Recursion Formulas for Bernoulli Numbers

Aeran Kim

A Private mathematics academy, 1-\#406, 23, Maebong 5-gil, Deokjin-gu, Chonju, Chonbuk, 54921, Republic of Korea
e-mail : ae_ran_kim@hotmail.com
Abstract In this paper we establish simple recursion formulas for Bernoulli numbers, for instance,

$$
\sum_{k=1}^{n}\binom{4 n+2}{4 k}(-1)^{k} 2^{2 k-1} B_{4 k}=n
$$

and

$$
\sum_{k=0}^{n}\binom{4 n+4}{4 k+2}(-1)^{k} 2^{2 k} B_{4 k+2}=n+1
$$

in Theorem 1.1. Furthermore applying a Lucas sequence V_{n}, we obtain

$$
\sum_{k=1}^{n}\binom{8 n+4}{8 k}(-1)^{k} 2^{2 k-1} B_{8 k} V_{4 n-4 k+2}=n V_{4 n+2}
$$

and

$$
\sum_{k=0}^{n}\binom{8 n+8}{8 k+4}(-1)^{k} 2^{2 k} B_{8 k+4} V_{4 n-4 k+2}=-(n+1) V_{4 n+3}
$$

in Theorem 1.2.
MSC: 11B68; 11B39; 03D30
Keywords: Bernoulli numbers; Lucas sequence; recursion theory

> Submission date: 16.01.2018 / Acceptance date: 10.01.2022

1. Introduction

Let \mathbb{N} be the sets of positive integers. The Bernoulli numbers $\left\{B_{n}\right\}$ defined by $B_{0}=1$, $B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \ldots$, etc., and

$$
\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0 \quad(n \geq 2)
$$

It is well known that

$$
\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\frac{x}{e^{x}-1} \quad(|x|<2 \pi)
$$

In 1911 Ramanujan [1, 2] discovered some recursion formulas with gaps for Bernoulli numbers. In particular, he proved that if n is odd, then

$$
\sum_{k \equiv 3(\bmod 6)}\binom{n}{k} B_{n-k}= \begin{cases}-\frac{n}{6} & \text { if } n \equiv 1(\bmod 6) \\ \frac{n}{3} & \text { if } n \equiv 3,5(\bmod 6)\end{cases}
$$

and

$$
\sum_{k \equiv 5(\bmod 10)}\binom{n}{k}\left(L_{k}+1\right) B_{n-k}= \begin{cases}\frac{n}{5}\left(L_{n}+1\right) & \text { if } n \equiv 5,7(\bmod 10) \\ \frac{n}{10}\left(L_{n-1}-3\right) & \text { if } n \equiv 1(\bmod 10) \\ \frac{n}{5}\left(L_{n-2}-2\right) & \text { if } n \equiv 3,9(\bmod 10),\end{cases}
$$

where $\left\{L_{n}\right\}$ is the Lucas sequence given by $L_{0}=2, L_{1}=1$ and $L_{n+1}=L_{n}+L_{n-1}$. From the above Ramanujan's identities we see [3] that

$$
\sum_{k=0}^{n-1}\binom{6 n+3}{6 k+3} B_{6 n-6 k}=2 n
$$

and

$$
\sum_{k=0}^{n-1}\binom{10 n+5}{10 k+5}\left(L_{10 k+5}+1\right) B_{10 n-10 k}=2 n\left(L_{10 n+5}+1\right)
$$

Based on this inspiration we decide the main theme of this article, that is, our aim is to obtain some recursion formulas for Bernoulli numbers for example, similar to Ramanujan's result [2]

$$
\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{2 n+2}{4 k+2}(-1)^{k} 2^{n-2 k} B_{2 n-4 k}=(-1)^{\left[\frac{n}{2}\right]}(n+1) \quad \text { for } n \geq 0
$$

where [:] denotes the greatest integer function, moreover resembling

$$
\sum_{k=0}^{n}\binom{4 n+4}{4 k+2}(-1)^{k} 2^{2 k+1}\left(2^{4 k+2}-1\right) B_{4 k+2}=2 n+1
$$

in [3]. Here we perform the analogous method of Z.H. Sun's mathematical skill in [3] to get as follows :

Theorem 1.1. For $n \in \mathbb{N}$ we have
(a)

$$
\sum_{k=1}^{n}\binom{4 n+2}{4 k}(-1)^{k} 2^{2 k-1} B_{4 k}=n
$$

(b)

$$
\sum_{k=0}^{n}\binom{4 n+4}{4 k+2}(-1)^{k} 2^{2 k} B_{4 k+2}=n+1
$$

Theorem 1.2. Let $V_{0}=V_{1}=2$ and $V_{n+1}=2 V_{n}+V_{n-1}(n \geq 1)$. Then for $n \in \mathbb{N}$ we have
(a)

$$
\sum_{k=1}^{n}\binom{8 n+4}{8 k}(-1)^{k} 2^{2 k-1} B_{8 k} V_{4 n-4 k+2}=n V_{4 n+2}
$$

