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1. INTRODUCTION

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A
mapping T of C into itself is called nonexpansive if

[Tz =Tyl <lz—yll, Va,yeC. (1.1)
A mapping T is said to be k-strictly pseudo-contractive if there exists a constant x €
[0,1) such that
Tz —Ty|* < [l =yl + sl (I =T)z — (I =T)y|?  Vz,yeC.
Note that the class of k-strictly pseudo-contractions strictly included the class of non-
expansive mappings. It is well-know that (1.1) is equivalent to
11—k
|

5 (I -T)x— (I-T)y|* Vz,ye D(T).

2
(Te —Ty,z —y) <z —ylI" -
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Throughout this paper we denote F(T') is the set of fixed points of T' (i.e., F(T) =
{r e H:Tx =z}).

A mapping A of C into H is called a-inverse strongly monotone (see [1]), if there exists
a positive real number « such that

(x —y, Ax — Ay) > a||Ax — Ay||2, Va,y € C.

If (x —y, Ax — Ay) > 0, a mapping A is called monotone operator.
Let F : C' x C — R be a bifunction. The equilibrium problems of F' is to find z € C,
such that

F(z,y) >0, YyeC. (1.2)

The set of solutions of the equilibrium problems is denoted by EP(F). Many physic,
optimization, and economic problems seek some element of EP(F); see more detail in
[2, 3]. Over decades ago, there are many researchers studied the equilibrium problems,
see, for instance [4—0]

Let B : C — H. The variational inequality problems is to find a point v € C' such that

(Bu,v—u) >0, YveCl. (1.3)

The set of solutions of the variational inequality is denoted by VI(C,B). Numerous
problems in physics, optimization, minimax problems, game theory, the Nash equilibrium
problems in noncooperative games reduce to find an element of (1.3), see more detail in
6, 7).

By modification of (1.3), Kangtunyakarn [4] introduce the combination of variational
inequality problems which is to find a point z* € C such that

(y—z*,(aA+(1—a)B)x*) >0, YyeC, ac (0,1). (1.4)

The set of all solution of (1.4) is denoted by VI(C,aA+(1—a)B). If A= B, VI(C,aA+
(1 — a)B) reduce to VI(C, B).

So, He proved a strong convergence theorem for finding a common element of the set

of fixed point problems of infinite family of strictly pseudo-contractive mappings and the
set of equilibrium problems and two set of variational inequality problems as follows;

Theorem 1.1. Let C be a closed convex subset of Hilbert space H and let F': C'xC — R
be a bifunction satisfying (A1) — (Aq), let A;B : C — H be o and B-inverse strongly
monotone, respectively. Let {T;}2, be k;-strict pseudo-contractive mappings of C into
itself with k = supienk; and let p; = (o, oy, af) € IxIxI, where I = [0,1], o) +ad+ad =
1, a{ —l—aé <b<1,and a{7a%,a§ € (k,1) forallj =1,2,.... For everyn € N, let S,, and
S-mapping generated by Ty, ....,T1 and pp, pr—1,-sp1 and Ty, Tr_1, ..., and ppn, Pr—1,---,
respectively. Assume that F = (oo, F(T;) EP(F)\VI(C,A)\VI(C,B) # 0 and let
{z,} and {u,} be generated by x1,u € C and

{F(umy) + oy — tp,un —a0) >0, Vy€C,

1.5
Tpy1 = apu + (1 — a,)Sy Po (I —y(aA+ (1 - a)B))un7 Vn > 1, (1.5)

where an,a € (0,1),0 < v < min{2a, 26} and {r,} C [b,c] C (0,min{2«,253}), satisfy
the following conditions:
(i) lim o, =0, Zan = 00,

n—oo
n=1
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oo o0
(if) Z |1 — | < 00, Z [Tng1 — | < 00,
n=1 n=1

oo
(iii) Yol < oc.
n=1
Then, {z,} and {u,} converge strongly to z € F where z = Pru.

In this paper, we prove a strong convergence theorem for finding a common element of
the set of solutions of variational inequality problems and equilibrium problems. More-
over, we apply our main result to obtain a strong convergence theorem for finding a
common element of the set of fixed point problems of strictly pseudo-contractive map-
pings and a convergence theorem involving minimization problems. Finally, we give three
numerical examples for our results to compare their converge.

