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1. Introduction
In the real-world, optimization problems are often uncertain. The reason of uncer-

tainty include, they are not know exactly when problem is solved. Actually, there have
been two prominent approaches to dealing with uncertain optimization problems, that is,
robust optimization and stochastic programming. In this paper, robust optimization is
becoming more and more popular in solving scalar optimization problems with uncertain
data. Robust optimization (worst case) has emerged as a remarkable deterministic frame-
work for studying optimization problems with data uncertainty, in which the uncertain
parameters belong to a known set.

Robust optimization is one of the most important approach for studying optimization
problems with data uncertainty, see [1–11] and other references therein. Recently, the
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authers considered robust problem under without uncertain. We refer the researchers to
[11–16] and the references therein for the robust approaches for uncertain multiobjective
functions is considered in [8]. In addition, robust counterpart of an interest problem
play an important role in uncertain optimization problem. Robust optimization can be
reviewed as a kind of sentitive against pertubations in the decision space. In particular,
robust optimization concentrates in the case no probability distribution information on
the uncrtain paramiters is given. It is know that the operation of the solutions is judged
by multiple objective that are conflict. Thus, it is interesting to deeply study the theory
and applications of robust multiobjective optimization.

For investigate, the main concentrate is depended on finding the global optimum or
global efficient solution, representing the best possible objective values. In the classes of
certain problem have associated with an exact solution, but an exact solution does not
exist for all problems. It is well known that the approximate solution (ϵ-solutions) provides
type of solutions important optimization problem under uncertain and without uncertain,
such as ϵ-(weakly)-optimality condition and ϵ-(weakly)-duality conditions. We introduce
various heuristics to obtain good approximate solutions for difficult problems, this is,
multiobjective problem and see [2, 12, 13, 15, 17–19]. Among many desirable properties
of an approximate solution to multiobjective optimization problems, there are various
different approaches. Recently, in the field, the approximate solution of a multiobjective
problem studied by many authors. Several notations of approximality have been studied
(see, [2, 14, 18, 20–22]).

Consider the following constrained multiobjective optimization problem of the form
(P):

min
Rm

+

{f(x) | gi(x) ≤ 0, i = 1, . . . , p, x ∈ Ω}, (P)

where f : Rn → R, i.e, f := (fk) = {1, . . . ,m} , g : Rn → R, g := (gi), i ∈ I = {1, . . . , p}
are vector functions with locally Lipchitz components defined on Rn and Ω is a closed
subset of Rn.

The multiobjective optimization problem (P) in the face of data uncertainty in the
constrains can be taken by the problem:

min
Rm

+

{f(x) | gi(x,wi) ≤ 0, i = 1, . . . , p, x ∈ Ω}, (UP)

where wi are uncertain parameters and wi ∈ Ωi, i = 1, . . . , p for some convex compact
sets Ωi ⊆ Rn, and f := fk, k ∈ K = {1, . . . ,m}, gi : Rn × Ωi → R, i ∈ I = {1, . . . , p}
are vector function with locally Lipschitz component defined on Rn and Ω is cloed subset
of Rn.

We will concentraet problem (UP), one usually associates with it is called robust coun-
terpart:

min
Rm

+

{f(x) | x ∈ A}, (RP)

the set A is given by
A := {x ∈ Rn : gi(x,wi) ≤ 0, ∀wi ∈ Ωi, i = 1, . . . , p} ∩ Ω, (1.1)

where
C := {x ∈ Rn : gi(x,wi) ≤ 0, ∀wi ∈ Ωi, i = 1, . . . , p}.
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Nowadays, the multiobjective optimization problems of approximate solutions for con-
vex case is widly investigated in the literature: see [2, 12, 13, 15, 17–19] and references
therein. Here we are interested in the nonconvex case. Recently, Chuong and Kim [17]
studied approximate Pareto solution for multiobjective optimization problems. Very,
recently, Chuong [8] investigated robust optimality theorems and duality theorem for
multiobjective problems in terms of generalized convexity and constarint in the face un-
certainty.

The aim of this paper is to interest in the study of a concept of approximate solutions
and in the study of the multiobjective optimization problems of solutions when both the
multiobjective functions and the uncertaint set are purturbed. Based on previous anal-
ysis, in particular, motivated by the work reported in [8, 17], in this article, we study
approximate optimality condition and approximate duality theorem for robust multiob-
jective optimization problems. Thus we show that the neccessary optimality condition
and sufficient optimality conditions of robust multiobjective optimization for two approx-
imate. The sufficient conditions formulated in terms of the generalized convex function
and the neccessary in Fritz-John type.

The organization of the paper is as follows: In the next section contain some ba-
sic definition and concept of two approximate solutions of problem (UP). In Section 3,
we purpose necessary conditions for local ϵ-(weakly) Pareto solution and local quasi-ϵ-
(weakly) Pareto solution of robust multiobjective problem. Then, we focus on sufficient
conditions for local quasi-ϵ-(weakly) Pareto solution of the considered problem with a
new concept of generalized convexity objective functions. Finally, in Section 4 is devoted
to describing duality ralation in robust for local quasi-ϵ-(weakly) Pareto solution under
(strictly) generalized convexity functions.

2. Preliminaries
In this paper, we use the standard notation, please see [23, 24]. The symbol Rn

+, BRn ,
B(x0, r) stands for the nonnegative orthant of Rn, closed unit ball in Rn and the open ball
with center at x0 and radius r > 0, respectively. Unless otherwise specified, let S ⊆ Rn

be a nonempty set, whose the convex hull of S are denoted by coS, while the notation
x →S x0 means that x → x0 with x ∈ S. The definition of polar cone of Ω ⊆ Rn is the
set

Ω◦ := {x∗ ∈ Rn | ⟨x∗, x⟩ ≤ 0, ∀x ∈ Ω}. (2.1)

Let a point x0 ∈ S be given. The set S is said to be closed around x0 if there is a
neighborhood U of x0 such that S ∩U is closed. Moreover, the set S is said to be locally
closed if it is closed around every x0 ∈ S.

