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Abstract In this paper we are going to analyze the following difference equation

xn+1 =
xn−7

1 + xn−1xn−3xn−5
n = 0, 1, 2, . . . ,

where x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 ∈ (0,∞).  
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1. Introduction
Difference equations appear naturally as discrete analogs and as numerical solutions

of differential and delay differential equations, having applications in biology, ecology,
physics.

Difference equations are used in a variety of contexts, such as in economics to model
the evolution through time of variables such as gross domestic product, the inflation
rate, the exchange rate, etc. They are used in modeling such time series because values of
these variables are only measured at discrete intervals. In econometric applications, linear
difference equations are modeled with stochastic terms in the form of autoregressive (AR)
models and in models such as vector autoregression (VAR) and autoregressive moving
average (ARMA) models that combine AR with other features.

Recently, a high attention to studying the periodic nature of nonlinear difference equa-
tions has been attracted. For some recent results concerning the periodic nature of scalar
nonlinear difference equations, among other problems, see the references [1-16].
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Cinar [2, 3] studied the following problems with positive initial values:

xn+1 =
xn−1

1 + axnxn−1
,

xn+1 =
xn−1

−1 + axnxn−1
,

xn+1 =
axn−1

1 + bxnxn−1
,

for n = 0, 1, 2, . . . , respectively.
De Vault et. al [16] studied the following problems

xn+1 =
A

xn
+

1

xn−2

for n = 0, 1, 2, . . . and proved it has positive when A ∈ (0,∞)
Stevic et. al. [15] studied the solvability of the following product-type system of

difference equations of the second order

zn+1 =
zan

wb
n−1

, wn+1 =
wc

n

zdn−1

, n ∈ N0,

where a, b, c, d ∈ Z, z−1, z0, w−1, w0 ∈ C.
Elsayed in a series of papers ( see [4]-[10]) studied the behavior of the solution of the

following difference equation:

xn+1 = axn−1 +
bxnxn−1

cxndxn−2
, n = 0, 1, . . . ,

where the initial conditions x−2x−1, x0 are arbitrary positive real numbers and a, b, c, d
are positive constants.

Simsek et. al. in a series of papers ( see [11–13]) studied the following problems with
positive initial values

xn+1 =
xn−3

1 + xn−1

xn+1 =
xn−5

1 + xn−2

xn+1 =
xn−5

1 + xn−1xn−3

xn+1 =
xn−3

1 + xnxn−1xn−2

for n = 0, 1, 2, . . . in [5, 6, 7, 8] respectively.
In this paper we are going to study the following nonlinear difference equation

xn+1 =
xn−7

1 + xn−1xn−3xn−5
, n = 0, 1, 2, . . . , (1.1)

where x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 ∈ (0,∞).



On the Recursive Sequence ... 113

2. Main Results
Theorem 2.1. Consider the difference equation (1.1). Then the following statements are
true.

(a) The sequences (x8n−7) , (x8n−6) , (x8n−5) , (x8n−4) , (x8n−3) , (x8n−2) , (x8n−1) ,
(x8n) are decreasing and there exist a1, a2, a3, a4, a5, a6, a7, a8 ≥ 0 such that

lim
n→∞

x8n−7 = a1, lim
n→∞

x8n−6 = a2, lim
n→∞

x8n−5 = a3, lim
n→∞

x8n−4 = a4,

lim
n→∞

x8n−3 = a5, lim
n→∞

x8n−2 = a6, lim
n→∞

x8n−1 = a7, lim
n→∞

x8n = a8.

(b) (a1, a2, a3, a4, a5, a6, a7, a8, . . . ) is a solution of equation (1.1) having period
eight.

(c) a1 · a3 · a5 · a7 = 0, a2 · a4 · a6 · a8 = 0.
(d) n0 ∈ N such that xn+1 ≤ xn−5 for all n ≥ n0, then

lim
n→∞

xn = 0.

(e) The following formulas

x8n+1 = x−7

1− x−1x−3x−5

1 + x−1x−3x−5

n∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+2 = x−6

1− x0x−2x−4

1 + x0x−2x−4

n∑
j=0

4j∏
i=1

1

1 + x2i−4x2i−2x2i

 ,

x8n+3 = x−5

1− x−1x−3x−7

1 + x−1x−3x−5

n∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+4 = x−4

1− x0x−2x−6

1 + x0x−2x−4

n∑
j=0

4j+1∏
i=1

1

1 + x2i−4x2i−2x2i

 ,

x8n+5 = x−3

1− x−1x−5x−7

1 + x−1x−3x−5

n∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+6 = x−2

1− x0x−4x−6

1 + x0x−2x−4

n∑
j=0

4j+2∏
i=1

1

1 + x2i−4x2i−2x2i

 ,

x8n+7 = x−1

1− x−3x−5x−7

1 + x−1x−3x−5

n∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+8 = x0

1− x−2x−4x−6

1 + x0x−2x−4

n∑
j=0

4j+3∏
i=1

1

1 + x2i−4x2i−2x2i

 ,

hold.
(f) If x8n+1 → a1 ̸= 0, x8n+3 → a3 ̸= 0, x8n+5 → a5 ̸= 0, then x8n+7 → 0 as
n → ∞. If x8n+2 → a2 ̸= 0, x8n+4 → a4 ̸= 0, x8n+6 → a6 ̸= 0, then x8n+8 → 0
as n → ∞.
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Proof. (a) Firstly, we consider the equation (1.1). From this equation, we obtain
xn+1 (1 + xn−1xn−3xn−5) = xn−7.