2. PRELIMINARIES

This section needs the following lemmas to prove our main result. Let C' be a closed
convex subset of a real Hilbert space H, let Pc be a metric projection of H onto C i.e.,
for x € H, Pox satisfies the property

lv = Poel| = min flz — y].
Lemma 2.1. [8] Given x € H and y € C. Then Pcx =y if and only if there holds the
inequality

(x —y,y—2z) >0, Vz e C.
Lemma 2.2. [9] Let {s,} be a sequence of nonnegative real number satisfying

Snt1 = (1 — an)Sn + @ fn, Vn >0,

where {a, }, {Bn} satisfy the conditions

(1) {an} C [07 1]v Zan = 00,

2) limsup 8, <0 or anfBn| < 00.
(2) limsup 3 3 land

Then lim s, = 0.
n—oo
Lemma 2.3. [? ] Let {s,} be a sequence of nonnegative real numbers satisfying
Sn41 =1 —ap)sp +0,, Yn >0,

where {ay,} is a sequence in (0,1) and {0,} is a sequence such that
oo
(1) Z Oy, = 00,
n=1
o0

1)
2) 1i <o o] < o0.
(2) 1Trlnﬂsot<1jp o = or nz::l| | < o0

Then lim s, = 0.
n—oo
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Lemma 2.4. [8] Let H be a Hilbert space, let C' be a nonempty closed convex subset of
H and let A be a mapping of C into H. Let u € C. Then for A > 0,

u=Po(I - AA)u < uweVI(C, A),
where Pg is the metric projection of H onto C.

Lemma 2.5. [10] Let C be a nonempty closed convex subset of a real Hilbert space H and
S :C — C be a self-mapping of C. If S is a k-strict pseudo-contractive mapping, then S
satisfies the Lipschitz condition

1+ &k
1—«x

Sz — Syl < [z —yll, Va,yeCl.

For solving the equilibrium problems for a bifunction F : C x C — R, let us assume
that satisfies the following conditions:

(Al) F(x,x) =0, Vo € C,

(A2) F is monotone, i.e.,F(z,y)+ F(y,z) <0, Va,y € C,
(A3) Va,y,z € C, limy_,g+ F(tz+ (1 — t)x,y) < F(x,y),

(A4) Vz € C,y — F(x,y) is conver and lower semicontinuous.

Lemma 2.6. [2] Let C be a nonempty closed convex subset of H, and let F be a bifunction
of C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then, there exists z € C
such that

1
Fzy)+ (y—-zz-2)20, Vel (2.1)

Lemma 2.7. [3] Assume that F : CxC — R satisfies (A1) —(A4). Forr >0and x € H,
define a mapping T, : H — C as follows:

TZ(SC):{ZECiF(Z,y)+%<y*Z,Z*l‘> >0, Yy € C}. (2.2)

for all z € H. Then, the following hold:

(1) T, is single-valued,
(2) T, is firmly nonexpansive i.e.,

I () = T ()|* < (To(2) = To(y),w —y),  Va,y € H,

(3) F(T) = EP(F),
(4) EP(F) is closed and convex.

Lemma 2.8. [4] Let C be a nonempty closed convex subset of a real Hilbert space H
and let A, B : C — H be a and B-inverse strongly monotone mappings, respectively, with
a,B>0 and VI(C,A)VI(C,B) # 0. Then

VI(C,aA+ (1-a)B)=VI(C,A)(VI(C,B), Vac(0,1). (2.3)

Furthermore if 0 < v < min{2a«, 28}, we have I — y(aA + (1 — a)B) is a nonexpansive
mapping.
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3. MAIN RESULTS

This section proves a strong convergence theorem for finding a common element of the
set of solutions of variational inequality problems and equilibrium problems.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
For every i = 1,2,...,n, let F; : C x C — R be a bifunction satisfying (A1) — (Ayg). Let
AB:C — H be o and B-inverse strongly monotone respectively with F = VI(C, A) N

m EP(F;) # 0. Let sequence {z,} and {u}} generated by u,z; € C and

, 1
Fy(ul,v) + —(v—ul,ul, —2,) >0, forallveC and i=1,2,..,N,

T'n
N
Tpt1 = apu + B Po(l — NaA+ (1 —a)B))xn +7n Zaiu;, for all n>1,
i=1

(3.1)

where {an },{Bn}, {1} C[0,1] with ap, + Bn +vn =1 for alln € N and a € (0,1).
Suppose that the followz’ng conditions hold :

(i) lim «, =0 and Zan = 00,
n— oo

(ii Bn,vn [c,d] C (0,1), Vn €N,

(iii al =1, where a; >0 for alli=1,2,..., N,

(

a<rn<bf0ralln€N,
€ (0,2n), where n = min{«, 8},

i=
0<
)\
oo
Z an+1 - an‘ < OO»Z |Bn+1 - 5n| < 00, Z "VnJrl - ’Yn| < 0.

n=1 n=1

)
)
)
iv)
(v)
(vi)
Then {:cn} converges strongly to zo = Pru.

