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Weak and Strong Convergence Theorems
for New Iterations with Errors

for Nonexpansive Nonself-Mapping
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Abstract : Suppose C is a nonempty closed convex nonexpansive retract of real
uniformly convex Banach space X with P as a nonexpansive retraction . Let
T : C → X be a nonexpansive nonself-mapping of C with F (T ) := {x ∈ C : Tx =
x} 6= ∅. Suppose {xn} is generated iteratively by x1 ∈ C,

yn = P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn),
xn+1 = P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn), n ≥ 1,

where {an}, {bn}, {µn}, {δn}, {βn} and{γn} are appropriate sequences in [0, 1] and
{wn}, {vn} are bounded sequences in C. (1) If T is a completely continuous non-
expansive nonself-mapping, then strong convergence of {xn} to some x∗ ∈ F (T )
is obtained; (2) If T satisfies condition (A), then strong convergence of {xn} to
some x∗ ∈ F (T ) is obtained; (3) If X is a uniformly convex Banach space which
satisfies Opial’s condition, then weak convergence of {xn} to some x∗ ∈ F (T ) is
proved.

Keywords : Weak and strong convergence; Nonexpansive nonself-mapping; Com-
pletely continuous; Condition (A); Opial condition.
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1 Introduction

Fixed-point iteration processes for approximating fixed points of nonexpansive
mappings in Banach spaces have been studied by various authors (see [3, 4, 6, 9,
10, 15, 17, 19]) using the Mann iteration process (see [6]) or the Ishikawa iteration
process (see [3, 4, 15, 19]). For nonexpansive nonself-mappings, some authors (see
[19, 12, 14, 16]) have studied the strong and weak convergence theorems in Hilbert
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space or uniformly convex Banach spaces. In 2000, Noor [7] introduced a three-
step iterative scheme and studied the approximate solutions of variational inclusion
in Hilbert spaces. In 1998, Takahashi and Kim [14] proved strong convergence of
approximants to fixed points of nonexpansive nonself-mappings in reflexive Banach
spaces with a uniformly Gâteaux differentiable norm. In the same year, Jung and
Kim [5] proved the existence of a fixed point for a nonexpansive nonself-mapping
in a uniformly convex Banach space with a uniformly Gâteaux differentiable norm.
In [15], Tan and Xu introduced a modified Ishikawa process to approximate fixed
points of nonexpansive self-mappings defined on nonempty closed convex bounded
subsets of a uniformly convex Banach space X. More preciesely, they proved the
following theorem.

Theorem 1.1. (Tan and Xu [15], Theorem 1, p. 305). Let X be a uniformly con-
vex Banach space which satisfies Opial’s condition or has a Fréchet differentiable
norm and C a nonempty closed convex bounded subset of X. Let T : C → C be
a nonexpansive mapping. Let {αn} and {βn} be real sequences in [0, 1] such that∑∞

n=1 αn(1−αn) = ∞,
∑∞

n=1 βn(1− βn) < ∞, and lim supn→∞ βn < 1. Then the
sequence {xn} generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT ((1− βn)xn + βnTxn), n ≥ 1 (1.1)

converges weakly to some fixed point of T.

Suantai [13] defined a new three-step iterations which is an extension of Noor
iterations and gave some weak and strong convergence theorems of such iterations
for asymptotically nonexpansive mappings in uniformly convex Banach spaces.
Recently, Shahzad [12] extended Tan and Xu results [6, Theorem 1, p.305] to the
case of nonexpansive nonself-mapping in a uniformly convex Banach space.

Inspired and motivated by research going on in this area, we define and study a
new iterative scheme with errors for nonexpansive nonself-mapping. This scheme
can be viewed as an extension for the iterative scheme of Shahzad [12]. The scheme
is defined as follows:

Let X be a normed space, C a nonempty convex subset of X, P : X → C the
nonexpansive retraction of X onto C, and T : C → X a given mapping. Then for
a given x1 ∈ C, compute the sequences {xn} and {yn} by the iterative scheme:

yn = P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn),
xn+1 = P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn), (1.2)

n ≥ 1, where {an}, {bn}, {µn}, {δn}, {βn} and{γn} are appropriate sequences in
[0, 1] and {wn}, {vn} are bounded sequences in C.

