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1. Introduction
The issue raised in [1] is the source for the speculation of stability of functional equa-

tions. The question devised by Ulam was responded by Hyers [2] which made a ground
breaking idea in the conjecture of stability of functional equation. The outcome attained
by Hyers is termed as Hyers–Ulam stability or ϵ-stability of functional equation. Then,
Hyers result was simplified by Aoki [3]. Also, Hyers result was modified by Rassias [4]
considering the upper bound as sum of powers of norms (Hyers-Ulam-T. Rassias stabil-
ity). Later, Rassias [5] established Hyers result by taking the upper bound as product of
powers of norms (Ulam-Gavruta-J. Rassias stability). In 1994, to promote the stability
result into simple form, Gavruta [6] reinstated the upper bound by a common governing
function (generalized Hyers-Ulam stability).
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In [7], for the first time, Bodaghi and Kim introduced and studied the Ulam-Gavruta-
Rassias stability for the quadratic reciprocal functional equation

f(2x+ y) + f(2x− y) =
2f(x)f(y)[4f(y) + f(x)]

(4f(y)− f(x))2
(1.1)

After that, this equation (1.2) is generalized in [8] as

f((m+1)x+my)+f((m+1)x−my) = 2f(x)f(y)[(m+ 1)2f(y) +m2f(x)]

((m+ 1)2f(y)−m2f(x))2
(1.2)

where m ∈ Z with m ̸= 0,−1. In [8], the authors established the generalized Hyers-Ulam-
Rassias stability for the functional equation (1.2) in non-Archimedean fields. Other form
of a quadratic reciprocal functional equation can be found in [9].

The generalized Hyers-Ulam stability of inverse-quadratic functional equation in two
variables of the form

Iq(x+ y) =
Iq(x)Iq(y)(√

Iq(x) +
√
Iq(y)

)2 (1.3)

is investigated in [10] in the setting of real numbers. It is easy to verify that the inverse-
quadratic function Iq(x) = 1

x2 is a solution of equation (1.3). For further stability results
using fixed point method concerning different types of functional equations and rational
functional equations, one may refer to ([11–17]).

Here, we bringout a few fundamental perceptions of non-Archimedean field and fixed
point alternative theorem in non-Archimedean settings.

Definition 1.1. Let U be a field with a mapping (valuation) |·| from U into [0,∞). Then
U is said to be a non-Archimedean field if the upcoming requirements exist:

(i) |ℓ| = 0 if and only if ℓ = 0;
(ii) |ℓ1ℓ2| = |ℓ1||ℓ2|;
(iii) |ℓ1 + ℓ2| ≤ max{|ℓ1|, |ℓ2|}

for all ℓ1, ℓ2 ∈ U.

It is evident that |1| = | − 1| = 1 and |ℓ| ≤ 1 for all ℓ ∈ N. Furthermore, we presume
that |·| is non-trivial, that is, there exists an α0 ∈ U such that |α0| ̸= 0, 1.

Suppose V is a vector space over a scalar field U with a non-Archimedean non-trivial
valuation |·|. A function ∥·∥ : V −→ R is a non-Archimedean norm (valuation) if it
satisfies the ensuing requirements:

(i) ∥x∥ = 0 if and only if x = 0;
(ii) ∥ρx∥ = |ρ| ∥x∥ (ρ ∈ U, x ∈ V );
(iii) the strong triangle inequality (Ultrametric); namely,

∥x+ y∥ ≤ max{∥x∥ , ∥y∥} (x, y ∈ V ).