Given a set-valued mapping F : Rn ⇒ Rn, we denote by

Lim supx→x0
F (x) := {x∗ ∈ Rn | ∃ {xn} → x0 and x∗n → x∗

with x∗n ∈ F (xn) for all n ∈ N}.

the sequential Painlevé-Kuratowski upper/outer limit of F as x→ x0.
Let Ω ⊆ Rn be closed around x̄ ∈ Ω. The Fréchet/regular normal cone to Ω at x̄ ∈ Ω

is defined by

N̂(x̄; Ω) :=
{
x∗ ∈ Rn | lim sup

x→Ωx̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ 0
}
, (2.2)



124 Thai J. Math. Vol. 20 (2022) /T. Sirichunwijit and R. Wangkeeree

If x̄ /∈ Ω, let N̂(x̄; Ω) := ∅.
The Mordukhovich/limiting normal cone N(x̄; Ω) to Ω at x̄ ∈ Ω is obtained from

regular normal cones by taking the sequential Painlevé-Kuratowski upper limits as:
N(x̄; Ω) := Lim supx→Ωx̄N̂(x; Ω). (2.3)

If x̄ /∈ Ω, we put N(x̄; Ω) := ∅.
Note, the Mordukhovich normal cone enjoys the so-called robustness property (see [23],

Page 11), that is,
N(x̄; Ω) = lim sup

x→x̄
N(x; Ω). (2.4)

For an extended real-valued function φ : Rn → R̄ := [−∞,∞], let
domφ := {x ∈ Rn | φ(x) <∞},

and
epi φ := {(x, µ) ∈ Rn × R | µ ≥ φ(x)}.

The Mordukhovich/limiting subdifferentialof φ at x̄ ∈ X with x̄ ∈ dom(φ) is defined by
∂φ(x̄) :=

{
x∗ ∈ Rn | (x∗,−1) ∈ N((x̄, φ(x̄)); epi φ)

}
. (2.5)

If x̄ ∈ dom(φ), then one puts ∂φ(x̄) := ∅.
Considering the indicator function δ(·; Ω) defined by δ(x; Ω) := 0 for x ∈ Ω and by

δ(x; Ω) := ∞ otherwise, we have (see [23], Proposition 1.79):
N(x̄; Ω) = ∂δ(x̄; Ω), ∀x̄ ∈ Ω. (2.6)

The nonsmooth version of Fermat’s rule (see [23], Proposition 1.114) is formulated as
follows: If x̄ is a local minimizer for φ, then

0 ∈ ∂φ(x̄). (2.7)
For locally Lipschitz function φ at x̄ with modulus K > 0, i.e, there exists r > 0 such

that
∥φ(x1)− φ(x2)∥ ≤ K∥x1 − x2∥, ∀x1, x2 ∈ B(x̄, r),

we always have (see [23], Corollary 1.81)
∥x∗∥ ≤ K, ∀x∗ ∈ ∂φ(x̄). (2.8)

Note that ([17], Example 4, p. 198)
∂∥ · −xv∥(xv) = BRn .

In what follows, we also use the limiting/Mordukhovich subdiffential sum rule.

Lemma 2.1. (See [23],Theorem 3.36) Let ψi : Rn → R̄ = R ∪ {+∞}, i = 1, . . . , n, n ≥ 2,
be lower semicontinuous around x̄ ∈ Rn, and let all but one of these functions be Lipschitz
continuous around x̄. Then one has

∂(φ1 + φ2 + · · ·+ φn)(x̄) ⊂ ∂φ1(x̄) + ∂φ2(x̄) + · · ·+ ∂φn(x̄). (2.9)

Lemma 2.2. ([8], Lemma 2.2). Let φ be Lipschitz continuous on an open set containing
[a, b] ⊂ Rn. Then one has

⟨x∗, b− a⟩ ≥ φ(b)− φ(a) for some x∗ ∈ ∂φ(c), c ∈ [a, b)

where [a, b] := co {a, b}, and [a, b) := co {a, b}\{b}.
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For φ : Rn → R̄ locally Lipschitz at x̄, the generalized directional derivative of φ at x̄
in the direction v ∈ Rn is defined as follows:

φ◦(x̄; v) := lim sup
x→x̄, λ↓0

φ(x+ λv)− φ(x)

λ
. (2.10)

In this case, the convexified/Clarke subdifferential of φ at x̄ is the set

∂Cφ(x̄) := {x ∈ Rn | ⟨x∗, v⟩ ≤ φ◦(x̄; v) ∀v ∈ Rn}, (2.11)

which is nonempty, and one has the relation (see [10, Proposition 2.1.2])

φ◦(x̄; v) = max{⟨x∗, v⟩ | x∗ ∈ ∂Cφ(x̄)} (2.12)

for each v ∈ Rn.
Following [25], the relationship between the above subdifferentials of φ at x̄ ∈ Rn is as

follows:

∂φ(x̄) ⊂ ∂Cφ(x̄). (2.13)

If φ is strictly differentiable at x̄ ∈ Rn with derivative ▽φ(x̄), then one has

∂φ(x̄) = ∂Cφ(x̄) = {▽φ(x̄)}, (2.14)

and further, in this case, it holds (see [10, Proposition 2.3.6]) that

⟨▽φ(x̄), v⟩ = φ◦(x̄; v) = lim
λ↓0

φ(x̄+ λv)− φ(x̄)

λ
(2.15)

for any v ∈ Rn.
We recall the Ekeland variational principle (see [21]), which is needed for our investi-

gation.

Lemma 2.3. (Ekeland Variational Principle) Let (Rn,d) be a complete metric space and
φ : Rn → R̄ = R∪{+∞} be a proper lowersemicontinuous function bounded from below.
Let ϵ > 0 and x0 ∈ Rn be given such that φ(x0) ≤ infx∈X φ(x) + ϵ. Then for any λ > 0
there is x̄ ∈ Rn satisfying

(i) φ(x̄) ≤ φ(x0),
(ii) d(x̄, x0) ≤ λ,
(iii) φ(x̄) < φ(x) + ϵ

λd(x, x̄) for all x ∈ Rn\{x̄}.

Finally in this section, we are extended concepts of two approximate Pareto solutions of
considering problem (RP) (see [19, 20]). We relevent to consider author to some interest
results in [12] for various characterizations of approximate strong/weak/proper Pareto
solutions via scalarization methods.

Definition 2.4. Let ϵ := (ϵ1, . . . , ϵm) ∈ Rm
+ .

(i) A point x̄ ∈ C is said to be a local robust ϵ-Pareto solution for (UP), if it is
a local ϵ-Pareto solution for (RP), we can write x̄ ∈ loc ϵ-S(RP ), i.e, x̄ ∈ A and
there exists neighborhood U of x̄, there is no x ∈ A ∩ U such that

fk(x) + ϵk ≤ fk(x̄), ∀k ∈ K. (2.16)

(ii) A point x̄ ∈ C is said to be a local robust quasi-ϵ-Pareto solution for (UP) if
it is a local quasi-ϵ-Pareto solution for (RP), we can write x̄ ∈ loc quasi-ϵ-S(RP ),
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i.e, x̄ ∈ A and there exists neighborhood U of x̄ and there is no x ∈ A ∩ U such
that

fk(x) + ϵk∥x− x̄∥ ≤ fk(x̄), ∀k ∈ K. (2.17)

with at least one strict inequality.