Proof. We will divide our prove into 5 steps.
Step 1. We will show that the sequence {z,} is bounded. Since

, 1
Fy(ul,v) + —(v—ul,ul —2,) >0, forallve Cand i=1,2,...,N.
’r7l

By Lemma 2.7, we have v, = T} (x,,) and EP(F;) = F(T} ), foralli=1,2,...,N.
Let ze F=VI(C,A)NVI(C,B)N ﬁ EP(F,
By Lemma 2.8 and Lemma 2.4, we }illeze
e VI(C, aA+(1— a)B) - F(PC(I “MaA+ (1 a)B))).
From Lemma 2.8 and nonexpansiveness of Tfn, we have

[Znt1 — 2|l
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N
=llanu+ BnPo(I = MaA + (1 — a)B))xn + n »_ aiul, — 2|
i=1

N

<o |[u = 2| + BullPo(I = AMaA + (1 = a)B))zn — 2| + vn Y _ ail| T}, (xn) — 2|
i=1

<apllu =zl + Bullzn — 2|l + yullzn — 2|l

=apllu—z|| + (1 — an)llzn — 2| (3.2)

Putting M = maz{||uv — z||, ||x1 — z||}. From (3.2), we can show by induction that ||z, —

z|| € M, Vn € N. It implies that {z,,} is bounded and so is {uf,} for all i = 1,2, ..., N.
Step 2. We will show that lim ||z,41 — zp| = 0.
n—00
Putting D = aA + (1 — a)B, Va € (0, 1). From difinition of z,,, we have
zn+1 — @l
N
=|lapu + BnPc(I — AD)xy + vn Z a;uy, — 01U — Bp—1Po(I — AD)xp—1
i=1
N
~ Tn—1 Zaiu;—ln
i=1
<llan = an—alllull + Bullzn — 2n-1ll + |Bn = Ba—1l|1Pc(I = AD)xp—1|
N N
+ 1 = Y1l ) @iyl 4+ v Y aillug, — gyl (3-3)
i=1 i=1
Since u}, = T} x,. By difinition of T} , we have
, 1 , ,
Fi(T; wp,v) + —(v =T, x,, T vp —x,) > 0, YveC. (3.4)

Tn
Similarly

Fi(T}, , Tnt1,0) +

. (v— Tﬁn+1xn+1,Tfn+lmn+1 —Zpy1) > 0, YoeC. (3.5)
n+1

From (3.4) and (3.5), we obtain

. . 1 . . .
RT3 20, T, ) + =T gy = T 0, T — ) 2 0, (3.6)

n

and

Fy(T} . @i, T) 2,) +

Tn+1

(T} @ =T}, g1, T T — Tng1) > 0. (3.7)

T T
Tn+1

By (3.6) and (3.7), we have

1 . , ,
7<Tﬁn+1xn+1 =T xn, T} Tp — Tp) +
n

(T2, zn =T, Tt Ty Tl — Tpga)

Tn+1
> 0,

it follows that

i .
Trn+1mn+1 — Tp+1 Tﬁnxn — Ty

i i
<Trnmn - Trn+1xn+17

) > 0.

Tn+1 Tn



Application of the Combination of Variational ... 85

This implies that

i i i i i
0 < (T7 , @np1 =T 20, T7 xn =T T + 17 Tpp1 — Ty,

(Tﬁnﬂmn-&-l — Tnt1))- (3.8)

Tn

Tn+1

It follows that

||Trin+1xn+1 - Trinmn”2

. . . Tn .
STt = T2 Ty it = 00— (T, 1 = 204
n—+
. . r .
) 7 n 7
=(T, 1Tt — Ty X, T — Ty + (1 - )(Trn+1xn+1 — Tpt1))
n+1

. ) r )
<77, wner = T7 zallllngy — 20 + (1 - = )(Tﬁn“xnﬂ — Tn41)]|
n+1

SHTrinH'rn-i-l - Trinxn” <||xn+1 —Zp|| + Tnt1 — rn|||Trin+1xn+1 - xn-i-l”)

TnJrl
i i 1 i
SHTT,,LHxn-‘rl - Tr“xn” [Zn+1 — 2ol + alrn-&-l - rnIHTronn-ﬁ-l = Tptall |-
(3.9)
It follows that
. _ 1 _

[nsy = unll < l2nsr = @all + —lrnss = ralllun gy = 2ol (3.10)

Substituting (3.10) into (3.3), we have

[Zn+1 — @nll
<l — an—1lllull + Bullzn — Tn-1ll + [Bn — Bu-1llPc(I — AD)zy—1]|

N N
I = ol | 2 st |+ Y all, —
i=1 i=1
<llew — an—alllull + Bullzn — zn-1ll + [Bn — Ba—al[[Pe(I — AD)xp—||

N
+ [ = Yn—1 H > awiq”
i=1

N

1 )
wZai(azn = @l 4 = = 1, m)

i=1

=llan = an—alllull + (1 = an)l|lzn = 2nall + [8n = Bua|[Po(I = AD)zn ||

N N
+ 1o = Yo Zlaiu:;_lﬂ + gl = raca 3, =
1= 1=
S|04n - an—1|M1 + (1 - O‘n)Hxn - xn—l” + |Bn - Bn—1|M1
+ P = Anea [ M + Ly = | My, (3.11)
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N
where M7 = max,en{||ull, [|zn], H Zaiu;
i=1

N
s> aillup, — @}
i=1

By (3.11), Lemma 2.3, and conditions (i)-(vi), we obtain

nh_}rrgo |Znt1 — 2nl = 0. (3.12)

Step 3. We will show that lim |u!, — z,| = 0 and lim ||[Po(I — AD)z,, — z,| = 0,
n— oo n—oo

where D = aA+(1—a)B, Va € (0,1). Since v}, = T} 2, and T} is a firmly nonexpansive
mapping, we have

Iz = T% 2 ||? = |TE 2 — T?