If an = µn = δn ≡ 0, then (1.2) reduces to the iterative scheme defined by
Shahzad [12]:

x1 ∈ C, xn+1 = P ((1− bn)xn + bnTP ((1− γn)xn + γnTxn)), n ≥ 1,(1.3)

where {bn} and {γn}, are real sequences in [ε, 1− ε] for some ε ∈ (0, 1).
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If T : C → C and an = µn = δn ≡ 0, then (1.2) reduces to the iterative scheme
(1.1) defined by Tan and Xu [15].

The purpose of this paper is to construct an iteration scheme for approximating
a fixed point of nonexpansive nonself-mappings (when such a fixed point exists)
and to prove some strong and weak convergence theorems for such mappings in a
uniformly convex Banach space. Our results extend and improve the corresponding
ones announced by Shahzad [12], Tan and Xu [15], and others.

Now, we recall the well known concepts and results.
Let X be a Banach space with dimension X ≥ 2. The modulus of X is the

function δX : (0, 2] → [0, 1] defined by

δX(ε) = inf{1− ‖1
2
(x + y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖}.

Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2].
A subset C of X is said to be retract if there exists continuous mapping

P : X → C such that Px = x for all x ∈ C. Every closed convex subset of a
uniformly convex Banach space is a retract. A mapping P : X → X is said to be
a retraction if P 2 = P. If a mapping P is a retraction, then Pz = z for every
z ∈ R(P ), range of P.

Recall that a Banach space X is said to satisfy Opial’s condition [8] if xn → x
weakly as n →∞ and x 6= y imply that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

The mapping T : C → X with F (T ) 6= ∅ is said to satisfy condition(A) [11] if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0
for all r ∈ (0,∞) such that

‖x− Tx‖ ≥ f(d(x, F (T ))).

for all x ∈ C; (see [11], P.377) for an example of nonexpansive mappings satisfying
condition (A).

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.2 ([15]). Let {an}, {bn} and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ...,

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then
(1) limn→∞ an exists .
(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 1.3 ([17]). Let p > 1, r > 0 be two fixed numbers. Then a Banach space
X is uniformly convex if and only if there exists a continuous, strictly increasing,
and convex function g : [0,∞) → [0,∞), g(0) = 0 such that

‖λx + (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − wp(λ)g(‖x− y‖),
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for all x, y in Br = {x ∈ X : ‖x‖ ≤ r}, λ ∈ [0, 1], where

wp(λ) = λ(1− λ)p + λp(1− λ).

Lemma 1.4 ([2]). Let X be a uniformly convex Banach space and Br = {x ∈ X :
‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing, and convex
function g : [0,∞) → [0,∞), g(0) = 0 such that

‖αx + βy + γz‖2 ≤ α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβg(‖x− y‖),

for all x, y, z ∈ Br, and all α, β, γ,∈ [0, 1] with α + β + γ = 1.

Lemma 1.5 ([1]). Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X, and T : C → X be a nonexpansive mapping. Then
I − T is demiclosed at 0, i.e., if xn → x weakly and xn − Txn → 0 strongly, then
x ∈ F (T ), where F (T ) is the set of fixed point of T .

Lemma 1.6 ([13]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X . Let u, v ∈ X be such that limn→∞ ‖xn − u‖
and limn→∞ ‖xn − v‖ exist. If {xnk

} and {xmk
} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.

2 Main Results

In this section, we prove weak and strong convergence theorems of the new
iterative scheme (1.2) for nonexpansive nonself-mapping in a uniformly convex
Banach space. In order to prove our main results, the following lemmas are needed.

Lemma 2.1. Let X be a uniformly convex Banach space, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :
C → X be a nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that {an}, {bn},
{µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are bounded
sequences in C such that

∑∞
n=1 µn < ∞,

∑∞
n=1 δn < ∞. From an arbitrary x1 ∈ C,

define the sequences {xn} and {yn} by the recursion (1.2). Then limn→∞ ‖xn−x∗‖
exists for all x∗ ∈ F (T ).

Proof. Let x∗ ∈ F (T ), and

M = max{sup
n≥1

‖wn − x∗‖, sup
n≥1

‖vn − x∗‖}.