It is worthy of the concept in equation (2.16) and (2.17) are strict, then one has the
concept of definition local robust ϵ weakly Pareto solution and local robust quasi-ϵ-weakly
Pareto solutions, respectively. We can write loc ϵ-Sw(RP ) and loc quasi-ϵ-Sw(RP ), re-
spectively.

In the above definition, It is simple to see that every local ϵ-solution must be also a
local robust solution. In contrast, the converse implication need not to be true.

3. Necessary Approximate Optimality Conditions
In this section, we discuss approaches for local robust approximate solutions and local

robust apprximate quasi solution in robust multiobjective optimization problems. First,
we will recall some concepts of function gi and Fritz-John type necessary conditions for
solving (UP).

The main concept is used to design Fritz-John neccessary conditions and suffcient
conditions for local ϵ-(weakly) Pareto solutions of the considered problem (RP).

For each i ∈ {1, 2, . . . , p}, the function gi given in (1.1 ) is assumed to satisfy the
following hypothese:

(H1) For a fixed x̄ ∈ Rn, there exists δxi > 0 such that the function wi ∈ Ωi 7→
gi(x,wi) ∈ R is upper semicontinuous for each x ∈ B(x̄, δx̄i ), and the functions
gi(·, wi) wi ∈ Ωi, are Lipschitz of given rank Ki > 0 on B(x̄, δx̄i ), i.e,

∥gi(x1, wi)− gi(x2, wi)∥ ≤ Ki∥x1 − x2∥ ∀x1, x2 ∈ B(x̄, δx̄i ), ∀wi ∈ Ωi. (3.1)

(H2) The multifunction (x,wi) ∈ B(x̄, δx̄i ) × Ωi ⇒ ∂xgi(x,wi) ⊆ Rn is closed at
(x̄, w̄i) for each w̄i ∈ Ωi(x̄), where the symbol ∂x stands for the limiting sub-
differential operation with respect to x, and the notation Ωi(x̄) signifies active
indices in Ωi at x̄, i.e,

Ωi(x̄) := {wi ∈ Ωi | gi(x̄, wi) = Gi(x̄)} (3.2)

with Gi(x̄) := supwi∈Ωi
gi(x̄, wi).

Remark 3.1. Subgradients of supremum/max functions over compact set has studied by
many reseahers.; [15, 24–26]. They use the hypothesis (1) guarantees that the function
Gi, i ∈ {1, . . . , p}, is defined and moreover, it implies by (3.1) that Gi is locally Lipschitz
of rank Ki (see [18], Page 86).

The assumption (2) related to the closedness of the partial subdifferential operation
with respect to the first variable is a comfoetabled property of subdifferentials for convex
functions in the finite dimentional setting. It can be checked that under the hypothesis
(1), this property holds for a more general class in [22] or [24].

The statements about problem (RP), for fixed x̄ ∈ Rn and ϵ ∈ Rm
+\{0} we defined (see

[13]) a real-valued function ψ on Rn as follows:

ψ(x) := max
k=1,...,m, i=1,...,p

{fk(x)− fk(x̄) + ϵk, Gi(x)} (3.3)
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Now we derive some Fritz-John necessary condition in a fuzzy form for local robust
approximate (weakly) Pareto solutions of problem (UP).

Theorem 3.2. Suppose that x̄ ∈ loc ϵ-Sw(RP ). For any v > 0, there exist xv ∈ Ω and
λk ≥ 0, k ∈ K = {1, . . . ,m}, µi ≥ 0, i ∈ I = {1, . . . , p} with

∑
k∈K λk +

∑
i∈I µi =

1, ∥xv − x̄∥ ≤ v and

0 ∈
∑
k∈K

λk∂fk(xv) +
∑
i∈I

µico
[ ∪
wi∈Ωi(xv)

∂xgi(xv, wi)
]

+
maxk∈K{ϵk}

v
BRn +N(xv; Ω),

λk[fk(xv)− fk(x̄) + ϵk − ψ(xv)] = 0, k ∈ K,

µi[ sup
wi∈Ωi

gi(xv, wi)− ψ(xv)] = 0, i ∈ I, (3.4)

where the function ψ was defined in (3.3).

Proof. Let x̄ ∈ loc ϵ-Sw(RP ). Then for all i ∈ {1, . . . , p}, we consider δx̄i , Ki, Ωi(x̄), and
Gi(x̄), which satisfies (H1) and (H2). From Theorem 3.2 in [8], It can easily be shown
that

co
[ ∪
wi∈Ωi(xv)

∂xgi(xv, wi)
]

is closed.
In addition, due to this proof of Theorem 3.3 in [8], we obtain that

∂Gi(x̄) ⊂ co
[ ∪
wi∈Ωi(xv)

∂xgi(xv, wi)
]
, i ∈ I. (3.5)

is completed.
Since x̄ ∈ local ϵ-Sw(RP). Then x̄ ∈ A, and there exists a neighborhood U of x̄ and

there is no x ∈ A ∩ U such that
fk(x) + ϵk < fk(x̄), ∀k ∈ K, (3.6)

due to the face that the function ψ on Rn is defined by
ψ(x) := max

1≤k≤m, 1≤i≤p
{fk(x)− fk(x̄) + ϵk, Gi(x)}, x ∈ Rn.

We will show that
0 ≤ ψ(x), ∀x ∈ U ∩ Ω. (3.7)

In this case x ∈ U∩Ω∩C, where A := C∩Ω then ψ(x) ≥ 0. Assume to contrary ψ(x) < 0
leads to

fk(x)− fk(x̄) + ϵ < 0, ∀k ∈ K.

This contradicts to ( 3.6). Thus ψ(x) ≥ 0, ∀x ∈ U ∩ Ω.
On the other hand, if x ∈ U ∩Ω\C, then there is i0 ∈ {1, . . . , p} such that Gi0(x) > 0,

thus ψ(x) > 0. From the inequality (3.7), we obtain that ψ is bounded from below on
U ∩ Ω.
Moreover, since x̄ ∈ A, we have ψ(x̄) = maxk∈K{ϵk}. Therefore, we get by (3.7) that

ψ(x̄) ≤ inf
x∈Ω

ψ(x) + max
k∈K

{ϵk}.
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By applying Lemma 2.2, then for any v > 0, there exists xv ∈ U∩Ω such that ∥xv−x̄∥ ≤ v
and

ψ(xv) ≤ ψ(x) +
maxk∈K{ϵk}

v
∥x− xv∥, ∀x ∈ U ∩ Ω.

