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Abstract We want to study the nonlinear eigenvalue problem, for perturbated p-Laplacian operator
with zero Dirichlet condition on a bounded region in RN . Using the Ljusternik-Schnirelman principle
we show that the existence of a nondecreasing sequence of nonnegative eigenvalues and a sequence of
eigenfunction that weakly convergences to zero function.  
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1. Introduction
Eigenvalue problems for the p-laplacian operator subject to zero Dirichlet boundary

condition on a bounded domain have been extensively studied during the past tree decades
and many interesting results have been obtained. The investigations principally have
related on variational methods and minimization techniques of appropriate functionals.
We consider existence eigenvalue problem for following Dirichlet problem

D(Ω) :

{
−∆pu− g(x, u(x),∇u) = λ|u|p−2u, in Ω;
u = 0, on ∂Ω;

where Ω is a bounded region with convenient boundary in RN . We use the following
notations in this context

∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator with p > 1,

∇u = Du := (D1u, · · · , DNu) is the gradient of u in RN .

Many results have been obtained on the structure of the spectrum of the Dirichlet
problem

−∆pu = λ|u|p−2u.
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It is shown in [1] that there exists a nondecreasing sequence of positive eigenvalues {λn}
tending to ∞ as n → ∞. Moreover, the first eigenvalue is simple and isolated, see [2–4].
In [5], a characterization of the second eigenvalue of Dirichlet problem p−Laplacian was
also given.
For the degenerate elliptic equation

−△pu(x) = f(x, u(x)) in Ω

where f : Ω× R → R is a caratheodory function, i.e.
x → f(x, u(x)) is measurable on Ω for all u ∈ R,
u → f(x, u(x)) is continuous for a.e. x ∈ Ω,

Today’s study perturbations of the eigenvalue problem for p−Laplacian there are many
result for existence and smoothness solutions, e.g. [17, 18]. Laplacian problems with
Dirichlet and Robin boundary condition for different perturbations, by different author’s,
e.g. [6–8] for

−∆pu+ f(x, u(x)) = λ|u|p−2u.

Similar studies concerning positive solutions, were studied by Brezis and Oswald in [9]
and by Diaz and Saa in [10] (for problems driven by the Dirichlet Laplacian). More
recently, Gasinski and Papageorgiau in [11] produced analogous results for the Neuman
p−Laplacian. The objective of this paper is to obtain for eigenvalue problem of the
equation

−△pu+ g(x, u(x), Du(x)) = λ|u|p−2u (1.1)
with Dirichlet boundary condition.

Purpose of this paper is to study for existence of eigenvalue perturbated p−Laplacian
problem with the Dirichlet boundary value condition.

This paper is organized as follows: We first present the preliminary, then the sake of
completeness the Ljusternik-Schnirelman principle and applications to our setting. Then
we establish the existence of a sequences of eigenfunctions for the p−Laplacian and other
suchlike of Laplacian Dirichlet problem.

2. Preliminaries
2.1. Necessaries Condition

Let X be a closed subspace of the sobolev space W 1,p(Ω) containing W 1,p
0 (Ω) that

1 < p < ∞,Ω ⊂ RN is a bounded domain with sufficiently smooth boundary, and assume
the imbedding X ↪→ Lp(Ω) is compact.
Instead of (1.1) we may consider a class of nonlinear elliptic operators in divergence form

−
N∑
j=1

Djaj(x, u(x), Du(x)) + a0(x, u(x), Du(x)). (2.1)

Assume aj : Ω × R × RN → R, for 0 ≤ j ≤ N are given functions with a0(x, η, ξ) =
g(x, η, ξ) in which satisfy the following conditions.
(P1) Caratheodory condition:

For 0 ≤ j ≤ N , the function aj has the following two properties:
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(i) x −→ aj(x, η, ξ) is measurable on Ω for all η ∈ R, ξ ∈ RN .
(ii) (η, ξ) −→ aj(x, η, ξ) is continuous on R× RN for almost all x ∈ Ω.

For example, this condition is satisfied if aj is continuous.
(P2):

|aj(x, η, ξ)| ≤ c(K(x) + |η|p−1 + ∥ξ∥p−1); a.e. x ∈ Ω, η ∈ R, ξ ∈ RN

where K(x) ∈ Lq(Ω), 1
p + 1

q = 1.
(P3):

N∑
j=1

(aj(x, η, ξ)− aj(x, η, ξ̃))(ξj − ξ̃j) > 0; for a.e. x ∈ Ω, η ∈ R, ξ ̸= ξ̃ ∈ RN .