(b)

$$
\sum_{k=0}^{n}\binom{8 n+8}{8 k+4}(-1)^{k} 2^{2 k} B_{8 k+4} V_{4 n-4 k+2}=-(n+1) V_{4 n+3}
$$

2. Proofs of Theorem 1.1 and Theorem 1.2

In order to obtain some recursion formulas for Bernoulli numbers, we consider the following proposition which is the powerful fundamental identities :
Proposition 2.1. ([3, Theorem 4.1]) For $m \in \mathbb{N}, n \in\{0,1,2, \ldots\}$ and $t \in\{0,1, \ldots, m-1\}$ let

$$
\alpha_{n}^{(m)}=\sum_{k_{1}+\cdots+k_{m}=m n} e^{2 \pi i \frac{k_{1}+2 k_{2}+\cdots+m k_{m}}{m}} \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{m}+1\right)!} .
$$

Then

$$
\begin{align*}
& \sum_{k=\max \{0,1-t\}}^{n} \alpha_{n-k}^{(m)} \frac{2^{2 k m+2 t-1} B_{2 k m+2 t}}{(2 k m+2 t)!} \\
= & \frac{1}{m} \sum_{k_{1}+\cdots+k_{m}=m n+t} e^{2 \pi i \frac{k_{1}+2 k_{2}+\cdots+m k_{m}}{m}}\left(\sum_{r=1}^{m} k_{r} e^{-2 \pi i \frac{r t}{m}}\right) \frac{1}{\prod_{r=1}^{m}\left(2 k_{r}+1\right)!} \tag{2.1}
\end{align*}
$$

In particular, for $t=0$ we have

$$
\begin{equation*}
\sum_{k=1}^{n} \alpha_{n-k}^{(m)} \frac{2^{2 k m-1} B_{2 k m}}{(2 k m)!}=n \alpha_{n}^{(m)} \quad(n \geq 1) \tag{2.2}
\end{equation*}
$$

In advance we set

$$
\begin{equation*}
T_{r(m)}^{n}:=\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}\binom{n}{k} \tag{2.3}
\end{equation*}
$$

then we can find Zhi-hong Sun's results in [4, 5] as

$$
\begin{align*}
& T_{1(4)}^{n}=T_{3(4)}^{n}=2^{n-2}, \quad \text { if } n \equiv 0(\bmod 4) \tag{2.4}\\
& T_{1(4)}^{n}=\frac{2^{n-1}+(-1)^{\left[\frac{n}{4}\right]} 2^{\left[\frac{n}{2}\right]}}{2}, \quad \text { if } n \equiv 2(\bmod 4), \tag{2.5}\\
& T_{3(4)}^{n}=\frac{2^{n-1}-(-1)^{\left[\frac{n}{4}\right]} 2^{\left[\frac{n}{2}\right]}}{2}, \quad \text { if } n \equiv 2(\bmod 4), \tag{2.6}
\end{align*}
$$

$$
\begin{equation*}
T_{0(4)}^{n}=\frac{2^{n-1}-(-1)^{\left[\frac{n}{4}\right]} 2^{\left[\frac{n}{2}\right]}}{2}, \quad \text { if } n \equiv 3(\bmod 4) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2(4)}^{n}=\frac{2^{n-1}+(-1)^{\left[\frac{n}{4}\right]} 2^{\left[\frac{n}{2}\right]}}{2}, \quad \text { if } n \equiv 3(\bmod 4) \tag{2.8}
\end{equation*}
$$

Similarly we can see that

$$
\begin{equation*}
T_{2(8)}^{n}-T_{6(8)}^{n}=(-1)^{\frac{n-3}{8}} 2^{\frac{n-7}{4}} V_{\frac{n+1}{2}}, \quad \text { if } n \equiv 3(\bmod 8) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2(8)}^{n}-T_{6(8)}^{n}=(-1)^{\frac{n-7}{8}} 2^{\frac{n-7}{4}} V_{\frac{n-1}{2}}, \quad \text { if } n \equiv 7(\bmod 8) . \tag{2.10}
\end{equation*}
$$

Proof of Theorem 1.1. (a) By the definition of $\alpha_{n}^{(m)}$ in Proposition 2.1 we have