For each n ≥ 1, using (1.2), we have
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‖xn+1 − x∗‖ = ‖P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn)− x∗‖
= ‖P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn)− P (x∗)‖
≤ ‖(1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn − x∗‖
= ‖(1− bn − δn)(xn − x∗) + bn(TP ((1− γn)yn

+γnTyn)− x∗) + δn(vn − x∗)‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖TP ((1− γn)yn

+γnTyn)− x∗‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖P ((1− γn)yn

+γnTyn)− x∗‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖(1− γn)yn

+γnTyn − x∗‖+ δn‖vn − x∗‖
= (1− bn − δn)‖xn − x∗‖+ bn‖(1− γn)(yn − x∗)

+γn(Tyn − x∗)‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn((1− γn)‖yn − x∗‖

+γn‖yn − x∗‖) + δn‖vn − x∗‖
= (1− bn − δn)‖xn − x∗‖+ bn‖yn − x∗‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖yn − x∗‖+ Mδn (2.1)

and‖yn − x∗‖ = ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− x∗‖
= ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− P (x∗)‖
≤ ‖(1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn − x∗‖
= ‖(1− an − µn)(xn − x∗) + an(TP ((1− βn)xn

+βnTxn)− x∗) + µn(wn − x∗)‖
≤ (1− an − µn)‖xn − x∗‖+ an‖TP ((1− βn)xn

+βnTxn)− x∗‖+ µn‖wn − x∗‖
≤ (1− an − µn)‖xn − x∗‖+ an‖P ((1− βn)xn

+βnTxn)− x∗‖+ µn‖wn − x∗‖
≤ (1− an − µn)‖xn − x∗‖+ an‖(1− βn)xn

+βnTxn − x∗‖+ µn‖wn − x∗‖
= (1− an − µn)‖xn − x∗‖+ an‖(1− βn)(xn − x∗)

+βn(Txn − x∗)‖+ µn‖wn − x∗‖
≤ (1− an − µn)‖xn − x∗‖+ an(1− βn)‖xn − x∗‖

+anβn‖xn − x∗‖+ µn‖wn − x∗‖
= (1− an − µn)‖xn − x∗‖+ an‖xn − x∗‖+ µn‖wn − x∗‖
= (1− µn)‖xn − x∗‖+ µn‖wn − x∗‖
≤ ‖xn − x∗‖+ Mµn. (2.2)
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Using (2.1) and (2.2), we have

‖xn+1 − x∗‖ ≤ (1− bn − δn)‖xn − x∗‖+ bn(‖xn − x∗‖+ Mµn) + Mδn

= (1− bn − δn)‖xn − x∗‖+ bn‖xn − x∗‖+ Mbnµn + Mδn

= (1− δn)‖xn − x∗‖+ Mbnµn + Mδn

≤ ‖xn − x∗‖+ kn
(1), (2.3)

where kn
(1) = Mbnµn + Mδn.

Since
∑∞

n=1 µn < ∞ and
∑∞

n=1 δn < ∞ , we have
∑∞

n=1 kn
(1) < ∞. We obtained

from (2.3) and Lemma 1.2(i) that limn→∞ ‖xn − x∗‖ exists. This completes the
proof. ¤

Lemma 2.2. Let X be a uniformly convex Banach space, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :
C → X be a nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that {an}, {bn},
{µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are bounded
sequences in C such that

∑∞
n=1 µn < ∞,

∑∞
n=1 δn < ∞, 0 < lim infn→∞ bn, and

0 < lim infn→∞ βn < lim supn→∞ βn < 1. From an arbitrary x1 ∈ C, define the
sequences {xn} and {yn} by the recursion (1.2). Then limn→∞ ‖Txn − xn‖ = 0.

Proof. Let x∗ ∈ F (T ). Then, by Lemma 2.1, limn→∞ ‖xn − x∗‖ exists. Let
limn→∞ ‖xn − x∗‖ = r. If r = 0, then by the continuity of T the conclusion
follows. Now suppose r > 0. We claim

lim
n→∞

‖Txn − xn‖ = 0.