(P4): ∑N
j=1 aj(x, η, ξ)ξj

∥ξ∥+ ∥ξ∥p−1
−→ +∞, as ∥ξ∥ −→ +∞.

Remark 2.1. In some parts of this paper we need a weaker condition of (P3).

(P̃3): There exists a constant c̃2 > 0, such that for a.e. x ∈ Ω, η ∈ R, and any ξ, ξ∗ ∈ RN

N∑
j=1

[aj(x, η, ξ)− aj(x, η, ξ
∗)]
(
ξj − ξ∗j

)
≥ c̃2 |ξ − ξ∗|p

Remark 2.2. If we in the above condition, consider aj(x, η, ξ) = |ξ|p−2ξj for 1 ≤ j ≤ N ,
then (2.1) is the same left side of (1.1).

Lemma 2.3. The functions aj(x, η, ξ) = |ξ|p−2ξj for 1 ≤ j ≤ N , satisfy in condition
(P1)-(P4).

Proof. Since aj is continuous, (P1) is confirmed. (P2), (P4) are trivial. For (P3),
N∑
j=1

(aj(x, η, ξ)− aj(x, η, ξ̃))(ξj − ξ̃j)

=

N∑
j=1

[
ξj |ξ|p−2 − ξ̃j |ξ̃|p−2

]
(ξj − ξ̃j)

=

N∑
j=1

(
ξ2j |ξ|p−2 − ξj ξ̃j |ξ̃|p−2 − ξj ξ̃j |ξ|p−2 + ξ̃j

2
|ξ̃|p−2

)

= |ξ|p + |ξ̃|p −
(
|ξ|p−2 + |ξ̃|p−2

) N∑
j=1

ξj ξ̃j

≥ |ξ|p + |ξ̃|p −
(
|ξ|p−2 + |ξ̃|p−2

)
|ξ||ξ̃|

=
(
|ξ|p−1 − |ξ̃|p−1

)(
|ξ| − |ξ̃|

)
≥ 0.
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Remark 2.4. Let A be a second order quasilinear elliptic operator in the divergence
form:

(Au) (x) =

N∑
j=1

Dj (aj (x, u(x), Du(x))) .

Converting A to this form Au =
∑N

i,j=1 Di

(
aij(x)Dju

)
, then clearly (P1) − (P4) are

satisfied with aj (x, u(x), Du(x)) =
∑N

i=1 Di

(
aij(x)Diu

)
and q = 2, provided that aij ∈

L∞(Ω) and
N∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2 ∀ξ ∈ RN .

2.2. Primary Definitions and Properties
Now we give some definitions and corollaries that in sequel are requested.

Assume that X is a real Banach space equipped with norm ∥.∥, X∗ it’s topological dual
and ⟨·, ·⟩ is the dual pair between X and X∗.

Definition 2.5. Let A : X → X∗ be an operator.
(i) A is called monotone iff

⟨Au−Av, u− v⟩ ≥ 0 ∀u, v ∈ X.

(ii) A is called uniformly monotone iff
⟨Au−Av, u− v⟩ ≥ a(∥u− v∥)∥u− v∥ for all u, v ∈ X,

where the continuous function a : R → R is strictly monotone increasing with a(0) = 0
and a(t) → ∞ as t → ∞.

For example, we may choose a(t) = c|t|p−1 with p > 1 and c > 0. In this case,

⟨Au−Av, u− v⟩ ≥ c∥u− v∥P for all u, v ∈ X.

Definition 2.6. Let X be a real Banach space . The operator A : X → X∗ is called:
(i) Strongly continuous:

un ⇀ u , implies Aun → Au.

(ii) Compact: if A is continuous and maps bounded sets into relatively compact sets.
(iii) Condition (S)+:

un ⇀ u , lim sup
n→∞

⟨Aun −Au, un − u⟩ ≤ 0; implies un → u.

(iv) Condition (S):
un ⇀ u , lim

n→∞
⟨Aun −Au, un − u⟩ = 0; implies un → u.

(v) Condition (S)0:
un ⇀ u ,Aun ⇀ b, lim

n→∞
⟨Aun, un⟩ = ⟨b, u⟩ ; implies un → u.

(vi) Condition (S)1:
un ⇀ u ,Aun → b implies un → u.
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Obviously, the following holds:
(S)+ ⇒ (S) ⇒ (S)0 ⇒ (S)1

i.e., if the operator A satisfies the condition (S)+ then A also satisfies in condition (S),
etc.