$$
\begin{aligned}
& \alpha_{n}^{(2)}=\sum_{k_{1}+k_{2}=2 n} e^{2 \pi i \frac{k_{1}+2 k_{2}}{2}} \frac{1}{\left(2 k_{1}+1\right)!\left(2 k_{2}+1\right)!} \\
& =\sum_{k_{1}+k_{2}=2 n}(-1)^{k_{1}+2 k_{2}} \frac{1}{\left(2 k_{1}+1\right)!\left(2 k_{2}+1\right)!} \\
& =\sum_{k_{1}=0}^{2 n}(-1)^{k_{1}} \frac{1}{\left(2 k_{1}+1\right)!\left(2\left(2 n-k_{1}\right)+1\right)!} \\
& =\sum_{k_{1}=0}^{2 n}(-1)^{k_{1}} \frac{(4 n+2)!}{\left(2 k_{1}+1\right)!\left(4 n-2 k_{1}+1\right)!} \cdot \frac{1}{(4 n+2)!} \\
& =\frac{1}{(4 n+2)!} \sum_{k_{1}=0}^{2 n}(-1)^{k_{1}}\binom{4 n+2}{2 k_{1}+1} \\
& =\frac{1}{(4 n+2)!}\left(\sum_{\substack{k_{1}=0 \\
k_{1} \equiv 0(\bmod 2)}}^{2 n}\binom{4 n+2}{2 k_{1}+1}-\sum_{\substack{k_{1}=0 \\
k_{1} \equiv 1(\bmod 2)}}^{2 n}\binom{4 n+2}{2 k_{1}+1}\right) \\
& =\frac{1}{(4 n+2)!}\left(\sum_{\substack{K=1 \\
K \equiv 1(\bmod 4)}}^{4 n+1}\binom{4 n+2}{K}-\sum_{\substack{K=1 \\
K \equiv 3(\bmod 4)}}^{4 n+1}\binom{4 n+2}{K}\right) \\
& =\frac{1}{(4 n+2)!}\left(\sum_{\substack{K=0 \\
K \equiv 1(\bmod 4)}}^{4 n+2}\binom{4 n+2}{K}-\sum_{\substack{K=0 \\
K \equiv 3(\bmod 4)}}^{4 n+2}\binom{4 n+2}{K}\right)
\end{aligned}
$$

so by (2.3), (2.5), and (2.6) the above identity can be written as

$$
\begin{align*}
\alpha_{n}^{(2)} & =\frac{1}{(4 n+2)!}\left(T_{1(4)}^{4 n+2}-T_{3(4)}^{4 n+2}\right) \\
& =\frac{1}{(4 n+2)!}\left\{\frac{1}{2}\left(2^{4 n+1}+(-1)^{n} 2^{2 n+1}\right)-\frac{1}{2}\left(2^{4 n+1}-(-1)^{n} 2^{2 n+1}\right)\right\} \tag{2.11}\\
& =\frac{(-1)^{n} 2^{2 n+1}}{(4 n+2)!}
\end{align*}
$$

Then by (2.2) and (2.11) we obtain

$$
\begin{aligned}
n \frac{(-1)^{n} 2^{2 n+1}}{(4 n+2)!}=n \alpha_{n}^{(2)} & =\sum_{k=1}^{n} \alpha_{n-k}^{(2)} \frac{2^{4 k-1} B_{4 k}}{(4 k)!} \\
& =\sum_{k=1}^{n} \frac{(-1)^{n-k} 2^{2(n-k)+1}}{(4(n-k)+2)!} \cdot \frac{2^{4 k-1} B_{4 k}}{(4 k)!}
\end{aligned}
$$

and so

$$
\begin{aligned}
n & =\frac{(4 n+2)!}{(-1)^{n} 2^{2 n+1}} \sum_{k=1}^{n} \frac{(-1)^{n-k} 2^{2(n-k)+1}}{(4(n-k)+2)!} \cdot \frac{2^{4 k-1} B_{4 k}}{(4 k)!} \\
& =\sum_{k=1}^{n}(-1)^{k} 2^{2 k-1} \frac{(4 n+2)!}{(4(n-k)+2)!(4 k)!} B_{4 k} \\
& =\sum_{k=1}^{n}(-1)^{k} 2^{2 k-1}\binom{4 n+2}{4 k} B_{4 k} .
\end{aligned}
$$

(b) If $t=1$ and $m=2$ in Eq. (2.1), then we observe that

$$
\begin{aligned}
& \sum_{k=0}^{n} \alpha_{n-k}^{(2)} \frac{2^{4 k+1} B_{4 k+2}}{(4 k+2)!} \\
& =\frac{1}{2} \sum_{k_{1}+k_{2}=2 n+1} e^{2 \pi i \frac{k_{1}+2 k_{2}}{2}}\left(\sum_{r=1}^{2} k_{r} e^{-2 \pi i \frac{r}{2}}\right) \frac{1}{\prod_{r=1}^{2}\left(2 k_{r}+1\right)!} \\
& =\frac{1}{2} \sum_{k_{1}+k_{2}=2 n+1}(-1)^{k_{1}+2 k_{2}}\left(k_{1} e^{-\pi i}+k_{2} e^{-2 \pi i}\right) \frac{1}{\left(2 k_{1}+1\right)!\left(2 k_{2}+1\right)!} \\
& =\frac{1}{2} \sum_{k_{1}+k_{2}=2 n+1}(-1)^{k_{1}}\left(-k_{1}+k_{2}\right) \frac{1}{\left(2 k_{1}+1\right)!\left(2 k_{2}+1\right)!} \\
& =\frac{1}{2} \sum_{k_{1}=0}^{2 n+1}(-1)^{k_{1}}\left(2 n+1-2 k_{1}\right) \frac{1}{\left(2 k_{1}+1\right)!\left(2\left(2 n+1-k_{1}\right)+1\right)!} \\
& =\frac{1}{2}\left[(2 n+2) \sum_{k_{1}=0}^{2 n+1}(-1)^{k_{1}} \frac{1}{\left(2 k_{1}+1\right)!\left(2\left(2 n+1-k_{1}\right)+1\right)!}\right. \\
& \left.\quad-\sum_{k_{1}=0}^{2 n+1}\left(2 k_{1}+1\right)(-1)^{k_{1}} \frac{1}{\left(2 k_{1}+1\right)!\left(2\left(2 n+1-k_{1}\right)+1\right)!}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n+1}{(4 n+4)!} \sum_{k_{1}=0}^{2 n+1}(-1)^{k_{1}}\binom{4 n+4}{2 k_{1}+1} \\
& \quad-\frac{1}{2} \sum_{k_{1}=0}^{2 n+1}(-1)^{k_{1}} \frac{(4 n+3)!}{\left(2 k_{1}\right)!\left(2\left(2 n+1-k_{1}\right)+1\right)!} \cdot \frac{1}{(4 n+3)!} \\
& =\frac{n+1}{(4 n+4)!} \sum_{k_{1}=0}^{2 n+1}(-1)^{k_{1}}\binom{4 n+4}{2 k_{1}+1}-\frac{1}{2 \cdot(4 n+3)!} \sum_{k_{1}=0}^{2 n+1}(-1)^{k_{1}}\binom{4 n+3}{2 k_{1}}
\end{aligned}
$$