If xn−1xn−3xn−5 ∈ (0,∞), then (1 + xn−1xn−3xn−5) ∈ (1,∞). Since xn+1 <
xn−7, n ∈ N, we obtain that there exist

lim
n→∞

x8n−7 = a1, lim
n→∞

x8n−6 = a2, lim
n→∞

x8n−5 = a3, lim
n→∞

x8n−4 = a4,

lim
n→∞

x8n−3 = a5, lim
n→∞

x8n−2 = a6, lim
n→∞

x8n−1 = a7, lim
n→∞

x8n = a8.

(b) (a1, a2, a3, a4, a5, a6, a7, a8, . . . ) is a solution of equation (1.1) having period
eight.

(c) In view of the equation (1.1),

x8n+1 =
x8n−7

1 + x8n−1x8n−3x8n−5
.

If the limits are put on both sides of the above equality

lim
n→∞

x8n+1 =
x8n−7

1 + x8n−1x8n−3x8n−5

is obtained. Then,

a1 =
a1

1 + a7a5a3
⇒ a1 + a1 · a3a5a7 = a1 ⇒ a1 · a3a5a7 = 0.

Also, we obtain

x8n+2 =
x8n−6

1 + x8nx8n−2x8n−4
.

If the limits are put on both sides of the above equality

lim
n→∞

x8n+2 =
x8n−6

1 + x8nx8n−2x8n−4

is obtained. Then,

a1 =
a2

1 + a6a4a2
⇒ a2 + a2 · a4a6a8 = a2 ⇒ a2 · a4a6a8 = 0.

(d) n0 ∈ N such that xn+1 ≤ xn−5 for all n ≥ n0, is existed; then,
a1 ≤ a3 ≤ a5 ≤ a7 ≤ a1 since a1 · a3 · a5 · a7 = 0,
a2 ≤ a4 ≤ a6 ≤ a8 ≤ a2 since a2 · a4 · a6 · a8 = 0, the results are obtained above.

(e) Subracting xn−7 from the left and right-hand sides in equation (1.1)

xn+1 − xn−7 =
1

1 + xn−1xn−3xn−5
(xn−1 − xn−9)

is obtained and the following formula is produced below, for n ≥ 2,

x2n−3 − x2n−11 = (x1 − x−7)
n−2∏
i=1

1
1+x2i−5x2i−3x2i−1

,

x2n−2 − x2n−10 = (x2 − x−6)
n−2∏
i=1

1
1+x2i−4x2i−2x2i

,

(2.1)

holds. Replacing n by 4j in (2.1) and summing from j = 0 to j = n , we obtain:

x8n+1 − x−7 = (x1 − x−7)

n∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1
,
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x8n+2 − x−6 = (x2 − x−6)

n∑
j=0

4j∏
i=1

1

1 + x2i−4x2i−2x2i
,

Also, replacing n by 4j+1 in (2.1) and summing from j = 0 to j = n , we obtain:

x8n+3 − x−5 = (x3 − x−5)

n∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1
,

x8n+4 − x−4 = (x4 − x−4)

n∑
j=0

4j+1∏
i=1

1

1 + x2i−4x2i−2x2i
,

Also, replacing n by 4j+2 in (2.1) and summing from j = 0 to j = n , we obtain:

x8n+5 − x−3 = (x5 − x−3)

n∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1
,

x8n+6 − x−2 = (x6 − x−2)

n∑
j=0

4j+2∏
i=1

1

1 + x2i−4x2i−2x2i
,

Also, replacing n by 4j+3 in (2.1) and summing from j = 0 to j = n , we obtain:

x8n+7 − x−1 = (x7 − x−1)

n∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1
,

x8n+8 − x0 = (x8 − x0)

n∑
j=0

4j+3∏
i=1

1

1 + x2i−4x2i−2x2i
,

Now, we obtained of the above formulas:

x8n+1 = x−7

1− x−1x−3x−5

1 + x−1x−3x−5

n∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+2 = x−6

1− x0x−2x−4

1 + x0x−2x−4

n∑
j=0

4j∏
i=1

1

1 + x2i−4x2i−2x2i

 ,

x8n+3 = x−5

1− x−1x−3x−7

1 + x−1x−3x−5

n∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+4 = x−4

1− x0x−2x−6

1 + x0x−2x−4

n∑
j=0

4j+1∏
i=1

1

1 + x2i−4x2i−2x2i

 ,

x8n+5 = x−3

1− x−1x−5x−7

1 + x−1x−3x−5

n∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+6 = x−2

1− x0x−4x−6

1 + x0x−2x−4

n∑
j=0

4j+2∏
i=1

1

1 + x2i−4x2i−2x2i

 ,
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x8n+7 = x−1

1− x−3x−5x−7

1 + x−1x−3x−5

n∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

x8n+8 = x0

1− x−2x−4x−6

1 + x0x−2x−4

n∑
j=0

4j+3∏
i=1

1

1 + x2i−4x2i−2x2i

 .