Remark 2.7. [15] If the operator A : X → X∗ on the real reflexive Banach space X; is
uniformly monotone, then A satisfies (S)+, (S), (S)0 and (S)1.

Lemma 2.8. Let A,B : X → X∗ be operators on the real reflexive Banach space X.
(i) If the operator A satisfies (S)+ and B is strongly continuous or, more generally,

B is compact; then A+B satisfies (S)+.
(ii) If the operator A satisfies (S) and B is strongly continuous; then A+B satisfies

(S).

Proof. (i): Let un ⇀ u, lim sup ⟨Aun +Bun −Au−Bu, un − u⟩) ≤ 0 as n → ∞.
Since (un) is bounded in the reflexive Banach space X and the operator B is compact,
there exists a subsequence (un′) such that Bun′ → b as n → ∞ in X∗, and hence

lim sup
n→∞

⟨Aun′ −Au, un′ − u⟩) ≤ 0.

The operator A satisfies (S)+; therefore un′ → u as n → ∞. By the convergence principle,
(un) converges, i.e., un → u as n → ∞.

(ii): Let un ⇀ u, ⟨Aun +Bun −Au−Bu, un − u⟩) → 0 as n → ∞. The operator
B is strongly continuous; therefore, Bun → Bu and hence

⟨Aun′ −Au, un′ − u⟩) → 0 as n → ∞.

The operator A satisfies (S); consequently un → u as n → ∞.

The following theorem applied very frequently. They generalize well-known conver-
gence properties of sequences of real numbers. In the following, strong convergence means
convergence in the norm.

Theorem 2.9. [14] (Convergence Principles in Banach spaces) A sequence (xn) in a
Banach space X has the following convergence properties.

(i) Strong convergence. Let x be a fixed element of X. If every subsequence of
(xn) has, in turn, a subsequence which converges strongly to x, then the original
sequence converges strongly to x, i.e., xn → x as n → ∞.

(ii) Weak convergence. Let x be a fixed element in X. If every subsequence of (xn)
has, in turn, a subsequence which converges weakly to x, then the original sequence
converges weakly to x, i.e., xn ⇀ x as n → ∞.

(iii) Selection principle. If X is reflexive, then every bounded sequence (xn) in X has
a weakly convergent subsequence (xn′), i.e., xn′ ⇀ x as n → ∞.Furthermore,
x ∈ co{xn : n ∈ N}.

(iv) Weak convergence of bounded sequences. Let (xn) be a bounded sequence in a
reflexive Banach space X. If all the weakly convergent subsequences of(xn) have
the same limit, x, then xn ⇀ x as n → ∞.

Theorem 2.10. [15] (Majorized Convergence). We have

lim
n→∞

∫
M

fn dx =

∫
M

lim
n→∞

fn dx
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where M ⊂ RN is measurable, and all the integrals and limits exist, provided the following
conditions hold.

(i) ∥fn(x)∥ ≤ g(x) for almost all x ∈ M and all n ∈ N, and
∫
M

g dx exists.
(ii) limn→∞ fn(x) exists for almost all x ∈ M where fn : M → Y , is measurable for

all n ∈ N , and Banach-space Y .

Theorem 2.11. (Vitali’s theorem) Let M ⊂ Rn be a Lebesgue measurable set. As-
sume that the functions fk : M → R are Lebesgue integrable, further, for a.e. x ∈ M ,
limk→∞ fk(x) exists and is finite. The functions fk are equiintegrable in the following
sense: for arbitrary ε > 0 there exist δ > 0 and S ⊂ M of finite measure such that for all
k ∈ N ∫

H

|fk(x)| dx < ε if λ(H) < δ and
∫
M−H

|fk(x)| dx < ε

Then

lim
k→∞

∫
M

fk(x) dx =

∫
M

f(x) dx

Remark 2.12. It is easy to show that if fk → f in L1(M) then (fk) is equi inte-
grable. Further, by Hölder’s inequality one obtains: if (|gk|p) is equi integrable and (hk)
is bounded in Lp(M), (1 < p < ∞) then (gkhk) is equi integrable.

Remark 2.13. Theorem (2.11) remains true if we replace the above assumption with:
∥fn(x)∥ ≤ gn(x), for almost all x ∈ M and all n ∈ N.