and so by (2.4), (2.7), and (2.8) we have

$$
\begin{aligned}
& \sum_{k=0}^{n} \alpha_{n-k}^{(2)} \frac{2^{4 k+1} B_{4 k+2}}{(4 k+2)!} \\
& =\frac{n+1}{(4 n+4)!}\left(\sum_{\substack{k_{1}=0 \\
k_{1} \equiv 0(\bmod 2)}}^{2 n+1}\binom{4 n+4}{2 k_{1}+1}-\sum_{\substack{k_{1}=0 \\
k_{1} \equiv 1(\bmod 2)}}^{2 n+1}\binom{4 n+4}{2 k_{1}+1}\right) \\
& -\frac{1}{2 \cdot(4 n+3)!}\left(\sum_{\substack{k_{1}=0 \\
k_{1} \equiv 0(\bmod 2)}}^{2 n+1}\binom{4 n+3}{2 k_{1}}-\sum_{\substack{k_{1}=0 \\
k_{1} \equiv 1(\bmod 2)}}^{2 n+1}\binom{4 n+3}{2 k_{1}}\right) \\
& \left.=\frac{n+1}{(4 n+4)!} \sum_{\substack{K=0 \\
K \equiv 1(\bmod 4)}}^{4 n+4}\binom{4 n+4}{K}-\sum_{\substack{K=0 \\
K \equiv 3(\bmod 4)}}^{4 n+4}\binom{4 n+4}{K}\right) \\
& -\frac{1}{2 \cdot(4 n+3)!}\left(\sum_{\substack{K=0 \\
K \equiv 0(\bmod 4)}}^{4 n+3}\binom{4 n+3}{K}-\sum_{\substack{K=0 \\
K \equiv 2(\bmod 4)}}^{4 n+3}\binom{4 n+3}{K}\right) \\
& =\frac{n+1}{(4 n+4)!}\left(T_{1(4)}^{4 n+4}-T_{3(4)}^{4 n+4}\right)-\frac{1}{2 \cdot(4 n+3)!}\left(T_{0(4)}^{4 n+3}-T_{2(4)}^{4 n+3}\right) \\
& =\frac{n+1}{(4 n+4)!}\left(2^{4 n+2}-2^{4 n+2}\right) \\
& -\frac{1}{2 \cdot(4 n+3)!}\left(\frac{1}{2}\left(2^{4 n+2}-(-1)^{n} 2^{2 n+1}\right)-\frac{1}{2}\left(2^{4 n+2}+(-1)^{n} 2^{2 n+1}\right)\right) \\
& =\frac{(-1)^{n} 2^{2 n}}{(4 n+3)!} \text {, }
\end{aligned}
$$

which concludes that

$$
\begin{equation*}
\sum_{k=0}^{n} \alpha_{n-k}^{(2)} \frac{2^{4 k+1} B_{4 k+2}}{(4 k+2)!}=\frac{(-1)^{n} 2^{2 n}}{(4 n+3)!} \tag{2.12}
\end{equation*}
$$

Finally combining (2.11) and (2.12) we obtain

$$
\begin{aligned}
\frac{(-1)^{n} 2^{2 n}}{(4 n+3)!} & =\sum_{k=0}^{n} \frac{(-1)^{n-k} 2^{2(n-k)+1}}{(4(n-k)+2)!} \cdot \frac{2^{4 k+1} B_{4 k+2}}{(4 k+2)!} \\
& =\frac{(-1)^{n} 2^{2 n}}{(4 n+4)!} \sum_{k=0}^{n}(-1)^{k} 2^{2 k+2} B_{4 k+2} \frac{(4 n+4)!}{(4(n-k)+2)!(4 k+2)!} \\
& =\frac{(-1)^{n} 2^{2 n}}{(4 n+4)!} \sum_{k=0}^{n}\binom{4 n+4}{4 k+2}(-1)^{k} 2^{2 k+2} B_{4 k+2}
\end{aligned}
$$

and

$$
4 n+4=\sum_{k=0}^{n}\binom{4 n+4}{4 k+2}(-1)^{k} 2^{2 k+2} B_{4 k+2}
$$

Thus the proof is complete.