This implies that xv is a minimizer to the scalar optimization problem
min
x∈Ω

φ(x),

where

φ(x) := ψ(x) +
maxk∈K{ϵk}

v
∥x− xv∥, x ∈ U ∩ Ω. (3.8)

This means that xv is a minimizer to an unconstrained (scalar) optimization problem
min
x∈X

φ(x) + δ(x; Ω). (3.9)

Combine the property of Fermat’s rule (2.7) with the above problem (3.9), we obtain that

0 ∈ ∂(φ+ δ(· ; Ω))(xv). (3.10)
Since φ is Lipschitz continuous at xv and lower semicontinuous of δ(xv; Ω), by the sum
rule (2.9) adapted to (3.10) and from the relation in (2.6) that

0 ∈ ∂φ(xv) +N(xv; Ω). (3.11)
Note that (see [17] in Theorem 3.4)

∂∥ · −xv∥(xv) = BRn .

Since Lemma 2.1 to the function φ is defined in (3.8) and (3.11), we get

0 ∈ ∂ψ(xv) +
maxk∈K{ϵk}

v
BRn +N(xv; Ω). (3.12)

Using the Mordukhovich/limiting subdiffrential of maximum functions (see [23], Theorem
3.46(ii)). Moreover according to (2.9) and applied to ψ in (3.2), we get

∂ψ(xv) ⊆
{ m∑

k=1

λk∂fk(xv) +

l∑
i=1

µi∂xGi(xv) | λk ∈ K, µi ≥ 0,

m∑
k=1

λk +

p∑
i=1

µi = 1, λk[fk(xv)− fk(x̄) + ϵk − ψ(xv)] = 0, k ∈ K,

µi[ sup
wi∈Ωi

Gi(xv)− ψ(xv)] = 0, i ∈ I
}
. (3.13)

It remains to combine (3.12) and (3.13) with condition (3.7), thus (3.4) holds.

In the theorem above, we now derive a Fritz-John necessary condition for local robust
weakly Pareto solutions of the consider problem (UP). * Let x̄ ∈ locSw(RP ). Then
there are λk ≥ 0, k ∈ K = {1, . . . ,m}, and µi ≥ 0, i ∈ I = {1, . . . , p} with

∑
k∈K λk +∑

i∈I µi = 1 such that

0 ∈
∑
k∈K

λk∂fk(x̄) +
∑
i∈I

µico
[
∂xgi(x̄, ωi)

]
+N(x̄ ; Ω),

µi sup
wi∈Ωi

gi(x̄, wi) = 0, i ∈ I,
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where the function ψ was defined in (3.3).

Proof. Let ϵ := (ϵ1, ..., ϵm) ∈ Rm
+\{0}. Then, we have x̄ ∈ ϵ-Sw(RP ). For v =

√
maxk∈K{ϵk}.

This is the aim of the following corollary. However in order to use Theorem 3.2, we find
xϵ ∈ Ω and λϵk ≥ 0, k ∈ K, µϵ

i ≥ 0, i ∈ I with
∑

k∈K λϵk +
∑

i∈I µ
ϵ
i = 1, such that

∥xϵ − x̄∥ ≤
√

maxk∈K{ϵk} and

0 ∈
∑
k∈K

λϵk∂fk(xϵ, uk) +
∑
i∈I

µϵ
ico

[ ∪
wi∈Ωi(xv)

∂xgi(xv, wi)
]

+
√
max
k∈K

{ϵk}BRn +N(xϵ; Ω), (3.14)

µϵ
i [max

i∈I
gi(xϵ, wi)− ψϵ(xϵ)] = 0, i ∈ I, (3.15)

where ψϵ is defined by

ψϵ = max
k∈K,i∈I

{fk(x)− fk(x̄) + ϵk, Gi(x)}, x ∈ Rn.

Since (3.14), we obtain that there exist z∗ϵk ∈ ∂fk(xϵ), k ∈ K, {wϵ} ⊆ Ωi(xϵ) such that
x∗ϵi ∈ ∂gi(xϵ, wϵ), i ∈ I, and x∗ϵ ∈ BRn such that

−(
∑
k∈K

λϵkz
∗ϵ
k +

∑
i∈I

µϵ
ix

∗ϵ
i +

√
max
k∈K

{ϵk}x∗ϵ) ∈ N(xϵ; Ω) (3.16)

By taking ϵ → 0, the definition of locally Lipschitz functions fk, k ∈ K, gi, i ∈ I, and
their gradients are bounded in this inequality (2.8). So, we have λϵk → λk ≥ 0, z∗ϵk →
z∗k ∈ Rn, k ∈ K,µϵ

i → µi ≥ 0, x∗ϵi → x∗i ∈ Rn, i ∈ I, with
∑

k∈K λk +
∑

i∈I µi = 1, as well
as x∗ϵ → x∗ ∈ BRn . By (2.5), the relation z∗ϵk ∈ ∂fk(xϵ) is equivalent to

(z∗k,−1) ∈ N((xϵ, fk(xϵ)); epi fk), (3.17)

Let ϵ→ 0, for all k ∈ K in (3.17) and (2.3), we obtain that

(z∗k,−1) ∈ N((x̄, fk(x̄)); epi fk),

It means that z∗k ∈ ∂fk(x̄), k ∈ K. In the same way, we have x∗i ∈ ∂gi(x̄, wi), i ∈ I.
Taking ϵ→ 0 in (3.16) and the robustness property in (2.4), we observe

−(
∑
k∈K

λkz
∗
k +

∑
i∈I

µix
∗
i ) ∈ N(x̄ ; Ω). (3.18)

Thus (3.19) holds.
The equation (3.15) has become the form (3.20) by passing to a subsequence, taking

ϵ→ 0 in ψϵ(xϵ), that is ψϵ(xϵ) → 0. This proof is completely.

When nonempty compact Ωi are singleton sets, we propose necessary condition for
approximate (weakly) Pareto solution in [17].

Corollary 3.3. Suppose that x̄ ∈ loc ϵ-Sw(RP ). For any v > 0, there exist xv ∈ Ω and
λk ≥ 0, k ∈ K = {1, . . . ,m}, µi ≥ 0, i ∈ I = {1, . . . , p} with

∑
k∈K λk +

∑
i∈I µi =
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1, ∥xv − x̄∥ ≤ v and

0 ∈
∑
k∈K

λk∂fk(xv) +
∑
i∈l

µi∂gi(xv) +
maxk∈K{ϵk}

v
BRn +N(xv; Ω),

λk[fk(xv)− fk(x̄) + ϵk − ψ(xv)] = 0, k ∈ K,

µi[ sup
wi∈Ωi

gi(xv)− ψ(xv)] = 0, i ∈ I,

where the function ψ was defined in (3.3).
In the special case when taking arbitrarily ϵ := (ϵ1, · · · , ϵm) ∈ Rm

+\{0}, and nonempty
compact Ωi, ∀i ∈ I is a singleton sets, we derive necessary condition for weakly Pareto
solution in [17].
Corollary 3.4. Let x̄ ∈ locSw(RP ). Then there exist λk ≥ 0, k ∈ K, and µi ≥ 0, i ∈ I
with