Then (V, || · ||) is known as a non-Archimedean space. By virtue of the inequality

∥xℓ − xk∥ ≤ max {∥xj+1 − xj∥ : k ≤ j ≤ ℓ− 1} (ℓ > k),

a sequence {xk} is Cauchy if and only if {xk+1−xk} converges to 0 in a non-Archimedean
space. If every Cauchy sequence is convergent in the space, then it is called as complete
non-Archimedean space.
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Definition 1.2. Assume B is a nonempty set. Suppose d : B×B −→ [0,∞] satisfies the
ensuing properties:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) (symmetry);
(iii) d(x, z) ≤ max{d(x, y), d(y, z)} (strong triangle inequality)

for all x, y, z ∈ B. Then (B, d) is called a generalized non-Archimedean metric space.
Suppose every Cauchy sequence in B is convergent, then (B, d) is called complete.

Example 1.3. Let U be a non-Archimedean field. Assume X and Y are two non-
Archimedean spaces over U. If Y is complete and ψ : X −→ [0,∞), for every p, q : X −→
Y , define d(p, q) = inf{ϵ > 0 : |p(x)− q(x)| ≤ ϵψ(x), ∀x ∈ X}.

Applying Theorem 2.5 [18], a new version of the alternative fixed point principle in the
setting of non-Archimedean space is proposed in [19] as follows:

Theorem 1.4 ([19]). (Non-Archimedean version of alternative fixed point principle)
Suppose (B, d) is a non-Archimedean generalized metric space. Let a mapping Γ : B −→ B
be a strictly contractive, (that is d(Γ(x),Γ(y)) ≤ Kd(y, x), for all x, y ∈ B and a Lipschitz
constant K < 1), then either

(i) d
(
Γk(x),Γk+1(x)

)
= ∞ for all k ≥ 0, or;

(ii) there exists some k0 ≥ 0 such that d
(
Γk(x),Γk+1(x)

)
<∞ for all k ≥ k0;

the sequence
{
Γk(x)

}
is convergent to a fixed point x⋆ of Γ; x⋆ is the unique invariant

point of Γ in the set H = {y ∈ X : d
(
Γk0(x), y

)
<∞} and d (y, x⋆) ≤ d(y,Γ(y)) for all y

in this set.

In this study, we concentrate on the following functional equations

Iq

(
x+ y

2

)
− Iq(x+ y) =

3Iq(x)Iq(y)(√
Iq(x) +

√
Iq(y)

)2 (1.4)

and

Iq

(
x+ y

2

)
+ Iq(x+ y) =

5Iq(x)Iq(y)(√
Iq(x) +

√
Iq(y)

)2 . (1.5)

We observe that the inverse-quadratic function Iq(x) = 1
x2 fulfills equations (1.4) and

(1.5). For this reason, we name the equations (1.4) and (1.5) as Inverse-Quadratic Differ-
ence (IQD) functional equation and Inverse-Quadratic Adjoint (IQA) functional equation,
respectively. We attain the primary stabilities of the above equations (1.4) and (1.5) in
non-Archimedean fileds by means of fixed point scheme.

Let us presume that U and V are a non-Archimedean field and a complete non-
Archimedean field, respectively, in our entire study. In the sequel, we represent U∗ =
U\{0}, where U is a non-Archimedean field. For the sake of easy computation, we describe
the difference operators ∆1Iq,∆2Iq : U∗ × U∗ −→ V by

∆1Iq(x, y) = Iq

(
x+ y

2

)
− Iq(x+ y)− 3Iq(x)Iq(y)(√

Iq(x) +
√
Iq(y)

)2



72 Thai J. Math. Vol. 20 (2022) B.V. Senthil Kumar and S. Sabarinathan

and

∆2Iq(x, y) = Iq

(
x+ y

2

)
+ Iq(x+ y)− 5Iq(x)Iq(y)(√

Iq(x) +
√
Iq(y)

)2

for all x, y ∈ U∗.

2. Solution of Equations (1.4) and (1.5)
In this section, we solve the equations (1.4) and (1.5) for their solution. In the following

theorem, let x, y ∈ U∗.

Theorem 2.1. Let Iq : U∗ −→ V be a mapping. Then the following statements are
equivalent.