Lemma 2.2. Let $n \in \mathbb{N}$. Then we have $\alpha_{n}^{(4)}=\sum_{k=0}^{2 n}(-1)^{k} \alpha_{k}^{(2)} \alpha_{2 n-k}^{(2)}$.
Proof. In Proposition 2.1, $\alpha_{n}^{(m)}$ constructs that

$$
\begin{aligned}
\sum_{k=0}^{2 n}(-1)^{k} \alpha_{k}^{(2)} \alpha_{2 n-k}^{(2)}= & \sum_{k=0}^{2 n}(-1)^{k}\left(\sum_{k_{1}+k_{2}=2 k} e^{2 \pi i \frac{k_{1}+2 k_{2}}{2}} \frac{1}{\left(2 k_{1}+1\right)!\left(2 k_{2}+1\right)!}\right) \\
& \times\left(\sum_{k_{3}+k_{4}=2(2 n-k)} e^{2 \pi i \frac{k_{3}+2 k_{4}}{2}} \frac{1}{\left(2 k_{3}+1\right)!\left(2 k_{4}+1\right)!}\right) \\
= & \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 n}(-1)^{-\frac{k_{1}+k_{2}}{2}} e^{2 \pi i \frac{k_{1}+2 k_{2}+k_{3}+2 k_{4}}{2}} \\
& \times \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!} \\
= & \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 n} e^{2 \pi i \frac{-k_{1}-k_{2}}{4}} e^{2 \pi i \frac{k_{1}+2 k_{2}+k_{3}+2 k_{4}}{2}} \\
& \times \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!} \\
= & \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 n} e^{2 \pi i \frac{k_{1}+2 k_{3}+3 k_{2}+4 k_{4}}{4}} \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!} \\
= & \alpha_{n}^{(4)} .
\end{aligned}
$$

Proof of Theorem 1.2. (a) Since $\alpha_{n}^{(4)}=\sum_{k=0}^{2 n}(-1)^{k} \alpha_{k}^{(2)} \alpha_{2 n-k}^{(2)}$ in Lemma 2.2, we apply (2.11) and deduce that

$$
\begin{align*}
& \alpha_{n}^{(4)}=\sum_{k=0}^{2 n}(-1)^{k} \frac{(-1)^{k} 2^{2 k+1}}{(4 k+2)!} \cdot \frac{(-1)^{2 n-k} 2^{2(2 n-k)+1}}{(4(2 n-k)+2)!} \\
& =2^{4 n+2} \sum_{k=0}^{2 n}(-1)^{k} \frac{1}{(4 k+2)!(4(2 n-k)+2)!} \\
& =\frac{2^{4 n+2}}{(8 n+4)!} \sum_{k=0}^{2 n}(-1)^{k}\binom{8 n+4}{4 k+2} \\
& =\frac{2^{4 n+2}}{(8 n+4)!}\left(\sum_{\substack{k=0 \\
k \equiv 0 \\
(\bmod 2)}}^{2 n}\binom{8 n+4}{4 k+2}-\sum_{\substack{k=0 \\
k \equiv 1(\bmod 2)}}^{2 n}\binom{8 n+4}{4 k+2}\right) \tag{2.13}\\
& \left.=\frac{2^{4 n+2}}{(8 n+4)!} \sum_{\substack{K=2 \\
K \equiv 2(\bmod 8)}}^{8 n+2}\binom{8 n+4}{K}-\sum_{\substack{K=2 \\
K \equiv 6(\bmod 8)}}^{8 n+2}\binom{8 n+4}{K}\right) \\
& \left.=\frac{2^{4 n+2}}{(8 n+4)!} \sum_{\substack{K=0 \\
K \equiv 2(\bmod 8)}}^{8 n+4}\binom{8 n+4}{K}-\sum_{\substack{K=0 \\
K \equiv 6(\bmod 8)}}^{8 n+4}\binom{8 n+4}{K}\right) \\
& =\frac{2^{4 n+2}}{(8 n+4)!}\left(T_{2(8)}^{8 n+4}-T_{6(8)}^{8 n+4}\right) \text {. }
\end{align*}
$$