< (Tﬁnz — T,fnxn, Z— Zp)

1 . .
SUITr, zn — zl* + llan — 2112 = T}, 20 — @n?).
Hence
uy, = 211 < fln — 21 = lluj, — @ (3.13)

From Lemma 2.8, (3.13) and definition of z,,, we have

=2+ (ol = 3Dz, = 2) 7 (3 o)
=1

N 2
Z azul, — zH
i=1
N

<anllu— 2|2 + Bullzn — 21 + 70 3 asllu, - 2
=1

lentr - 2l =|

<anllu = 2| + Bullwn — 2lI* + n

N
<anllu =z + Ballzn = 21° + 1 Y ailllzn — 2)1* = lluj, — za?)

i=1
N
Sanllu = zl* + llzn = 27 = 7 D aillu, — 2l
i=1
It implies that
N
Y Y aillu, — x|
i=1
Sanflu—z2|* + |z — 2* = [lzne — 2]
<anllu—2|* + (len = 2l = lzass = 21)(l2n — 2] + lzn1 — 2[1)
<anflu—2|* + ||z — @l (lon — 20 + 2 — 2]). (3.14)
By (3.12) and condition (i), we have
lim ||ul, — x,| =0, foralli=1,2,...,N. (3.15)

n—roo

From nonexpansiveness of Po, we have
| Pc(I-AD)z,, — 2|
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=||Pc(I — AD)x,, — Pc(I — AD)z|)?

< = AD)an — (I = AD)z|?
<z — 2||* = 2Mx,, — 2, D2y, — D2) + | \(Dz,, — D2)|2. (3.16)
For every x,y € C, we have
(Dx — Dy, xz — y) = (aAz + (1 — a)Bx — aAy — (1 — a)By,z — y)
=a(Az — Ay,z —y) + (1 — a){(Bx — By,z — y)
> aall Az — Ay|* + (1 — a)8]| Bz — By|?
> n(all Az — Agll* + (1 — a)| Ba — BylP)
(3.17)

> n||Dx — Dy|*.

Then D is n-inverse strongly monotone.

From (3.16)and (3.17), we have
| Po(I — AD)x,, — 2||* <||zp — 2||* — 2\(2y, — 2, D2y, — D2) + ||A(D2,, — D2)||?

<\, — 2||* = 2An|| Dy, — Dz||? + A2|| Dz, — Dz
n

=[xz, — 2> = AN(2n — \)|| Dz, — Dz|*. (3.18)

By definition of x,, and (3.18), we have

=)+ B (Pt = AD)r =) 30 (St )|
i=1

lent - 2l =|
<anllu = 2|2 + Ba|llzn — 2|2 = A@n = 3) | Dwn — D2

+ YnllTn _2”2
<apllu— 2| + [|an — z[I” = ABn (20 — V|| Dz, — Dz|>.

Hence, we have
ABn (21 = M| Dy, — Dz||* <apllu = 2||* + [l — 2)1* = [|#ns1 — 2|
Sanllu— 2| + l|lzn = zpsa[(l2n — 2]l + [2ns = 21).

(3.19)
From (3.12), (3.19) and condition(i)
Jim || Dy, — Dz||* = 0. (3.20)
From definition of Po(I — AD) and Lemma 2.8, we have
| Po(I — AD)a,, — z|)?
=|Po(I = AD)z, — Po(I = AD)z||®
<{(I-=AD)xp, — (I — AD)z, Pc(I — AD)x,, — 2)
=5 (17 = AD)z — (T = AD)2|[* + | Pe(T ~ AD)z, — |
(I = AD)zn — (I = AD)z — (Pe(I — AD)ay — z)u2)

1
<5 (lan = 212 + | Po(I = AD)a, = 2|
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“Nl#n — Po(I — AD)ay — A(Dzn — Dz)H?)
1
<3 (len —z|* + |Pc(I = AD)zn = 2||* = |lzn — Po(I = AD)ay|?
—IA(Dzn — D2)|? + 2M@n — Po(I — AD)an, Dty — Dz>)
1
<3 (lll‘n — 2| +1Pc( = AD)zy, — 2||* = ||l — Po(I = AD)za |
+ 2\|zp — Po(I — AD)zy||| Dary — Dz||).
It follows that
| Pc(I — AD)xy, — Z||2 < lzn — Z||2 = l|n — Pe(I - )‘D)anQ
+ 2\ ||z, — Pc(I — AD)zy,||||Dzy, — DZ||. (3.21)
By definition of @, (3.21) and nonexpansiveness of T/ , we have

41 — 2]