(i) Iq satisfies (1.3).
(ii) Iq satisfies (1.4).
(iii) Iq satisfies (1.5).

Hence, the solution of (1.4) and (1.5) is also an inverse-quadratic mapping.

Proof. Firstly, let us prove that if Iq satisfies (1.3), then it satisfies (1.4). For this, let us
switch y into x in (1.3), to get

Iq(2x) =
1

4
Iq(x). (2.1)

Now, let us consider x
2 in place of x in (2.1), to find

Iq

(x
2

)
= 4Iq(x). (2.2)

Again, substitute (x, y) by (x2 ,
y
2 ) in (1.3) and apply (2.2), to acquire

Iq

(
x+ y

2

)
=

4Iq(x)Iq(y)(√
Iq(x) +

√
Iq(y)

)2 . (2.3)

Subtract (1.3) from (2.3), to arrive at (1.5).
Next, we prove that if Iq satisfies (1.4), then it satisfies (1.5). For this, let us plug y

by x in (1.5), to get

Iq(2x) =
1

4
Iq(x). (2.4)

Now, replace x by x
2 in (2.4), to obtain

Iq

(x
2

)
= 4Iq(x). (2.5)

Let us use (2.5) in (1.5), to get

Iq(x+ y) =
Iq(x)Iq(y)(√

Iq(x) +
√
Iq(y)

)2 . (2.6)

Now, the summation of (2.6) and (2.3) leads to (1.5).
Finally, we prove that if Iq satisfies (1.5), then it satisfies (1.3). To prove this, take

y = x in (1.5), to get

Iq(2x) =
1

4
Iq(x). (2.7)
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Now, replacing x by x
2 in (2.7), to obtain

Iq

(x
2

)
= 4Iq(x). (2.8)

Apply (2.8) in (1.5), to arrive at (1.3), which completes the proof.

3. Non-Archimedean Stabilities of Equations (1.4) and (1.5)
In this section, we prove the existence of non-Archimedean stabilities of equations (1.4)

and (1.5) through fixed point method.

Theorem 3.1. Let j ∈ {1, 2}. Assume a mapping Iq : U∗ −→ V satisfies the inequality
|∆ȷIq(x, y)| ≤ ξ(x, y) (3.1)

for all x, y ∈ U∗, where ξ : U∗ × U∗ −→ V is a given function. If 0 < L < 1,
|2|−2ξ

(
2−1x, 2−1y

)
≤ Lξ(x, y) (3.2)

for all x, y ∈ U∗, then there exists a unique invers-quadratic mapping rq : U∗ −→ V
satisfying the equations (1.4) and (1.5), respectively for j = 1, 2 and

|Iq(x)− rq(x)| ≤ L|2|2ξ(x, x) (3.3)
for all x ∈ U∗.

Proof. Firstly, let us prove this theorem for the case when j = 1. Plugging (x, y) by(
x
2 ,

y
2

)
in (3.1), we obtain∣∣Iq(x)− 2−2Iq

(
2−1x

)∣∣ ≤ ξ
(
2−1x, 2−1x

)
(3.4)

for all x ∈ U∗. Let A = {p|p : U∗ −→ V}, and define d(p, q) = inf{γ > 0 : |p(x)− q(x)| ≤
γξ(x, x), for all x ∈ U∗}. In view of Example 1.3, we find that d turns into a complete
generalized non-Archimedean complete metric on A. Let Γ : A −→ A be a mapping
defined by Γ(p)(x) = 2−2p

(
2−1x

)
for all x ∈ U∗ and p ∈ A. Then Γ is strictly contractive

on A, in fact if |p(x)− q(x)| ≤ γξ(x, x), (x ∈ U∗), then by (3.2), we obtain
|Γ(p)(x)− Γ(q)(x)| = |2|−2

∣∣p (2−1x
)
− q

(
2−1x

)∣∣ ≤ γ|2|−2ξ
(
2−1x, 2−1x

)
≤ γLξ(x, x) (x ∈ U∗).