∑
k∈K λk +

∑
i∈I µi = 1 such that

0 ∈
∑
k∈K

λk∂fk(x̄) +
∑
i∈l

µi∂gi(x̄) +N(x̄ ; Ω), (3.19)

µigi(x̄) = 0, i ∈ I. (3.20)
We now establish some Fritz-John necessary condition for local robust quasi approxi-

mate (weakly) Pareto solution of this considered problem.
Theorem 3.5. Let x̄ ∈ local quasi-ϵ-Sw(RP). Then there exist λk ≥ 0, k ∈ K, and
µi ≥ 0, i ∈ I with

∑
k∈K λk +

∑
i∈I µi = 1 such that

0 ∈
∑
k∈K

λk∂fk(x̄) +
∑
i∈I

µico
[ ∪
wi∈Ωi(x̄)

∂xgi(x̄, wi)
]

+
∑
k∈K

λkϵkBRn +N(x̄ ; Ω),

µi max
i∈I

gi(x̄, wi) = 0, i ∈ I. (3.21)

Proof. Let x̄ ∈ local quasi-ϵ-Sw(RP). Then x̄ ∈ A, there exist neighborhood x ∈ U and
there is no x ∈ A ∩ U such that

fk(x) + ϵk∥x− x̄∥ ≤ fk(x̄), ∀k ∈ K.

Let the function Φ is defined by
Φ(x) := max

k∈K,i∈I
{fk(x)− fk(x̄) + ϵk∥x− x̄∥, Gi(x)}, x ∈ U ∩ Ω

Similarly to the second part of the proof of Theorem 3.2, we have
0 ∈ ∂Φ(x̄) +N(x̄; Ω), (3.22)

and
∂Φ(x̄) ⊂ {

∑
k∈K

[∂fk(x̄) + ϵkBRn ] +
∑
i∈I

µico
[ ∪
wi∈Ωi(x̄)

∂xgi(x̄, wi)
]

λk ≥ 0, k ∈ K, µi ≥ 0, i ∈ I,
∑
k∈K

λk +
∑
i∈I

µi = 1,

µi sup
i∈I

gi(x̄, vi) = 0, i ∈ I}. (3.23)

The proof is completed by combine (3.22) and (3.23).
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The next corollary can be omitted by a very similar proof in Corollary 3.4
Corollary 3.6. Let x̄ is a local quasi-ϵ-Sw(RP ). Then there exist λk ≥ 0, k ∈ K,µi ≥
0, i ∈ I with

∑
k∈K λϵk +

∑
i∈I µ

ϵ
i = 1 such that

0 ∈
∑
k∈K

λk∂fk(x̄) +
∑
i∈I

µico
[ ∪
wi∈Ωi(x̄)

∂xgi(x̄, wi)
]
+N(x̄; Ω),

µi sup
i∈I

gi(x̄, wi) = 0, i ∈ I. (3.24)

Obviously, the conditions to (3.21) hints us to stae the generalized robust approximate
Karush-Kuhn-Tucker (KKT) type condition for studied problem.

4. Sufficient Approximate Optimality Theorem
Now, we purpose sufficient conditions for local robust approximate quasi (weakly)

Pareto solutions of the considered problem (UP). Firstly, we introduce the generalized
robust approximate KKT condition for (RP) and properties of (strictly) generalized con-
vexity type before.
Definition 4.1. Let ϵ ≥ 0. A point (x̄, λk, µi, wi) ∈ C × Rn × Rn × Ω is said to satisfy
the generalized robust approximate (KKT) condition for (UP), if

0 ∈
∑
k∈K

λk∂fk(x̄) +
∑
i∈I

µico
[ ∪
wi∈Ωi(x̄)

∂xgi(x̄, wi)
]

+
∑
k∈K

λkϵkBRn +N(x̄; Ω),

µi max
i∈I

gi(x̄, wi) = 0, i ∈ I. (4.1)

Remark 4.2. From Theorem 3.5, if x̄ is a quasi-ϵ-(weakly)-Pareto solution of problem
(RP), then generalized robust approximate (KKT) condition defined by the following
constrained qualification (CQ) : we called condition (CQ) is satisfied at x̄ ∈ C if there do
not exist µi ≥ 0, i ∈ I(x̄) not all zero, such that

0 ∈
∑

i∈I(x̄)

µico
[ ∪
wi∈Ωi(x̄)

∂xgi(x̄, wi)
]
+N(x̄; Ω), (CQ)

where I(x̄) := {i ∈ I | gi(x̄, wi) = 0}.
In this case of Ω := Rn and gi, i ∈ I being a continuously differentiable function at

the referenced point, we call this above inequality as (CQ) has become Mangasarian-
Fromovitz constraint qualification (cf. [8]).

In order to formulate sufficient condition for local robust approximate quasi (weakly)
Pareto solution of ( UP) in the next theorem, we first introduce a concept of (strictly)
generalized convexity type at given point for locally Lipchitz functions.
Definition 4.3. (i) We say that (f ; g) is generalized convex on Ω at x̄ ∈ Ω if for

any x ∈ Ω, z∗k ∈ ∂fk(x̄), k ∈ K and x∗w ∈ ∂gi(x̄, w), w ∈ Ωi(x̄), i ∈ I, there
exists v ∈ N(x̄; Ω)◦ such that

fk(x)− fk(x̄) ≥ ⟨z∗k, v⟩, ∀k ∈ K,

gi(x,w)− gi(x̄, w) ≥ ⟨x∗w, v⟩, w ∈ Ωi(x̄), i ∈ I, and
⟨u∗, v⟩ ≤ ∥x− x̄∥, ∀u∗ ∈ BRn .
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(ii) We say that (f ; g) is strictly generalized convex on Ω at x̄ ∈ Ω if for any
x ∈ Ω\{x̄}, z∗k ∈ ∂fk(x̄, uk), k ∈ K and x∗w ∈ ∂gi(x̄, w), w ∈ Ωi(x̄), i ∈ I, there
exists v ∈ N(x̄; Ω)◦ such that

fk(x)− fk(x̄) > ⟨z∗k, v⟩, ∀k ∈ K,

gi(x,w)− gi(x̄, w) ≥ ⟨x∗w, v⟩, i ∈ I, and
⟨u∗, v⟩ ≤ ∥x− x̄∥, ∀u∗ ∈ BRn .

Theorem 4.4. (Robust KKT Sufficient Optimality Condition). Assume that fk and
gi(·, wi) for all k ∈ K and i ∈ I are locally Lipschitz and satisfy the approximate (KKT)
condition.

(i) If (f ; g) is a generalized convex on Ω at x̄, then x̄ ∈ loc quasi ϵ-Sw(RP).
(ii) If (f ; g) is a strictly generalized convex on Ω at x̄, then x̄ ∈ loc quasi ϵ-S(RP).