<anflu—2|* + Ba

SR PV VATN WO S

2
PC(I — )\D)xn - zH + Ynllzn — 2|2

<apllu — z|* + Bn |:H-'I;n —2|* = |l#n — Po(I = AD)z, 1?
+ 2\t~ Pe(l = AD)ay || Day — D] + s — ]
SO‘NHU - ZH2 + ﬂn”xn - Z||2 - Bnnxn - PC(I - /\D)anQ
+ 2A||lzn, — Po(I = AD)zo ||| Dy — D2|| + |7 — Z||2
<aplu—zl|> + [|n — 21> = Bullwn — Po(I = AD)z, >
+ 2\|zpn, — Po(I — AD)zy,||||Dxy, — Dz||.
It follows that
Bulln — Po(l = AD)znll? <aullu — 21 + ln — 2|2  zns1 — 2|1
+ 2M|zp, — Po(I — AD)zy, ||| Dxy — Dz||

Solu = 2|7 + (lzn — 2]l + [[#nt1 = 2l) 2041 — @nll

+ 2\||xy, — Pc(I — AD)zy ||| D2y — D2||. (3.22)
From condition(i), (3.22), (3.12) and (3.20), we have
ILm |z, — Po(I — AD)xy|| = 0. (3.23)

Step 4. We will show that lim sup(u — zq, z, — z0) < 0, where zp = Pyu.
n— oo
To show this inequality, take a subsequence{z,, } of {z,}, such that

limsup(u — 20, ,, — 20) = lm (u — 20, Tpn, — 20)- (3.24)
n—00 k—o0

Without loss of generality, we may assume that z,, — w as k — oo where w € C.
From (3.15), we have u;, — w as k — oo, for all i =1,2,..., N.



Application of the Combination of Variational ... 89

Assume that w # Po(I — AD)w, where D = aA + (1 — a)B.
By nonexpansiveness of Po(I — AD), (3.23) and Opial’s property, we have

lim inf||z,, — w||
k—00

<liminf ||x,, — Pc(I — AD)w||
k—o00

<timinf (||en, — Po(I = AD)zn, | + |Pe(I = AD)an, — Po(I = AD)w]))

k—oc0

<liminf ||, —w].
k—o0

This is a contradiction, then we have

we F(PC(I - AD)) —F (Pc (I ~MaA+(1- a)B))> . (3.25)
From Lemma 2.4 and Lemma 2.8, we have

F (PC (1 ~MaA+(1— a)B))) — VI(C, A)(VI(C,B). (3.26)

From (3.25) and (3.26), we have
we VI(C,A)(VI(C,B).

Since
i 1 i
Fi(un’v) + 7<’U Uy, Uy, — 'r"> 2 O’
T'n
forallve Candi=1,2,...,N.
By (A2), we have
1 S )
— (v —uy, uy, — Tp) > Fi(v,ul,), Yv e C.
Tn

In particular

i Lo i
<U = Uy, a(unk - xnk)> > Fi(v’unk)’
forallve Candi=1,2,...,N.
From (A4) and (3.15), we have
Fi(v,w) <0, (3.27)

forallve Candi=1,2,...,N.
Let us :=tv+ (1 — t)w, Vt € (0,1], we have u; € C and from (A1), (A4) and (3.27),
we obtain

0 = Fi(ug, u) < tF;(ug,v) + (1 — ) Fi(ug, w) < tF;(ug,v),

foralli=1,2,...,N.
Hence Fj(tv + (1 — t)w,v) > 0,Vt € (0,1] and Vv € C.
Letting t — 0" and using assumption (A3), we can conclude that

F;(w,v) >0, VveCandi=1,2,.., N.
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N

Therefore, w € ﬂ EP(F;). Hence w € F.
i=1

Since x,, — w and w € F, we have

lim sup(u — 2o, zp, — 20) = lim (u — 2o, Tn, — 20) = (U — 20,w — 29) < 0. (3.28)
n—oo k—o00

Step 5. Finally, we show that lim =z, = zg where zy = Pyu.
n—oo

By nonexpansive of Po (I —AMaA+(1- a)B)), we have

[#n41 — 20/

=||an(u — 20) + Bn (PC (I —AMaA+(1- a)B))xn - zo>
N 2
+’7n<zalu; _zO>
< Bn<PC(I /\(aA—i—(l—a)B)) >+%<Zau )

+ 200, (u — 20, Tpy1 — 20)

2

2

<Pn

P (I “MaA+(1— a)B))xn - on2 Y

N
E aiu; —
i=1

+ 20, (U — 20, Tnt1 — 20)
N
<Bnllzn — 20l” + 7 > aillul, — 20l|* + 200 (u — 20, Tnt1 — 20)
i=1
<Bullzn — 20l” + Yallzn — 20ll* + 2000 (u — 20, Tnt1 — 20)
=(1 — an)||zn — 20]* + 200 (u — 20, Tpy1 — 20). (3.29)

From(3.28) and Lemma 2.2, we obtain that {z,} converge strongly to zg = Pyu.
This completes the proof of Theorem 3.1. n

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
For every i = 1,2,....,n, let F; : C x C — R be a bifunction satisfying (A1) — (Ayq). Let
A:C — H be a-inverse strongly monotone mapping.

