x0|| < δ =⇒ ||T (x)− T (x0)|| < ϵ.

Theorem 4.20. Let T be a linear transformation. Then T is bounded if and only if T is
continuous at −→0 .

Proof. If T is the zero transformation, we are done. We suppose that T is not the zero
transformation so that ||T || ̸= 0. Let T be a bounded linear transformation, v ∈ V and
ϵ > 0. Take δ = ϵ

||T || > 0. If ||v||1 < δ then ||T (v)||2 < ϵ.
Let T be continuous at −→

0 . Then for every ϵ > 0 there exists δ > 0 such that ||v||1 < δ
implies ||T (v)||2 < ϵ. Let u = δv

2||v||1 . Then ||u||1 = δ
2 < δ and

||T (v)||2 = ||T ( δv

2||v||
)||2

2||v||1
δ

<
2ϵ

δ
||v||1.

We obtain that ||T || < 2ϵ
δ and hence, T is bounded.

Theorem 4.21. Let T be a linear transformation. Then T is continuous if and only if
T is continuous at −→0 .

Proof. If T is continuous then T is continuous at −→
0 .

Let T be continuous at −→
0 , δ > 0 and y ∈ V such that inf ||x− y||1 < δ. We have that

||T (x)−T (y)||2 = ||T (x− y)||2 = {||T (z)||2 : z ∈ x− y}. Since inf ||x− y||1 < δ, it follows
that there exist z ∈ x− y such that ||z||1 = inf ||x− y||1 < δ. Having T continuous at −→

0
implies that ||T (z)||2 < ϵ. Thus, inf ||T (x)− T (y)||2 ≤ ||T (z)||2 < ϵ.

Theorem 4.22. Let T be a linear transformation. Then the following are equivalent:
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(1) T is continuous;
(2) T is continuous at −→0 ;
(3) T is bounded.

Proof. The proof results from Theorems 4.20 and 4.21.

Proposition 4.23. Let T : V −→ W be a continuous linear transformation and (xn) be
a Cauchy sequence in V . Then (T (xn)) is a Cauchy sequence in W .

Proof. If T is the zero transformation, we are done. We assume that T is not the zero
transformation so that ||T || ̸= 0. Since T is a continuous linear transformation, it follows
that T is bounded. Let (xn) be a Cauchy sequence in V and ϵ > 0 such that inf ||xn −
xm||1 < ϵ

||T || . We get that inf ||T (xn) − T (xm)||2 = inf ||T (xn − xm)||2 ≤ ||T || inf ||xn −
xm||1 < ϵ.

Theorem 4.24. Let T : V −→ W be a linear transformation and (xn) be a sequence in
V . Then T is continuous if and only of the following holds:

xn −→ x =⇒ T (xn) −→ T (x).

Proof. Let T be a continuous linear transformation, x ∈ V , ϵ > 0 and xn −→ x in V .
For every δ > 0, there exists N ∈ N such that inf ||xn − x||1 < δ for all n ≥ N . Since
T is continuous at x, it follows that inf ||T (xn) − T (x)||2 < ϵ for all n ≥ N . Thus,
T (xn) −→ T (x).
Let y ∈ V and xn −→ x =⇒ T (xn) −→ T (x). Suppose, to get contradiction, that T is
not continuous at y. Then there exists ϵ > 0 such that for every δ > 0, the following
holds

inf ||x− y||1 < δ =⇒ inf ||T (x)− T (y)|| > ϵ.

By setting δ = 1
n , we get that

inf ||xn − y||1 <
1

n
=⇒ inf ||T (xn)− T (y)|| > ϵ.

The latter contradicts our hypothesis.

Definition 4.25. Let T : V −→ W be a linear transformation and M be a subhyperspace
of V . M is said to be closed subhyperspace if (xn) ⊆ M and xn −→ x then x ∈ M .

Proposition 4.26. Let T : V −→ W be a continuous linear transformation. Then
Ker(T ) is a closed subhyperspace of V .

Proof. Proposition 4.3 asserts that Ker(T ) is a subhyperspace of V . Let (xn) ⊆ Ker(T )

such that xn −→ x. Since T is continuous, it follows by Theorem 4.24 that −→0 = T (xn) −→
T (x). And having −→

0 −→ −→
0 , we get by using the uniqueness of limits (Proposition 4.8)

that T (x) =
−→
0 . Thus, x ∈ Ker(T ).
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