Now using (2.9) and the following facts

$$
\begin{equation*}
T_{r(m)}^{n}=T_{n-r(m)}^{n} \quad \text { and } \quad T_{r(m)}^{n+1}=T_{r(m)}^{n}+T_{r-1(m)}^{n} \tag{2.14}
\end{equation*}
$$

we have

$$
\begin{aligned}
T_{2(8)}^{8 n+4}-T_{6(8)}^{8 n+4} & =T_{2(8)}^{8 n+3}+T_{1(8)}^{8 n+3}-\left(T_{6(8)}^{8 n+3}+T_{5(8)}^{8 n+3}\right) \\
& =T_{2(8)}^{8 n+3}+T_{8 n+2(8)}^{8 n+3}-\left(T_{6(8)}^{8 n+3}+T_{-2(8)}^{8 n+3}\right) \\
& =T_{2(8)}^{8 n+3}+T_{2(8)}^{8 n+3}-\left(T_{6(8)}^{8 n+3}+T_{6(8)}^{8 n+3}\right) \\
& =2\left(T_{2(8)}^{8 n+3}-T_{6(8)}^{8 n+3}\right) \\
& =(-1)^{n} 2^{2 n} V_{4 n+2} .
\end{aligned}
$$

Employing the above identity to (2.13) we obtain

$$
\begin{equation*}
\alpha_{n}^{(4)}=\frac{2^{4 n+2}}{(8 n+4)!} \cdot(-1)^{n} 2^{2 n} V_{4 n+2}=\frac{(-1)^{n} 2^{6 n+2} V_{4 n+2}}{(8 n+4)!} \tag{2.15}
\end{equation*}
$$

From (2.2) and (2.15) with $m=4$ we observe that

$$
\begin{aligned}
n \frac{(-1)^{n} 2^{6 n+2} V_{4 n+2}}{(8 n+4)!} & =n \alpha_{n}^{(4)} \\
& =\sum_{k=1}^{n} \alpha_{n-k}^{(4)} \frac{2^{8 k-1} B_{8 k}}{(8 k)!} \\
& =\sum_{k=1}^{n} \frac{(-1)^{n-k} 2^{6(n-k)+2} V_{4(n-k)+2}}{(8(n-k)+4)!} \cdot \frac{2^{8 k-1} B_{8 k}}{(8 k)!} \\
& =\frac{(-1)^{n} 2^{6 n+2}}{(8 n+4)!} \sum_{k=1}^{n}(-1)^{k} 2^{2 k-1} V_{4 n-4 k+2} B_{8 k}\binom{8 n+4}{8 k}
\end{aligned}
$$

and so

$$
n V_{4 n+2}=\sum_{k=1}^{n}\binom{8 n+4}{8 k}(-1)^{k} 2^{2 k-1} V_{4 n-4 k+2} B_{8 k}
$$

(b) If $t=2$ and $m=4$ in Eq. (2.1), then we have

$$
\begin{align*}
& \sum_{k=0}^{n} \alpha_{n-k}^{(4)} \frac{2^{8 k+3} B_{8 k+4}}{(8 k+4)!} \\
& =\frac{1}{4} \sum_{k_{1}+\cdots+k_{4}=4 n+2} e^{2 \pi i \frac{k_{1}+2 k_{2}+3 k_{3}+4 k_{4}}{4}}\left(\sum_{r=1}^{4} k_{r} e^{-\pi i r}\right) \frac{1}{\prod_{r=1}^{4}\left(2 k_{r}+1\right)!} \tag{2.16}\\
& =\frac{1}{4} \sum_{k_{1}+\cdots+k_{4}=4 n+2} e^{2 \pi i \frac{k_{1}+2 k_{2}+3 k_{3}+4 k_{4}}{4}}\left(-k_{1}+k_{2}-k_{3}+k_{4}\right) \\
& \quad \times \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!} .
\end{align*}
$$

First we show that the right hand side of (2.16) is equal to the following identity :

$$
\begin{aligned}
& \sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \alpha_{k}^{(2)} \alpha_{2 n+1-k}^{(2)} \\
& =\sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \sum_{k_{1}+k_{2}=2 k} e^{2 \pi i \frac{k_{1}+2 k_{2}}{2}} \frac{1}{\left(2 k_{1}+1\right)!\left(2 k_{2}+1\right)!} \\
& \quad \times \sum_{k_{3}+k_{4}=2(2 n+1-k)} e^{2 \pi i \frac{k_{3}+2 k_{4}}{2}} \frac{1}{\left(2 k_{3}+1\right)!\left(2 k_{4}+1\right)!}
\end{aligned}
$$

$$
\begin{aligned}
&= \sum_{k=0}^{2 n+1} \sum_{\substack{k_{1}+k_{2}=2 k \\
k_{3}+k_{4}=2(2 n+1-k)}}(-1)^{\frac{k_{1}+k_{2}}{2}} e^{2 \pi i\left(\frac{k_{1}+2 k_{2}}{2}+\frac{k_{3}+2 k_{4}}{2}\right)} \\
& \times\left(\frac{k_{3}+k_{4}}{2}+k-2 k\right) \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!} \\
&= \sum_{k=0}^{2 n+1} \sum_{\substack{k_{1}+k_{2}=2 k \\
k_{3}+k_{4}=2(2 n+1-k)}}\left(e^{\left.2 \pi i \cdot \frac{1}{2}\right)^{-\frac{k_{1}+k_{2}}{2}} e^{2 \pi i\left(\frac{k_{1}+2 k_{2}}{2}+\frac{k_{3}+2 k_{4}}{2}\right)}}\right. \\
& \quad \times\left(\frac{k_{3}+k_{4}}{2}-\frac{k_{1}+k_{2}}{2}\right) \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!} \\
&= \frac{1}{2} \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 n+2} e^{2 \pi i \frac{k_{1}+2 k_{3}+3 k_{2}+4 k_{4}}{4}}\left(-k_{1}-k_{2}+k_{3}+k_{4}\right) \\
& \quad \times \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!}
\end{aligned}
$$