Assume that F = VI(C, A) N ﬂ EP(F;) # 0. Let sequence {x,} and {u} generated by

u,z1 € C and

- 1
Fy(ul,v) + —(v—ul,ul, —2,) >0, forallveCand i=1,2,..,N,

Tn

N
Tpt1 = Qptt + B Po(l — NA)xy, + n Zaiu;, forall n > 1,
i=1

(3.30)
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where {an },{Bn}, {7} C[0,1] with a, + B+ v =1 for alln € N and a € (0,1).
Suppose that the following conditions hold :

(i) lim o, =0 and Zan—oo
n—oo

(11 Bn, Tn € [(37 d] ( ) Vn € N,
N

(iii a; =1, where a; >0 for alli=1,2,...,N,

)
)
)
iv) 6: <a<r,<bforallneN,
))\ (0,2a),
)

o0 o0
(Vl Z |a7l+1 - o‘n‘ < 09, Z |ﬂn+1 - 5n| < o0, Z ‘7n+1 - FYTL| < 0.

n=1 n=1 n=1

Then {x,} converges strongly to zy = Pyu.

Proof. Put A = B in Theorem 3.1. The conclusion of Corollary 3.2 can be obtained from
Theorem 3.1. [

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A,B: C — H be a and B-inverse strongly monotone respectively with F = VI(C, A) N
VI(C,B) # 0. Let sequence {x,} generated by x1 € C and

Tnt1 = Qpt + BnPo(l — AMaA+ (1 —a)B))xyn + Yn&n, for all n>1, (3.31)

where {an },{Bn}, {1} C[0,1] with cp, + Bn +vn =1 for alln € N and a € (0,1).
Suppose that the followz'ng conditions hold :

(i) lim «, =0 and Zan = 00,

n—oo

(11 ﬂnar)/n [C, d] C (071)7 VTL € N7

=1

(iv )\ € (0,2n), where n = mm{a B8},
V Z|Oén+1*04n‘ < 00, Z|ﬂn+1 5n| < 09, Z‘7n+l 7n| < 00.

n=1 n=1 n=1

Then {z,} converges strongly to zy = FPru.

)
)
(iii) a; =1, where a; >0 for alli=1,2,...,N,
)
)

Proof. Put F; =0 for all i =1,2,..., N in Theorem 3.1, we have

(u —ul,ul —x,) >0, Yu€Candi=1,2,..,N. (3.32)
From Lemma 2.1 and (3.32), we have z,, = Pox,, = u}, for alli = 1,2,..., N.
From Theorem 3.1 we can conclude the desired conclusion. =

4. APPLICATION

4.1. FIXED POINT PROBLEMS OF STRICTLY PSEUDO-CONTRACTIVE MAPPING

Next, we prove a strong convergence theorem involving fixed point problems of k-strict
pseudo-contractive mapping.



92 Thai J. Math. Vol. 20 (2022) /K. Saechou and A. Kangtunyakarn

A mapping T : C — C is said to be k-strictly pseudo-contractive if there exists a
constant x € [0,1) such that

| T — Tyl < lle — y|2 + &l[(I - T)x — (I - Ty|%, Va,y € C.

Remark 4.1.

(i) Tt is well-know that I — T is 1_7”—inverse strongly monotone mapping.
(ii) If T : C — C be k-strictly pseudo-contractive with F(T') # (), then F(T) =

VI(C,I —T), see more detail in [5].

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. For
every i =1,2,...,N, let F; : C x C = R be a bifunction satisfying (A1) — (A4). Let T, S
be k and R-strict pseudo-contractive mapping of C into itself, with F = F(T) N F(S) N

ﬂ EP(F;) # 0. Let sequence {x,} and {u®} generated by u,z; € C and

X 1
Fi(u,v) + — (v —ul,ul, —x,) >0, forallve Cand i=1,2,...,N,

mn?
T'n

N
Tni1 = anti+ B Po(I — Ma(I = T) + (1= a)(I = §)))an +Yn Y _ asul,,
1=1
foralln>1,
(4.1)

where {an },{Bn}, {1} C[0,1] with o, + Bn +vn =1 for alln € N and a € (0,1).
Suppose that the followz’ng conditions hold :

(i) lim a, =0 and E Qp = 00,
n—oo 1
n=

(ii) Bn,vn € [¢,d] € (0,1), Vn € N,
N

(iii a; =1, where a; >0 for alli=1,2,...,N,

1
(V 175 1-K

)
)
)

iv) 0 <a<rn<bforalln€N,
) A E(O 2n), wheren:min{ =1,
1)

(vi Z lon 1 — an| < o0, Z |Bnt1 — Bul < o0, Z [Ynt1 — Yn| < 0.

n=1 n=1 n=1

Then {x,} converges strongly to zo = Pyu.