Set qn = P ((1−βn)xn +βnTxn) and sn = P ((1−γn)yn +γnTyn). Since {xn}
is bounded, there exists R > 0 such that xn − x∗, yn − x∗ ∈ BR(0) for all n ≥ 1.
Using Lemma 1.3, Lemma 1.4 and T is a nonexpansive, we have

‖xn+1 − x∗‖2 = ‖P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn)− x∗‖2
= ‖P ((1− bn − δn)xn + bnTsn + δnvn)− x∗‖2
≤ ‖(1− bn − δn)xn + bnTsn + δnvn − x∗‖2
= ‖(1− bn − δn)(xn − x∗) + bn(Tsn − x∗) + δn(vn − x∗)‖2
≤ (1− bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + δn‖vn − x∗‖2

−(1− bn − δn)bng(‖Tsn − xn‖)
≤ (1− bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + M2δn, (2.4)
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‖Tsn − x∗‖2 = ‖TP ((1− γn)yn + γnTyn)− x∗‖2
≤ ‖P ((1− γn)yn + γnTyn)− x∗‖2
≤ ‖(1− γn)yn + γnTyn − x∗‖2
≤ ‖(1− γn)(yn − x∗) + γn(Tyn − x∗)‖2
≤ (1− γn)‖yn − x∗‖2 + γn‖Tyn − x∗‖2

−W2(γn)g(‖Tyn − yn‖)
≤ ‖yn − x∗‖2 −W2(γn)g(‖Tyn − yn‖)
≤ ‖yn − x∗‖2, (2.5)

‖yn − x∗‖2 = ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− x∗‖2
= ‖P ((1− an − µn)xn + anTqn + µnwn)− x∗‖2
≤ ‖(1− an − µn)xn + anTqn + µnwn − x∗‖2
= ‖(1− an − µn)(xn − x∗) + an(Tqn − x∗) + µn(wn − x∗)‖2
≤ (1− an − µn)‖xn − x∗‖2 + an‖Tqn − x∗‖2 + µn‖wn − x∗‖2

−an(1− an − µn)g(‖Tqn − xn‖)
≤ (1− an − µn)‖xn − x∗‖2 + ‖Tqn − x∗‖2 + M2µn, (2.6)

and

‖Tqn − x∗‖2 = ‖TP ((1− βn)xn + βnTxn)− x∗‖2
≤ ‖P ((1− βn)xn + βnTxn)− x∗‖2
≤ ‖(1− βn)(xn − x∗) + βn(Txn − x∗)‖2
≤ (1− βn)‖xn − x∗‖2 + βn‖Txn − x∗‖2

−W2(βn)g(‖Txn − xn‖)
≤ ‖xn − x∗‖2 −W2(βn)g(‖Txn − xn‖). (2.7)

By using (2.4), (2.5), (2.6) and (2.7), we have
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‖xn+1 − x∗‖2 ≤ (1− bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + δnM2

≤ (1− bn − δn)‖xn − x∗‖2 + bn‖yn − x∗‖2 + δnM2

≤ (1− bn − δn)‖xn − x∗‖2 + bn((1− an − µn)‖xn − x∗‖2
+‖Tqn − x∗‖2 + M2µn) + M2δn

≤ (1− bn − δn)‖xn − x∗‖2 + bn((1− an − µn)‖xn − x∗‖2
+(‖xn − x∗‖2 −W2(βn)g(‖Txn − xn‖)) + M2µn) + M2δn

≤ (1− bn − δn)‖xn − x∗‖2 + bn((1− an − µn)‖xn − x∗‖2
+‖xn − x∗‖2 −W2(βn)g(‖Txn − xn‖) + M2µn) + M2δn

≤ (1− bn − δn)‖xn − x∗‖2 + bn(‖xn − x∗‖2
−W2(βn)g(‖Txn − xn‖) + M2µn) + M2δn

≤ ‖xn − x∗‖2 − bnW2(βn)g(‖Txn − xn‖)
+M2µn + M2δn

= ‖xn − x∗‖2 − bnW2(βn)g(‖Txn − xn‖) + kn
(2)