and so by exchanging the index k_{2} with k_{3} we obtain

$$
\begin{align*}
& \sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \alpha_{k}^{(2)} \alpha_{2 n+1-k}^{(2)} \\
& =\frac{1}{2} \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 n+2} e^{2 \pi i \frac{k_{1}+2 k_{2}+3 k_{3}+4 k_{4}}{4}}\left(-k_{1}+k_{2}-k_{3}+k_{4}\right) \tag{2.17}\\
& \quad \times \frac{1}{\left(2 k_{1}+1\right)!\cdots\left(2 k_{4}+1\right)!}
\end{align*}
$$

Equating (2.17) with (2.16) we have

$$
\begin{equation*}
2 \sum_{k=0}^{n} \alpha_{n-k}^{(4)} \frac{2^{8 k+3} B_{8 k+4}}{(8 k+4)!}=\sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \alpha_{k}^{(2)} \alpha_{2 n+1-k}^{(2)} . \tag{2.18}
\end{equation*}
$$

Second we evaluate the right hand side of (2.18). From (2.11) we deduce that

$$
\begin{aligned}
& \sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \alpha_{k}^{(2)} \alpha_{2 n+1-k}^{(2)} \\
& =\sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \cdot \frac{(-1)^{k} 2^{2 k+1}}{(4 k+2)!} \cdot \frac{(-1)^{2 n+1-k} 2^{2(2 n+1-k)+1}}{(4(2 n+1-k)+2)!} \\
& =-\sum_{k=0}^{2 n+1}(-1)^{k}(2 n+2-2 k-1) \cdot \frac{2^{4 n+4}}{(4 k+2)!(8 n+6-4 k)!} \\
& =-\sum_{k=0}^{2 n+1}(-1)^{k}(2 n+2) \cdot 2^{4 n+4} \cdot \frac{(8 n+8)!}{(4 k+2)!(8 n+6-4 k)!} \cdot \frac{1}{(8 n+8)!}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=0}^{2 n+1}(-1)^{k}(2 k+1) \cdot \frac{2^{4 n+4}}{(4 k+2)!(8 n+6-4 k)!} \\
& =-\frac{2^{4 n+2}(8 n+8)}{(8 n+8)!} \sum_{k=0}^{2 n+1}(-1)^{k}\binom{8 n+8}{4 k+2} \\
& +2^{4 n+3} \sum_{k=0}^{2 n+1}(-1)^{k}(4 k+2) \cdot \frac{(8 n+7)!}{(4 k+2)!(8 n+6-4 k)!} \cdot \frac{1}{(8 n+7)!} \\
& =-\frac{2^{4 n+2}}{(8 n+7)!} \sum_{k=0}^{2 n+1}(-1)^{k}\binom{8 n+8}{4 k+2}+\frac{2^{4 n+3}}{(8 n+7)!} \sum_{k=0}^{2 n+1}(-1)^{k}\binom{8 n+7}{4 k+1} \\
& =-\frac{2^{4 n+2}}{(8 n+7)!}\left\{\sum_{\substack{k=0 \\
k \equiv 0 \\
(\bmod 2)}}^{2 n+1}\binom{8 n+8}{4 k+2}-\sum_{\substack{k=0 \\
k \equiv 1(\bmod 2)}}^{2 n+1}\binom{8 n+8}{4 k+2}\right\} \\
& +\frac{2^{4 n+3}}{(8 n+7)!}\left\{\sum_{\substack{k=0 \\
k \equiv 0 \\
(\bmod 2)}}^{2 n+1}\binom{8 n+7}{4 k+1}-\sum_{\substack{k=0 \\
k \equiv 1(\bmod 2)}}^{2 n+1}\binom{8 n+7}{4 k+1}\right\} \\
& =-\frac{2^{4 n+2}}{(8 n+7)!}\left\{\sum_{\substack{K=2 \\
K \equiv 2(\bmod 8)}}^{8 n+6}\binom{8 n+8}{K}-\sum_{\substack{K=2 \\
K \equiv 6(\bmod 8)}}^{8 n+6}\binom{8 n+8}{K}\right\} \\
& +\frac{2^{4 n+3}}{(8 n+7)!}\left\{\sum_{\substack{K=1 \\
K \equiv 1(\bmod 8)}}^{8 n+5}\binom{8 n+7}{K}-\sum_{\substack{K=1 \\
K \equiv 5(\bmod 8)}}^{8 n+5}\binom{8 n+7}{K}\right\}
\end{aligned}
$$