From the above, we conclude that (Γ(p),Γ(q)) ≤ Ld(p, q) (p, q ∈ A). Consequently, the
mapping d is strictly contractive with Lipschitiz constant L. Using (3.4), we have

|Γ(p)(x)− p(x)| =
∣∣2−2p

(
2−1x

)
− p(x)

∣∣ ≤ ξ
(x
2
,
x

2

)
≤ |2|2Lξ(x, x) (u ∈ U∗).

This indicates that d(Γ(p), p) ≤ L|2|2. Due to Theorem 1.4 (ii), Γ has a distinct invariant
point rq : U∗ −→ V in the set G = {g ∈ F : d(x, g) < ∞} and for each x ∈ U∗,
rq(x) = lim

s→∞
ΓsIq(x) = lim

s→∞
2−2sIq (2

−sx) (x ∈ U∗). Therefore, for all x, y ∈ U∗,

|∆1rq(x, y)| = lim
s→∞

|2|−2s
∣∣∆1Iq

(
2−sx, 2−sy

)∣∣ ≤ lim
s→∞

|2|−2sξ
(
2−sx, 2−sy

)
≤ lim

s→∞
Lsξ(x, y) = 0

which shows that rq is inverse-quadratic. Theorem 1.4 (ii) implies d(Iq, rq(x)) ≤ d(Γ(Iq), Iq),
that is, |Iq(x)− rq(x)| ≤ |2|2Lξ(x, x) (x ∈ U∗). Let r′q : U∗ −→ V be a inverse-quadratic
mapping which satisfies (3.3), then r′q is a fixed point of Γ in A. However, by Theorem
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1.4, Γ has only one fixed point in G. This completes the uniqueness assertion of the
theorem.

For the case j = 2, we can achieve the stability results concerning equation (1.5)
through similar arguments as in the case of j = 1. Hence we omit the proof of the
stability results of equation (1.5). The ensuing theorem is dual of Theorem 3.1. Hence,
we omit the proof as it is analogous to Theorem 3.1.

Theorem 3.2. Suppose the mapping Iq : U⋆ −→ V satisfies the inequality (3.2). If
0 < L < 1, |2|2ξ(2x, 2y) ≤ Lξ(x, y), for all x, y ∈ U⋆, then there exists a unique inverse-
quadratic mapping rq : U⋆ −→ V satisfying the equations (1.4) and (1.5), respetively for
j = 1, 2 and |Iq(x)− rq(x)| ≤ Lξ

(
x
2 .

x
2

)
, for all x ∈ U⋆.

The following corollaries are immediate consequences of Theorems 3.1 and 3.2. In
the following corollaries, we assume that |2| < 1 for a non-Archimdean field U. In the
subsequent outcomes, let us assume that Iq : U⋆ −→ V to be a mapping. Also, let
j ∈ {1, 2} in the following results.

Corollary 3.3. Let ξ (independent of x, y)> 0 be a constant. Suppose the mapping Iq
satisfies the inequality |∆jIq(x, y)| ≤ ϵ, for all x, y ∈ U⋆. Then there exists a unique
inverse-quadratic mapping rq : U⋆ −→ V satisfying the equations (1.4) and (1.5), respec-
tively for j = 1, 2 with the result |Iq(x)− rq(x)| ≤ ϵ, for all x ∈ U⋆

Proof. Replacing ξ(x, y) by ϵ and then choosing L = |2| in Theorem 3.1, we get
|Iq(x)− rq(x)| ≤ |2|3ϵ ≤ ϵ

for all x ∈ U⋆.