= ‖xn − x∗‖2 − bnβn(1− βn)g(‖Txn − xn‖) + kn
(2), (2.8)

where kn
(2) = M2µn + M2δn. Since

∑∞
n=1 µn < ∞ and

∑∞
n=1 δn < ∞, we have∑∞

n=1 kn
(2) < ∞. Since 0 < lim infn→∞ bn and 0 < lim infn→∞ βn < lim supn→∞ βn <

1, there exists n0 ∈ N and η1, η2, η3 ∈ (0, 1) such that 0 < η1 < bn and
0 < η2 < βn < η3 < 1 for all n ≥ n0. It follows from (2.8) that

η1η2(1− η3)g(‖Txn − xn‖) ≤ (‖xn − x∗‖2 − ‖xn+1 − x∗‖2) + kn
(2),

for all n ≥ n0. Applying for m ≥ n0, we have

η1η2(1− η3)
m∑

n=n0

g(‖Txn − xn‖) ≤
m∑

n=n0

(‖xn − x∗‖2 − ‖xn+1 − x∗‖2) +
m∑

n=n0

kn
(2)

= ‖xn0 − x∗‖2 +
m∑

n=n0

kn
(2).

Since
∑∞

n=1 kn
(2) < ∞, by letting m →∞ we get

∑∞
n=1 g(‖Txn−xn‖) < ∞, and

therefore limn→∞ g(‖Txn−xn‖) = 0. Since g is strictly increasing and continuous
at 0 with g(0) = 0, it follows that limn→∞ ‖Txn − xn‖ = 0. This completes the
proof. ¤

Theorem 2.3. Let X be a uniformly convex Banach space, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction, and T :
C → X a completely continuous nonexpansive nonself-mapping with F (T ) 6= ∅.
Suppose that {an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] and
{wn}, {vn} are bounded sequences in C such that

∑∞
n=1 µn < ∞,

∑∞
n=1 δn <
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∞, 0 < lim infn→∞ bn, and 0 < lim infn→∞ βn < lim supn→∞ βn < 1. Then the
sequences {xn} and {yn} defined by the iterative scheme (1.2) converge strongly
to a fixed point of T.

Proof. By Lemma 2.2, we have

lim
n→∞

‖Txn − xn‖ = 0. (2.9)

Since T is completely continuous and {xn} ⊆ C is bounded, there exists a
subsequence {xnk

} of {xn} such that {Txnk
} converges. Therefore from (2.9),

{xnk
} converges. Let q = limk→∞ xnk

. By the continuity of T and (2.9) we have
that Tq = q, so q is a fixed point of T . By Lemma 1.2(i), limn→∞ ‖xn− q‖ exists.
Then limk→∞ ‖xnk

− q‖ = 0. Thus limn→∞ ‖xn − q‖ = 0. Using (1.2), we have

‖yn − xn‖ = ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− xn‖
≤ ‖(1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn − xn‖
= ‖an(TP ((1− βn)xn + βnTxn)− xn) + µn(wn − xn)‖
= ‖an(TP ((1− βn)xn + βnTxn)− Txn + Txn − xn) + µn(wn − xn)‖
≤ an‖TP ((1− βn)xn + βnTxn)− Txn + Txn − xn‖+ µn‖wn − xn‖
≤ an‖TP ((1− βn)xn + βnTxn)− Txn‖+ an‖Txn − xn‖+ µn‖wn − xn‖
≤ an‖P ((1− βn)xn + βnTxn)− xn‖+ an‖Txn − xn‖+ µn‖wn − xn‖
≤ an‖(1− βn)xn + βnTxn − xn‖+ an‖Txn − xn‖+ µn‖wn − xn‖
≤ anβn‖Txn − xn‖+ an‖Txn − xn‖+ µn‖wn − xn‖ → 0 as n →∞.

It follows that limn→∞ ‖yn− q‖ = 0. This completes the proof. ¤

The following result gives a strong convergence theorem for nonexpansive
nonself-mapping in a uniformly convex Banach space satisfying condition(A).

Theorem 2.4. Let X be a uniformly convex Banach space, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction, and T :
C → X a nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that {an}, {bn}, {µn},
{δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are bounded se-
quences in C such that

∑∞
n=1 µn < ∞,

∑∞
n=1 δn < ∞, 0 < lim infn→∞ bn, and

0 < lim infn→∞ βn < lim supn→∞ βn < 1. Suppose that T satisfies condition(A).
Then the sequences {xn} and {yn} defined by the iterative scheme (1.2) converge
strongly to a fixed point of T.