Proof. Let x̄ ∈ C satisfies approximate (KKT) condition. Then there are λk ≥ 0, z∗k ∈
∂fk(x̄), k ∈ K with

∑
k∈K λk ̸= 0, and µi ≥ 0, i ∈ I, µij ≥ 0, x∗ij ∈ ∂xgi(x̄, wij), wij ∈

Ωi(x̄) j = 1, . . . , ji, ji ∈ N,
∑ji

j=1 µij = 1 such that

−
( ∑

k∈K

λkz
∗
k +

∑
i∈I

µi(

ji∑
j=1

µijx
∗
ij) +

∑
k∈K

λkϵku
∗
)
∈ N(x̄; Ω), (4.2)

µi sup
wi∈Ωi(x̄)

gi(x̄, wi) = 0, i ∈ I. (4.3)

(i) Assume that x̄ is not a local quasi-ϵ-weakly Pareto solution of (RP). Then for
any neighborhood U of x̄ ∈ A, there is x̂ ∈ A ∩ U such that
fk(x̂)− fk(x̄) + ϵk∥x̂− x̄∥ < 0, ∀k ∈ K,

where
∑

k∈K λk ̸= 0. On the other hand, using the definition of polar cone and
the generalized convexity of (f ; g) on Ω at x̄, we deduce from (4.2) that for such
x̂, there exists w ∈ N(x̄; Ω)◦ such that

0 ≤
∑
k∈K

λk⟨z∗k, v⟩+
∑
i∈I

µi(

ji∑
j=1

µij⟨x∗ij , v⟩) +
∑
k∈K

λkϵk⟨u∗, w⟩

≤
∑
k∈K

λk[fk(x̂)− fk(x̄)] +
∑
i∈I

µi

( ji∑
j=1

µij [gi(x̂, wij)− gi(x̄, wij)]
)

+
∑
k∈K

λkϵk∥x̂− x̄∥. (4.4)

Hence∑
k∈K

λkfk(x̄) +
∑
i∈I

µi

( ji∑
j=1

µijgi(x̄, wij)
)

≤
∑
k∈K

fk(x̂) +
∑
i∈I

µi

( ji∑
j=1

µijgi(x̂, wij)
)
+

∑
k∈K

λkϵk∥x̂− x̄∥. (4.5)

By wij ∈ Ωi(x̄), we have
gi(x̄, wij) = sup

wi∈Ωi(x̄)

gi(x̄, wi), ∀i ∈ I, ∀j = 1, . . . , ji.
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Note that µigi(x̄, wij) = 0, ∀i ∈ I, ∀j = 1, . . . , ji. Since x̂ ∈ A, we have
µigi(x̂, wij) ≤ 0, i ∈ I and j = 1, . . . , ji. By accent inequality (4.5), we actu-
ally∑
k∈K

λkfk(x̄) =
∑
k∈K

λkfk(x̄) +
∑
i∈I

( ji∑
j=1

µijµigi(x̄, wij)
)

≤
∑
k∈K

λkfk(x̄) +
∑
i∈I

( ji∑
j=1

µijµigi(x̂, wij)
)

+
∑
k∈K

λkϵk∥x̂− x̄∥

≤
∑
k∈K

λkfk(x̄) +
∑
k∈K

λkϵk∥x̂− x̄∥, (4.6)

which is contradict to (4.5), thus the proof (i) is complete.
(ii) Suppose that x̄ is not a local quasi-ϵ-Pareto solution of (RP). Then for every
neighborhood U of x̄, there is x̃ ∈ A ∩ U such that
fk(x̃)− fk(x̄) + ϵk∥x̃− x̄∥ ≤ 0, ∀k ∈ K, (4.7)
where at least one inequality is strict. Suppose that x̃ ̸= x̄ and the inequality∑
k∈K

λkfk(x̄, uk) +
∑
k∈K

λkϵk∥x̃− x̄∥ ≤
∑
k∈K

λkfk(x̄, uk). (4.8)

On the other side, due to definition of polar cone (2.1),
∑

k∈K λk ̸= 0 and the
strictly generalized convexity of (f ; g) on Ω at x̄. We deduce from (4.2) that for
each x̃, there is w ∈ N(x̄ ; Ω)◦ such that

0 ≤
∑
k∈K

⟨z∗k, v⟩+
∑
i∈I

µi

( ji∑
j=1

µij⟨x∗i , v⟩
)
+

∑
k∈K

λkϵk⟨u∗, v⟩

<
∑
k∈K

[fk(x̃)− fk(x̄)] +
∑
i∈I

µi

( ji∑
j=1

µij [gi(x̃, wij)− gi(x̄, wij)]
)

+
∑
k∈K

λkϵk∥x̃− x̄∥. (4.9)

Similarly to the part of proof (i), we obtain that∑
k∈K

λkfk(x̄) <
∑
k∈K

λkfk(x̃) +
∑
k∈K

λkϵk∥x̃− x̄∥,

which contradicts (4.7). This completes the proof of Theorem.

5. Duality in Robust Multiobjective Optimization for Approx-
imate Pareto Solutions
In this section, we design robust dual problem (stated in an approximate form) for

multiobjective optimization problem to the primal one and establish (converse) duality
relations between them.
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Let us first define

RN
+ :=

{
µ := (µi, µij), i ∈ I, j = 1, . . . , ji | ji ∈ N, µi ≥ 0,

ji∑
j=1

µij = 1
}
.

Assume that z ∈ Rn, λ := (λ1, . . . , λm) ∈ Rm
+\{0}, and µ ∈ RN

+, we denote a vector
Lagrangian function L by

L(z, λ, µ) = Lk(z, λ, µ)

= fk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)
e,

where e := (1, . . . , 1) ∈ Rm, and wij ∈ Ωi, i = 1, . . . p, j = 1, . . . , ji. Here, for the sake
of unifying variables in the objective function and constraints of the dual problem(given
below).

In connection with the robust multiobjective problem (RP), we address a dual robust
multiobjective optimization problem in a dual form of:

max
Rm

+

{Lk(z, λ, µ) | (z, λ, µ) ∈ CD}. (RD)

Here the feasible set CD is given by

CD :=
{
(z, λ, µ) ∈ Ω× (Rm

+\{0})× Rp
+ | 0 ∈

∑
k∈k λk∂fk(z)

+
∑

i∈I µi

(∑ji
j=1 µijx

∗
ij

)
+
∑

k∈K λkϵkBRn∗ +N(z; Ω) ,∑
k∈K λk = 1 , x∗ij ∈ {∪∂xgi(z, wij)|wij ∈ Ωi(z)}

}
, (5.1)

where Ωi(z) is defined as in (3.2) by replacing x̄ with z.
Now we define robust quasi-ϵ-(weakly) Pareto solutions of the considered problem (RD)

similarly to the statement of problem (RP).