Corollary 3.4. Let β ̸= −2 and k1 ≥ 0 be real numbers exists for a mapping Iq such
that |∆jIq(x, y)| ≤ k1(|x|β + |y|β), for all x, y ∈ U⋆. Then there exists a unique inverse-
quadratic mapping rq : U⋆ −→ V satisfying the equations (1.4) and (1.5), respectively for
j = 1, 2 with the result

|Iq(x)− rq(x)| ≤

{
|2|k1

|2|β |x|β , β < −2

|2|3k1|x|β , β > −2

for all x ∈ U⋆.

Proof. Assuming ξ(x, y) = k1
(
|x|β + |y|β

)
in Theorems 3.1 and 3.2 and then selecting

L = |2|−β−2, β < −2 and L = |2|β+2, β > −2, respectively, the proof follows.

Corollary 3.5. Let k2 ≥ 0 and β ̸= −2 be real numbers, and the mapping Iq satis-
fies the inequality |∆jIq(x, y)| ≤ k2|x|β/2|y|β/2, for all x, y ∈ U∗. Then there exists a
unique inverse-quadratic mapping rq : U∗ −→ V satisfying the equations (1.4) and (1.5),
respectively for j = 1, 2 with the result

|Iq(x)− rq(x)| ≤

{
k2

|2|β |x|
β , β < −2

|2|2k2|x|β , β > −2

for all x ∈ U∗.

Proof. It is easy to prove this corollary, by taking ξ(x, y) into k2|x|β/2|y|β/2 and then
choosing L = |2|−β−2, β < −2 and L = |2|β+2, β > −2, respectively in Theorems 3.1 and
3.2.
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4. Counter-Examples
In the sequel, We illustrate some counter-examples that the functional equations (1.4)

and (1.5) fail to stable for the critical case when β = −2 in Corollary 3.4.
Let us consider a function ξ : R⋆ −→ R defined as follows:

ξ(x) =

{
δ
x2 , for x ∈ (1,∞)

δ, otherwise
(4.1)

Let Iq : R⋆ −→ R be a mapping defined via

Iq(x) =

∞∑
n=0

4−nξ(2−nx) (4.2)

for all x ∈ R⋆. By the definition of Iq, it gets transformed into counter-example for the
fact that the equation (1.4) fails to be stable for the singular case β = −2 in Corollary
3.4 in the subsequent theorem.

Theorem 4.1. Let j ∈ {1, 2}. If the function Iq defined in (4.2) satisfies the following
approximation

|∆jIq(x, y)| ≤
44δ

3
(|x|−2 + |y|−2) (4.3)

for all x, y ∈ R⋆, then there do not exist a inverse-reciprocal quadratic mapping rq :
R⋆ −→ R and a constant µ > 0 such that

|Iq(x)− rq(x)| ≤ µ|x|−2 (4.4)
for all x ∈ R⋆.

Proof. Firstly, let us assume j = 1. Then, let us show that Iq satisfies (4.3). By simple
derivation, we have

|Iq(x)| =

∣∣∣∣∣
∞∑

n=0

4−nξ(2−nx)

∣∣∣∣∣ ≤
∞∑

n=0

δ

4n
=

4δ

3

Therefore, we see that Iq is bounded by 4δ
3 on R. If |x|−2 + |y|−2 ≥ 1, then the left-hand

side of (4.3) is less than 44δ
3 . Now, suppose that 0 < |x|−2 + |y|−2 < 1. Hence, there

exists a positive integer k with the following relation:
1

4k+1
≤ |x|−2 + |y|−2 <

1

4k
(4.5)

From the above relation (4.5), we have 4k(|x|−2 + |y|−2) < 1 which gives 4k

x2 < 1, 4
k

y2 < 1.
Therefore, x2

4k
> 1, y

2

4k
> 1. The last two inequalities lead to x2

4k−1 > 4 > 1, y2

4k−1 > 4 > 1
and as a result, we have

1

2k−1
(x) > 1,

1

2k−1
(y) > 1,

1

2k−1
(x+ y) > 1,

1

2k−1

(
x+ y

2

)
> 1

Hence, for each value of n ∈ {0, 1, 2, ..., k − 1}, we obtain
1

2n
(x) > 1,

1

2n
(y) > 1,

1

2n
(x+ y) > 1,

1

2n

(
x+ y

2

)
> 1



76 Thai J. Math. Vol. 20 (2022) B.V. Senthil Kumar and S. Sabarinathan

and ∆1ξ(2
−nx, 2−ny) = 0 for n ∈ {0, 1, 2, ..., k − 1}. Utilizing (4.1) and by the definition