Proof. Let x∗ ∈ F (T ). Then, as in Lemma 2.1, {xn} is bounded, limn→∞ ‖xn −
x∗‖ exists and

‖xn+1 − q‖ ≤ ‖xn − x∗‖+ kn
(1),

where
∑∞

n=1 kn
(1) < ∞ for all n ≥ 1. This implies that d(xn+1, F (T )) ≤ d(xn, F (T ))+

kn
(1) and so, by Lemma 1.2(i), limn→∞ d(xn, F (T )) exists. Also, by Lemma 2.2,
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limn→∞ ‖xn−Txn‖ = 0. Since T satisfies condition(A), we conclude that limn→∞
d(xn, F (T )) = 0. Next we show that {xn} is a Cauchy sequence.

Since limn→∞ d(xn, F (T )) = 0 and
∑∞

n=1 kn
(1) < ∞, given any ε < 0, there

exists a natural number n0 such that d(xn, F (T )) < ε
4 and

∑n
i=n0

ki
(1) < ε

2 for all
n ≥ n0. So we can find y∗ ∈ F (T ) such that ‖xn0 − y∗‖ < ε

4 . For n ≥ n0 and
m ≥ 1, we have

‖xn+m − xn‖ = ‖xn+m − y∗‖+ ‖xn − y∗‖

≤ ‖xn0 − y∗‖+ ‖xn0 − y∗‖+
n∑

i=n0

ki
(1)

<
ε

4
+

ε

4
+

ε

2
= ε.

This shows that {xn} is a Cauchy sequence and so is convergent since X is
complete. Let limn→∞ xn = u. Then d(u, F (T )) = 0. It follows that u ∈ F (T ). As
in the proof of Theorem 2.3, we have

lim
n→∞

‖yn − xn‖ = 0,

it follows that limn→∞ yn = u. This completes the proof. ¤

If an = µn = δn ≡ 0, then the iterative scheme (1.2) reduces to that of (1.3)
and the following result is directly obtained by Theorem 2.4.

Theorem 2.5. (Shahzad [12] Theorem 3.6, p.1037). Let X be a real uniformly
convex Banach space and C a nonempty closed convex subset of X which is also
a nonexpansive retract of X. Let T : C → X be a nonexpansive mapping with
F (T ) 6= ∅. Let {αn} and {βn} be sequences in [ε, 1 − ε] for some ε ∈ (0, 1). From
an arbitrary x1 ∈ C, define the sequence {xn} by the recursion (1.3). Suppose T
satisfies condition (A). Then {xn} converges strongly to some fixed point of T.

In the next result, we prove the weak convergence of the new iterative scheme
(1.2) for nonexpansive nonself-mappings in a uniformly convex Banach space sat-
isfying Opial’s condition.

Theorem 2.6. Let X be a uniformly convex Banach space which satisfies Opial’s
condition, C a nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let T : C → X be a nonexpansive mapping with F (T ) 6=
∅. Suppose that {an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1]
and {wn}, {vn} are bounded sequences in C such that

∑∞
n=1 µn < ∞,

∑∞
n=1 δn <

∞, 0 < lim infn→∞ bn, and 0 < lim infn→∞ βn < lim supn→∞ βn < 1. Then the
sequences {xn} and {yn} defined by the iterative scheme (1.2) converge weakly to
a fixed point of T.
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Proof. By using the same proof as in Lemma 2.2, it can be shown that limn→∞
‖Txn −xn‖ = 0. Since X is uniformly convex and {xn} is bounded, we may
assume that xn → u weakly as n →∞, without loss of generality. By Lemma 1.5,
we have u ∈ F (T ). Suppose that subsequences {xnk

} and {xmk
} of {xn} converge

weakly to u and v, respectively. From Lemma 1.5, u, v ∈ F (T ). By Lemma 1.2(i),
limn→∞ ‖xn−u‖ and limn→∞ ‖xn−v‖ exist. It follows from Lemma 1.6 that u = v.
Therefore {xn} converges weakly to fixed point of T . As in the proof of Theorem
2.3, we have limn→∞ ‖yn − xn‖ = 0 and xn → u weakly as n →∞, it follows that
yn → u weakly as n →∞. The proof is completed. ¤
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