Definition 5.1. Let L := (L1, . . . , Lm), and ϵ := (ϵ1, . . . , ϵm) ∈ Rm
+\{0}. We say that

(x̄, λ̄, µ̄) is a local quasi-ϵ-Pareto solution of problem (RD) if and only if there exist
neighborhood U of (z, λ, µ) and there is no (z, λ, µ) ∈ CD ∩ U such that

Lk(z, λ, µ) ≥ Lk(z̄, λ̄, µ̄) + ϵk∥(z̄, λ̄, µ̄)− (z, λ, µ)∥, ∀k ∈ K, (5.2)
with a least one strict inequality.

Now we establish duality theorem for quasi-ϵ-Pareto solution between the problem
(RP) and the dual problem (RD).

Theorem 5.2. (Duality) Let x̄ ∈ quasi- ϵ-Sw(RP ) be such that the (CQ) defined in
(CQ) is satisfied at this point. Then there exist λ̄ := (λ̄k) λ̄k ≥ 0, k ∈ K, not all
zero simultaneously, and µ̄ := (µ̄i) , µ̄i ≥ 0, i ∈ I such that (x̄, λ̄, µ̄) ∈ CD and f(x̄) =
L(z̄, λ̄, µ̄). In addition,

(i) If (f ; g) is a generalized convex on Ω at z ∈ Ω, then (z̄, λ̄, µ̄) ∈ loc quasi ϵ-
Sw(RD).

(ii) If (f ; g) is a strictly generalized convex on Ω at z ∈ Ω, then (z̄, λ̄, µ̄) ∈
loc quasi ϵ-S(RD).
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Proof. By applying Theorem 3.5 and the concept of (CQ), thus x̄ satisfies the approximate
(KKT) condition. It means that there exist λ̃k ≥ 0, z̃∗k ∈ ∂fk(x̄) k ∈ K with

∑
k∈K λ̃k ̸=

0, and µ̃i ≥ 0, i ∈ I, µ̃ij ≥ 0, x̃∗ij ∈ ∂xgi(x̄, wij), wij ∈ Ωi(x̄), j = 1, . . . , ji, ji ∈
N,

∑ji
j=1 µ̃ij = 1, whatever µ̃∗ ∈ BRn∗ such that

−
( ∑

k∈K

λ̃kz̃
∗
k +

∑
i∈I

µ̃i

( ji∑
j=1

µ̃ij x̃
∗
ij

)
+

∑
k∈K

λ̃kϵkũ
∗
)
∈ N(x̄; Ω), (5.3)

µ̃i sup
wi∈Ωi

gi(x̄, wi) = 0, i ∈ I.

Letting

λ̄k :=
λ̃k∑

k∈K λ̃k
, k ∈ K and µ̄i :=

µ̃i

(∑ji
j=1 µ̃ij

)
∑

k∈K λ̃k
, i ∈ I,

then, we have λ̄ := (λ̄k), λ̄k ≥ 0, k ∈ K with
∑

k∈K λ̄k = 1, and µ̄ := (µ̄i), µ̄i ≥ 0, i ∈ I.

In additional, if λ̃k’s, and µ̃i’s are replaced by λ̄k’s, and µ̄i’s, respectively, thus the relation
in (5.3) is also valid. So, (x̄, λ̄, µ̄) ∈ CD.

Since

⟨x̄, g(x̄, wij)⟩ =
∑
i∈I

µ̄igi(x̄, wij) =
1∑

k∈K λ̃k

∑
i∈I

µ̃i

( ji∑
j=1

µ̃ij

)
gi(x̄, wij) = 0,

we obtain that
f(x̄) = f(x̄) + ⟨µ̄, g(x̄, wij)⟩e = L(x̄, λ̄, µ̄). (5.4)
(i) Assume to contrary that (x̄, λ̄, µ̄) /∈ loc quasi- ϵ-Sw(RD). Then for any neigh-
borhood U of (z, λ, µ) there is (z, λ, µ) ∈ CD ∩ U such that
Lk(z, λ, µ) > Lk(x̄, λ̄, µ̄) + ϵk∥(x̄, λ̄, µ̄)− (z, λ, µ)∥, ∀k ∈ K, (5.5)

where Lk(z, λ, µ) := fk(z) +
∑

i∈I µ̃i

(∑ji
j=1 µ̃ij

)
g(z, wij), wij ∈ Ωi(z),

i ∈ I, j = 1, . . . , ji for each k ∈ K. Since (z, λ, µ) ∈ CD ∩ U , there exist
λk ≥ 0, z∗k ∈ ∂fk(z), k ∈ K with

∑
k∈K λk = 1, µi ≥ 0, i ∈ I, µij ≥ 0, x∗ij ∈

∂xgi(z, wij), wij ∈ Ωi(z), j = 1, . . . , ji, and u∗ ∈ BRn∗ such that

−
( ∑

k∈K

λkz
∗
k +

∑
i∈I

µi

( ji∑
j=1

µijx
∗
ij

)
+

∑
k∈K

λkϵku
∗
)
∈ N(z; Ω). (5.6)

By definition of (2.1) and the generalized convexity of (f ; g) on Ω at z, we infer
from (5.6) that for such x̄ there exists v ∈ N(z; Ω)◦ such that

0 ≤
∑
k∈K

λk⟨z∗k, v⟩+
∑
i∈I

µi

( ji∑
j=1

µij⟨x∗ij , v⟩
)
+

∑
k∈K

λkϵk⟨u∗, v⟩

≤
∑
k∈K

λk[fk(x̄)− fk(z)]

+
∑
i∈I

µi

( ji∑
j=1

µij [gi(x̄, wij)− gi(z, wij)]
)
+

∑
k∈K

λkϵk∥x̄− z∥.



136 Thai J. Math. Vol. 20 (2022) /T. Sirichunwijit and R. Wangkeeree

Moreover, due to x̄ ∈ C, we have∑
i∈I

µi

( ji∑
j=1

µijgi(x̄, wij)
)
≤ 0, i ∈ I.

and then∑
k∈K

λkfk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)

≤
∑
k∈K

λkfk(x̄) +
∑
i∈I

µi

( ji∑
j=1

µijgi(x̄, wij)
)
+

∑
k∈K

λkϵk∥x̄− z∥.

From the above inequality, thus∑
k∈K

λkfk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)

≤
∑
k∈K

λkfk(x̄) +
∑
k∈K

λkϵk∥x̄− z∥. (5.7)

By (5.5) and definition of Lk(z, λ, µ), we obtain that

fk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)
> fk(x̄) + ϵk∥(x̄, λ̄, µ̄)− (z, λ, µ)∥, ∀k ∈ K.