Proof. The conclusion of Theorem 4.2 can be obtained from Theorem 3.1 and Remark
4.1. ]

4.2. CONSTRAINED CONVEX OPTIMIZATION PROBLEMS

Let f: C — R be a convex, Fréchet differentiable function, where C is a closed convex
subset of a real Hilbert space of H. The constrain convex optimization problem is to find
x* € C, such that

f(@") = min f(z), (4.2)

zeC

we use the symbol Q is the set of all solution of (4.2).
Before prove Theorem 4.4, we need the following lemma.
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Lemma 4.3. [11] (Optimality condition) A necessary condition of optimality for a point
x* € C to be a solution of the minimization problem (4.2) is that x* solves the variational
inequality

(Vf(x"),x —z*) >0, Vz € C. (4.3)
Equivalently, z* € C solves the fized point equation
x* = Po(z® — AV f(zY)),

for every constant A > 0. If, in addition, f is convez, then the optimality condition (4.3)
1s also sufficient.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
For every i = 1,2,....N, let F; : C x C — R be a bifunction satisfying (A1) — (A4).
Let f,g: C — R be convex functions with gradient V f is Lif-inverse strongly monotone
i
N
continuous function for all Ly > 0 with F = Q; Ny N ﬂ EP(F;) # 0. Let sequence {x,}

i=1

and continuous function for all Ly > 0 and Vg is =—-inverse strongly monotone and

and {u®} generated by u,z1 € C and

Tpt1 = Qptu+ B Po(I = AMaVf + (1 —a)Vg))Tn + n ZZ e, Y on > 1,
(4.4)

) 1 )
Fy(ul,v) + —(v—ul,ul, —2,) >0, forallveCand i=1,2,..,N,
Tn

where {an },{Bn}, {1} C[0,1] with a, + B + v =1 for alln € N and a € (0,1).
Suppose that the following conditions hold :

(i hman—OandE oy, = 00,
n—oo 1
n=

(i ﬁm% [e,d] € (0,1), Vn €N,

i=1
(iv) 0<a<r, <b foralln €N,

)

)
(iii) Zai =1, where a; >0 forallt=1,2,...,N,
iv)
(v) X €(0,2n), where n = min{ 7 7 L%}

Then {x,} converges strongly to zo = Pyu.

Proof. The conclusion of Theorem 4.4 can be obtained from Theorem 3.1 and Lemma
4.3. ]

5. EXAMPLE AND NUMERICAL RESULTS

In this section, three examples are given to support our results.

Example 5.1. Let R be the set of real numbers. For every i = 1,2,..., N, let F;
[0,100] x [0,100] — [0,100] defined by F;(z,y) = (22 + zy + y?), vz ,y € R. Lot
A, B :[0,100] — [0,100] defined by Az = 3z and Bz = %, Vz € R. Then VI(C, A) N
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N

VI(C,B)N ﬂ EP(F;) = {0}. Let u € C and {z,,},{u},} be the sequences generated by
i=1

(3.1), for all i = 1,2,..., N. By the definition of F;, we have

. 1 o
0 < Fi(uy,v) + — (v —us,, uy, — ),

n

foralli=1,2,...,N and n € N.
Choose r, =1,
0 < Fi(ul,v) + (v —ul,ul, —x,)

= i(—2ul,” + v 4+ 0%) + (0 — ul) (- x,)

=i4(=2u),” + u,v+v°) +oul, —vx, —u, +u,,

(—2i — 1)qu2 + (i + Dubv + iv? — vz, + bz,

= iv? + ((i + Dul, — zp)v + (=20 — 1)uil2 +ul .
Let G(v) = v + ((i + Dul, — zp)v + (=20 — i, + vl z,,. A
G(v) is a quadratic function of u with coefficient a =4, b = (i + 1)ul, — p,
¢ = (=2i — Dui? + ul x,. Determine the discriminant A of G as follows:

A = b — 4ac

= (6 + 1), — 2)° — 4(0) (=20 — D, + ulyy)

= (i 4+ 128 — 230 + D) 2y + 0% — 4i(—2i — 1) ” — divd

= (i +1)% — 4i(—2i — D)ul.? — 2(3i + Dl zy + 22

= (932 + 60 + 1)u’,” — 2(3i + Dl 2y + 202

= ((3i + Duf, — zn)?,

we know that G(v) > 0, Vv € R. If it has at most one solution in R, then A < 0, so we

obtain
Tn

b= 5.1
wh= g (5.1
foralli=1,2,...,N.
Put o, = 3%,671 = 23:1a7n = lﬁgZSa)‘ = %704 = %
From (5.1) we rewrite (3.1) as follows:
1 2n+1 1.1 1
S P (I—ffA 1—7B)n
Tntl =g-U 9, L l0.200] 3(2 +( 2) ) )z
N
14n — 8 1 1 Ty
=+ —= . 5.2
+ 18n 2(32+N3N)3i+1 (5:2)

i=1
It is clear that the sequences {ay, }, {8, } and {~v,} satisfy all the conditions of theorem
3.1, we can conclude that the sequences {x,} and {u’} converge strongly to 0. The table
1 shows the values of sequences {u’,} and {z,}, where v =21 =1 and u = z; = —1.
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TABLE 1. The values of {u} and {x,} with n = N = 30