of Iq, we obtain

|∆1Iq(x, y)| ≤
∞∑

n=k

δ

4n
+

∞∑
n=k

δ

4n
+

3

4

∞∑
n=k

δ

4n
≤ 11δ

4

∞∑
n=k

1

4n

≤ 11δ

4

1

4k

(
1− 1

4

)−1

≤ 11δ

3

1

4k
≤ 44δ

3

1

4k+1
≤ 44δ

3
(|x|−2 + |y|−2)

for all x, y ∈ R⋆. Therefore, the inequality (4.3) holds. We claim that the equation (1.4)
fails to be stable for β = −2 in Corollary 3.4. For this, let us assume to the contrary that
there exists an inverse-quadratic mapping rq : R⋆ −→ R satisfying (4.4). Therefore, we
have

|rq(x)| ≤ (µ+ 1)|x|−2 (4.6)

However, we can choose a positive integer m with mδ > µ + 1. If x ∈ (1, 2m−1) then
2−nx ∈ (1,∞) for all n = 0, 1, 2, ...,m− 1 and thus

|rq(x)| =
∞∑

n=0

ξ(2−nx)

4n
≥

m−1∑
n=0

4nδ
x2

4n
=
mδ

x2
> (µ+ 1)x−2

which contradicts (4.6). Therefore, the equation (1.4) fails to be stable for β = −2 in
Corollary 3.4.

We can also illustrate a similar counter-example for the instability of equation (1.5)
when β = −2 in Corollary 3.4.

5. Elucidation of Equations (1.4) and (1.5) via Inverse Square
Law
In Physics, the inverse square law states that the intensity of light is inversely pro-

portional to the square of its distance from a light source. This implies that when the
distance increases from a light source, then the intensity of light is proportional to 1

x2 ,
where x is the distance of the light source. The inverse square law is used to determine as-
tronomical distances. A light source of known intrinsic brightness can be used to measure
its distance from the Earth using inverse square law. Owing to the solution of equations
(1.4) and (1.5), we can produce two new relations using inverse square law.

(1) We have Iq
(
x+y
2

)
= 4

(x+y)2 and Iq (x+ y) = 1
(x+y)2 . Therefore, the left-hand

side of (1.4) indicates that it is the difference between the intensities of the light
source at distances x+y

2 and x+y. Also, we have Iq(x) = 1
x2 and Iq(y) = 1

y2 . The
right-hand side of (1.4) specifies that it is the ratio of 3 times multiplied with the
product of the intensities of light source at distances x and y to the square of sum
of square of the distances x and y.

(2) By a similar reason, the left-hand side of (1.5) signifies that it is the sum of the
intensities of the light source at distances x+y

2 and x + y. The right-hand side
of (1.5) implies that it is the ratio of 5 times multiplied with the product of the
intensities of light source at distances x and y to the square of sum of square of
the distances x and y.
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Thus, we have given rise the interpretation of our equations (1.4) and (1.5) through inverse
square law.

6. Discussions and Conclusions
This is our first effort to deal with inverse reciprocal functional equations with argu-

ments in rational form. In this work, we have proved that the solution of the equations
(1.4) and (1.5) is inverse-quadratic mapping. We also conclude that the stability results
hold good for these equations in the frame work of non-Archimedean fields except at some
singular cases. To justify the instability of these equations, we have illustrated proper
examples. Using inverse square law; we have encountered with two new relations through
equations (1.4) and (1.5).
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