Since
∑

k∈K λk = 1, so∑
k∈K

λkfk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)
>

∑
k∈K

λkfk(x̄)

+
∑
k∈K

λkϵk∥(x̄, λ̄, µ̄)− (z, λ, µ)∥,

a contradiction due to the fact that (5.7), so the proof of (i) is completed.
(ii) Suppose that (x̄, λ̄, µ̄) /∈ loc quasi- ϵ-S(RD). Then for any neighborhood U of
(z, λ, µ), there exists (z, λ, µ) ∈ CD ∩ U such that
Lk(z, λ, µ) ≥ Lk(x̄, λ̄, µ̄) + ϵk∥(x̄, λ̄, µ̄)− (z, λ, µ)∥, ∀k ∈ K, (5.8)
where at least one inequality is strict. Let x̄ ̸= z. Since (z, λ, µ) ∈ CD ∩ U, by
employing inequality (5.6) holds true. Again, by using definition of polar cone
(2.1) together the generalized convexity of (f ; g) on Ω at z, we also have (5.6)
that for such x̄, there is v ∈ N(z; Ω)◦ such that

0 ≤
∑
k∈K

λk⟨z∗k, v⟩+
∑
i∈I

µi

( ji∑
j=1

µij⟨x∗ij , v⟩
)
+

∑
k∈K

λkϵk⟨u∗, v⟩

<
∑
k∈K

λk[fk(x̄)− fk(z)] +
∑
i∈I

µi

( ji∑
j=1

µij [gi(x̄, wij)− gi(z, wij)]
)

+
∑
k∈K

λkϵk∥x̄− z∥.
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Similarly, if you see (i) will find this below inequality is completed, that is,

∑
k∈K

λkfk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)
<

∑
k∈K

λkfk(x̄) +
∑
k∈K

λkϵk∥x̄− z∥ (5.9)

and

∑
k∈K

λkfk(z) +
∑
i∈I

µi

( ji∑
j=1

µijgi(z, wij)
)
>

∑
k∈K

λkfk(x̄)

+
∑
k∈K

λkϵk∥(x̄, λ̄, µ̄)− (z, λ, µ)∥,

which is ridiculous, and complete the proof.

Finally, in this section. we will present converse-like duality theorem for quasi ϵ-
(weakly) Pareto solutions between the primal problem (RD) and the dual problem (RD).

Theorem 5.3. (Converse Duality) Let (x̄, λ̄, µ̄) ∈ CD such that f(x̄) = L(z̄, λ̄, µ̄).

(i) If x̄ ∈ C and (f ; g) is a generalized convex on Ω at x̄, then x̄ ∈ loc quasi- ϵ-
Sw(RP).

(ii) If x̄ ∈ C and (f ; g) is a strictly generalized convex on Ω at x̄, then x̄ ∈
loc quasi- ϵ-S(RP).

Proof. Assume that (x̄, λ̄, µ̄) ∈ CD. Then, there exist λ̄k ≥ 0, z∗k ∈ ∂fk(x̄), k ∈ K with∑
k∈K λ̄k = 1, µ̄i ≥ 0, i ∈ I, µ̄ij ≥ 0, there exist x∗ij ∈ ∂xgi(x̄, wij), wij ∈ Ωi(x̄), j =

1, . . . , ji, ji ∈ N,
∑ji

j=1 µ̄ij = 1 and u∗ ∈ BRn∗ such that

−
( ∑

k∈K

λ̄kz
∗
k +

∑
i∈I

µ̄i

( ji∑
j=1

µ̄ijx
∗
ij

)
+

∑
k∈K

λ̄kϵku
∗
)
∈ N(x̄; Ω),

µi sup
wi∈Ωi

gi(x̄, wij) = 0, i ∈ I. (5.10)

(i) Assume on the contrary that x̄ /∈ loc quasi- ϵ-Sw(RP ). Then for any neighbor-
hood U of x, there is x̂ ∈ C ∩ U such that

fk(x̂) + ϵk∥x̂− x̄∥ < fk(x̄), k ∈ K,

where at least one inequality is strict. This follow that x̂ ̸= x̄ and therefore∑
k∈K

λ̄kfk(x̂) +
∑
k∈K

λ̄kϵk∥x̂− x̄∥ <
∑
k∈K

λ̄kfk(x̄), k ∈ K, (5.11)

where
∑

k∈K λ̄k ̸= 0. By definition of polar cone (2.1) and the generalized con-
vexity of (f ; g) on Ω at x̄, we obtain (5.10) that for x̂ above as there exists
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v ∈ N(x̄; Ω)◦ ,

0 ≤
∑
k∈K

λ̄k⟨z∗k, v⟩+
∑
i∈I

µ̄i

( ji∑
j=1

µ̄ij⟨x∗ij , v⟩
)
+

∑
k∈K

λkϵk⟨u∗, v⟩

<
∑
k∈K

λ̄k[fk(x̂)− fk(x̄)] +
∑
i∈I

µ̄i

( ji∑
j=1

µ̄ij [gi(x̂, wij)− gi(x̄, wij)]
)

+
∑
k∈K

λ̄kϵk∥x̂− x̄∥.

Since f(x̄) = L(x̄, λ̄, µ̄),
∑

i∈I µ̄i

(∑ji
j=1 µ̄ijgi(x̄, wij)

)
= 0, i ∈ I, and due to

x̂ ∈ C, we have
∑

i∈I µ̄i

(∑ji
j=1 µ̄ijgi(x̂, wij)

)
≤ 0. From the above inequality,

we obtain that∑
k∈K

λ̄kfk(x̄) =
∑
k∈K

λ̄kfk(x̄) +
∑
i∈I

µ̄i

( ji∑
j=1

µ̄ijgi(x̄, wij)
)

≤
∑
k∈K

λ̄kfk(x̂) +
∑
i∈I

µ̄i

( ji∑
j=1

µ̄ijgi(x̂, wij)
)

+
∑
k∈K

λ̄kϵk∥x̂− x̄∥

≤
∑
k∈K

λ̄kfk(x̂) +
∑
k∈K

λ̄kϵk∥x̂− x̄∥,

which a contradiction, and so the proof of (i) has been established.
(ii) In the same way, if you see proof of (i) then (ii) is completed by using the one
has the generalized convexity of (f ; g) is strict on Ω at x̄ instead of the generalized
convexity of (f ; g) on Ω at this considered point.

We finish this section by the interesting in (CQ) imposed in Theorem 5.2 plays an
important role. That is, it proves that if x̄ is a quasi-ϵ-(weakly) Pareto solution of the
problem at which the condition (CQ) is not satisfied, then we might not find out a pair
(λ̄, µ̄) in Theorem 5.2 such that (x̄, λ̄, µ̄) belongs to the feasible set of the corresponding
dual problem. even in the case convex. wait the example.
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