n u=x; =1 u=1x] =—1
uy, Ty u, Ty

1 0.010989 1.000000  -0.010989 -1.000000
2 0.005353 0.487120 -0.010063 -0.915692
3 0.003163 0.287809 -0.006855 -0.623774
4 0.002097 0.190808  -0.004161 -0.378611
5 0.001521 0.138441  -0.002498 -0.227329
15 0.000388 0.035350 -0.000396 -0.036052
26 0.000214 0.019487  -0.000216 -0.019670
27  0.000206 0.018724  -0.000208 -0.018891
28  0.000198 0.018018  -0.000200 -0.018172
29  0.000191 0.017364 -0.000192 -0.017506
30 0.000184 0.016755 -0.000186 -0.016887

I
0s ; -t o =
it} 7
/

FIGURE 1. The convergence comparison with different initial values u

and 21

Example 5.2. Let F;, o, By Yy A and a defined as in Example 5.1. Let T, .5 : [0,100] —
N

[0, 100] defined by T'x = § and Sz = L;, VY € R. Then F(T)NF(S)N ﬂ EP(F;) ={0}.
i=1

Let u € C and {z,},{u},} be the sequences generated by (4.1), for all i = 1,2,...,N.
Then, we have

1 2n+1 1.1 1
Tpy1 =5—u + ———Fo,100] (I - g(g(f -T)+(1- 5)(1 - S)))xn

3n 9In

14n—8 L /1 1 T

=2 ) 5.3
BT ;(31+N3N)3i+1 (5.3)

From Theorem 4.2, we can conclude that the sequences {z,} and {u} } converge strongly
to 0. The table 2 shows the values of sequences {u},} and {x,}, where u = x; = 1 and

u=u1x = —1.
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TABLE 2. The values of {u,} and {x,} with n = N = 30

n u=x; =1 u=x; = —1
uy, Ty uy, T

1 0.010989 1.000000  -0.010989 -1.000000
2 0.006843 0.622702  -0.006538 -0.594925
3 0.003585 0.326250 -0.003411 -0.310437
4 0.002094 0.190558  -0.002028 -0.184527
5 0.001415 0.128807 -0.001392 -0.126641
15 0.000349 0.031744  -0.000348 -0.031713
26  0.000193 0.017550 -0.000193 -0.017541
27  0.000185 0.016865 -0.000185 -0.016857
28  0.000178 0.016231  -0.000178 -0.016224
29  0.000172 0.015644  -0.000172 -0.015637
30 0.000166 0.015097  -0.000166 -0.015091

ook a1 FE-T ok
== s =%

FIGURE 2. The convergence comparison with different initial values u
and 21

Example 5.3. Let F;, ay,, Bn, Yn, A and a defined as in Example 5.1. Let f, g : [0,100] —
[0,100] defined by f(z) = 3z? and g(x) = %, Vz € R respectively. Then QN QN

N
m EP(F;) = {0}. Let u € C and {z,},{ul} be the sequences generated by (4.4), for all
i=1

i = 1,2,...,N. Then, we have
1 2n+1

11 1
Tnt1 =g u+ TP[O,IOO] (I - g(ivf +(1— 5)Vg)>xn

N
14n — 8 1 1 Ty
—_— —+ — . 5.4
+ 18n ;(31+N3N)3i+1 (54)
From theorem 4.4, we can conclude that the sequences {z,} and {u’} converge strongly

to 0. The table 3 shows the values of sequences {u’,} and {z,}, where u = z; = 1 and
u=x = —1.
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TABLE 3. The values of {u,} and {x,} with n = N = 30

n u=x; =1 u=x] = —1
uy, Ty uy, T

1 0.010989 1.000000  -0.010989 -1.000000
2 0.003231 0.293999  -0.012185 -1.108814
3 0.002594 0.236010 -0.010509 -0.956282
4 0.001870 0.170136  -0.007819 -0.711558
5 0.001416 0.128843  -0.005114 -0.465369
15 0.000385 0.035055  -0.000400 -0.036405
26 0.000213 0.019407  -0.000217 -0.019754
27  0.000205 0.018650  -0.000208 -0.018969
28  0.000197 0.017951  -0.000200 -0.018244
29  0.000190 0.017301  -0.000193 -0.017572
30 0.000183 0.016697  -0.000186 -0.016948

09

08

i
-k 02 % ==
or :

%

04

03

o

02

bs
z

01 s

FI1GURE 3. The convergence comparison with different initial values u

and x;

Conclusion

1. By comparing the convergence of {z,} in three examples, we can conclude that
the convergence of {z,} in an Example 5.2 is faster than the convergence of {x,,}

in Example 5.1 and 5.3.
2. Theorem 3.1, 4.2 and 4.4 guarantees the convergence of {z,} and {ul}, for all
1=1,2,..., N, in Example 5.1, 5.2 and 5.3, respectively.
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