(f) Suppose that a1 = a3 = a5 = a7 = 0. By (e), we have

lim
n→∞

x8n+1 = lim
n→∞

x−7

1− x−1x−3x−5

1 + x−1x−3x−5

n∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a1 = x−7

1− x−1x−3x−5

1 + x−1x−3x−5

∞∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a1 = 0 ⇒ 1 + x−1x−3x−5

x−1x−3x−5
=

∞∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1
. (2.2)

Similarly

lim
n→∞

x8n+3 = lim
n→∞

x−5

1− x−1x−3x−7

1 + x−1x−3x−5

n∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a3 = x−5

1− x−1x−3x−7

1 + x−1x−3x−5

∞∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a3 = 0 ⇒ 1 + x−1x−3x−5

x−1x−3x−7
=

∞∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1
. (2.3)

From the equation (2.2) and (2.3);

1 + x−1x−3x−5

x−1x−3x−5
=

∞∑
j=0

4j∏
i=1

1

1 + x2i−5x2i−3x2i−1
>

1 + x−1x−3x−5

x−1x−3x−7
=

∞∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1

1 + x−1x−3x−5

x−1x−3x−5
>

1 + x−1x−3x−5

x−1x−3x−7
,

1

x−1x−3x−5
>

1

x−1x−3x−7
,

x−1x−3x−7 > x−1x−3x−5 ⇒ x−7 > x−5.

lim
n→∞

x8n+5 = lim
n→∞

x−3

1− x−1x−5x−7

1 + x−1x−3x−5

n∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,
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a5 = x−3

1− x−1x−5x−7

1 + x−1x−3x−5

∞∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a5 = 0 ⇒ 1 + x−1x−3x−5

x−1x−5x−7
=

∞∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1
. (2.4)

From the equation (2.3) and (2.4);

1 + x−1x−3x−5

x−1x−3x−7
=

∞∑
j=0

4j+1∏
i=1

1

1 + x2i−5x2i−3x2i−1
>

1 + x−1x−3x−5

x−1x−5x−7
=

∞∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1

1 + x−1x−3x−5

x−1x−3x−7
>

1 + x−1x−3x−5

x−1x−5x−7

1

x−1x−3x−7
>

1

x−1x−5x−7

x−1x−5x−7 > x−1x−3x−7 ⇒ x−5 > x−3.

lim
n→∞

x8n+7 = lim
n→∞

x−1

1− x−3x−5x−7

1 + x−1x−3x−5

n∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a7 = x−1

1− x−3x−5x−7

1 + x−1x−3x−5

∞∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1

 ,

a7 = 0 ⇒ 1 + x−1x−3x−5

x−3x−5x−7
=

∞∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1
. (2.5)

From the equation (2.4) and (2.5);

1 + x−1x−3x−5

x−1x−5x−7
=

∞∑
j=0

4j+2∏
i=1

1

1 + x2i−5x2i−3x2i−1
>

1 + x−1x−3x−5

x−3x−5x−7
=

∞∑
j=0

4j+3∏
i=1

1

1 + x2i−5x2i−3x2i−1

1 + x−1x−3x−5

x−1x−5x−7
>

1 + x−1x−3x−5

x−3x−5x−7

1

x−1x−5x−7
>

1

x−3x−5x−7

x−3x−5x−7 > x−1x−5x−7 ⇒ x−3 > x−1.

We obtain x−7 > x−5 > x−3 > x−1. A contradiction supposing that a1 =
a3 = a5 = a7 = 0 is produced. Similarly, for a2 = a4 = a6 = a8 = 0 we have
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x−6 > x−4 > x−2 > x0. A contradiction completing the proof of theorem is
found.

3. Numerical Examples
Example 3.1. Consider the following equation xn+1 = xn−7

1+xn−1.xn−3.xn−5
. If the initial

conditions are selected follows:
x−7 = 0.9, x−6 = 0.8, x−5 = 0.7, x−4 = 0.6, x−3 = 0.5, x−2 = 0.4, x−1 = 0.3, x0 = 0.2.

The graph of the solution is given below.

20 40 60 80 100
n

-1.0

-0.5

0.5

x(n)

Figure 1. xn graph of the solution.
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