and so by (2.3) we can write

$$
\begin{align*}
& \sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \alpha_{k}^{(2)} \alpha_{2 n+1-k}^{(2)} \\
& =-\frac{2^{4 n+2}}{(8 n+7)!}\left\{\sum_{\substack{K=0 \\
K \equiv 2(\bmod 8)}}^{8 n+8}\binom{8 n+8}{K}-\sum_{\substack{K=0 \\
K \equiv 6(\bmod 8)}}^{8 n+8}\binom{8 n+8}{K}\right\} \tag{2.19}\\
& +\frac{2^{4 n+3}}{(8 n+7)!}\left\{\sum_{\substack{K=0 \\
K \equiv 1(\bmod 8)}}^{8 n+7}\binom{8 n+7}{K}-\sum_{\substack{K=0 \\
K \equiv 5(\bmod 8)}}^{8 n+7}\binom{8 n+7}{K}\right\} \\
& =-\frac{2^{4 n+2}}{(8 n+7)!}\left(T_{2(8)}^{8 n+8}-T_{6(8)}^{8 n+8}\right)+\frac{2^{4 n+3}}{(8 n+7)!}\left(T_{1(8)}^{8 n+7}-T_{5(8)}^{8 n+7}\right) .
\end{align*}
$$

Since Eq. (2.10) and (2.14) shows that

$$
\begin{aligned}
T_{2(8)}^{8 n+8}-T_{6(8)}^{8 n+8} & =T_{2(8)}^{8 n+7}+T_{1(8)}^{8 n+7}-\left(T_{6(8)}^{8 n+7}+T_{5(8)}^{8 n+7}\right) \\
& =T_{8 n+5(8)}^{8 n+7}+T_{8 n+6(8)}^{8 n+7}-T_{6(8)}^{8 n+7}-T_{5(8)}^{8 n+7} \\
& =T_{5(8)}^{8 n+7}+T_{6(8)}^{8 n+7}-T_{6(8)}^{8 n+7}-T_{5(8)}^{8 n+7} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
T_{1(8)}^{8 n+7}-T_{5(8)}^{8 n+7} & =T_{8 n+6(8)}^{8 n+7}-T_{8 n+2(8)}^{8 n+7} \\
& =T_{6(8)}^{8 n+7}-T_{2(8)}^{8 n+7} \\
& =(-1)^{n+1} 2^{2 n} V_{4 n+3},
\end{aligned}
$$

therefore (2.19) becomes

$$
\begin{align*}
\sum_{k=0}^{2 n+1}(-1)^{k}(2 n+1-2 k) \alpha_{k}^{(2)} \alpha_{2 n+1-k}^{(2)} & =\frac{2^{4 n+3}}{(8 n+7)!} \cdot(-1)^{n+1} 2^{2 n} V_{4 n+3} \tag{2.20}\\
& =\frac{(-1)^{n+1} 2^{6 n+3}}{(8 n+7)!} V_{4 n+3}
\end{align*}
$$

Equating (2.20) with (2.18) we have

$$
2 \sum_{k=0}^{n} \alpha_{n-k}^{(4)} \frac{2^{8 k+3} B_{8 k+4}}{(8 k+4)!}=\frac{(-1)^{n+1} 2^{6 n+3}}{(8 n+7)!} V_{4 n+3}
$$

and so by (2.15) we deduce that

$$
\begin{aligned}
& 2 \sum_{k=0}^{n} \frac{(-1)^{n-k} 2^{6(n-k)+2} V_{4(n-k)+2}}{(8(n-k)+4)!} \cdot \frac{2^{8 k+3} B_{8 k+4}}{(8 k+4)!} \\
& =\frac{(-1)^{n} 2^{6 n+6}}{(8 n+8)!} \sum_{k=0}^{n}(-1)^{k} \cdot 2^{2 k} V_{4 n-4 k+2} B_{8 k+4} \cdot \frac{(8 n+8)!}{(8(n-k)+4)!(8 k+4)!} \\
& =-\frac{8 \cdot(-1)^{n+1} 2^{6 n+3}}{8(n+1) \cdot(8 n+7)!} \sum_{k=0}^{n}\binom{8 n+8}{8 k+4}(-1)^{k} \cdot 2^{2 k} V_{4 n-4 k+2} B_{8 k+4} \\
& =\frac{(-1)^{n+1} 2^{6 n+3}}{(8 n+7)!} V_{4 n+3}
\end{aligned}
$$

and

$$
\sum_{k=0}^{n}\binom{8 n+8}{8 k+4}(-1)^{k} \cdot 2^{2 k} V_{4 n-4 k+2} B_{8 k+4}=-(n+1) V_{4 n+3}
$$

References

[1] M. Chellali, Accélération de calcul de nombres de Bernoulli, J. Number Theory 28 (1988) 347-362.
[2] S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc. 3 (1911) 219-234.
[3] Z.H. Sun, On the properties of Newton-Euler pairs, Journal of Number Theory 114 (1) (2005) 88-123.
[4] Z.H. Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory I, J. Nanjing Univ. Math. Biquarterly, 9 (1992) 227-240, MR94a:11026.
[5] Z.H. Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory II, J. Nanjing Univ. Math. Biquarterly, 10 (1993) 105-118, MR94j:11021.