All the functions gn, g : M → R, are integrable and we have the convergence gn → g,
almost everywhere on M as n → ∞, along with

∫
M

gn(x) dx →
∫
M

g dx, as n → ∞.

Proposition 2.14. A sequence (un) in Wm,p, 1 < p < ∞, is weakly convergent if and
only if (∂αun) is weakly convergent in Lp for all α, with |α| ≤ m. In this case we have
un ⇀ u in Wm,p if and only if for each α, with |α| ≤ m we have ∂αun ⇀ ∂αu in Lp.

Proof. We may assume all sequences are bounded. If un ⇀ u in Wm,p, then for φ ∈
C∞

0 (Ω) we have

⟨∂αun, φ⟩ = (−1)|α| ⟨un, ∂
αφ⟩ → (−1)|α| ⟨u, ∂αφ⟩ = ⟨∂αu, φ⟩

and (∂αun) is bounded in Lp with density of C∞
0 in Lp, so ∂αun ⇀ ∂αu in Lp.

Conversely, let un ⇀ u and ∂αun ⇀ vα in Lp; each ∂α operator is weakly closed, so
∂αun ⇀ ∂αu. The result follows from the representation of (Wα,p)

′

In sequal we need the following inequality for real number.

Lemma 2.15. [15] For 0 < r < ∞, and all nonnegative real numbers ξ1, . . . , ξN , we
have the following inequality (

N∑
i=1

ξi

)r

≤ c

N∑
i=1

ξri ,

where the positive constant c depend only on N, r.
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2.3. Concept of Genus
Definition 2.16. Let X be a real Banach space.To each symmetric set K, (i.e. if u ∈ K
then −u ∈ K) we assign a number genK (which is called the genus of K) in the following
way:

(i) gen ∅ = 0.
(ii) If K ̸= ∅, then let genK be the smallest natural number n ≥ 1 for which a zero-

free mapping f : K → Rn − {0} that is odd and continuous exists.
(iii) If for K ̸= ∅ there does not exist such n, then we set genK = +∞.

For example if K is the boundary of the unit disk in R2, then genK = 2 and for sphere
S = {u ∈ X : ∥u∥ = 1|} in the real Banach space X, genS = dimX.

Corollary 2.17. [16] For any symmetric sets K, K1, K2 in Banach pace X, the following
four assertions hold:

(i) genK1 = genK2 provided K1 and K2 are homoeomorphic with respect to an odd
homeomorphism.

(ii) genK1 < ∞ implies gen (K2 −K1) ≥ genK2 − genK1.
(iii) genK ≤ dimX.
(iv) From genK > m, 1 ≤ m < ∞, it follows that K ∩ (I − P )(X) ̸= ∅ when

P : X → X1 is a continuous linear projection operator on the m-dimensional
subspace X1 of X.

2.4. Sobolev Embedding Theorem
We recall the Sobolev embedding theorem.

Theorem 2.18. [12] Let Ω ⊂ RN be open, bounded and have smooth boundary. Let
p ≥ 1.

(i) If p < N, then W 1,p(Ω) ↪→ Lq(Ω) for every q ∈
[
1, Np

N−p

]
; and this embedding is

compact for every q ∈
[
1, Np

N−p

)
.

(ii) If p = N, then W 1,p(Ω) ↪→ Lq(Ω) for every q ∈ [1,+∞]; and this embedding is
compact.

(iii) If p > N, then W 1,p(Ω) ↪→ L∞(Ω); the embedding is compact.

Proposition 2.19. [14] Let Ω be a bounded domain in RN with N ≥ 1. Then the follow-
ing norms are equivalent on W 1,p

∥u∥ =

(∫
Ω

(
|u|p +

N∑
i=1

|Diu|p
)

dx

) 1
p

and

∥u∥ =

(∫
Ω

(
N∑
i=1

|Diu|p
)

dx

) 1
p

.
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3. The Ljusternik-Schnirelman Principle in Banach Space
Let X be a real reflexive Banach space with dimX = ∞ and F,G be two functionals

on X. for fixed α > 0 consider the eigenvalue problem
F ′(u) = λG′(u) u ∈ Nα, λ ∈ R (3.1)

that Nα := {u ∈ X;G(u) = α} is the level set of G and following assumption holds:
(H1) Functionals F,G ∈ C1(X,R) are even functionals such that F (0) = G(0) = 0 (in

particular F ′, G′ are odd potential operators).
(H2) The operator F ′ is strongly continuous and if F (u) ̸= 0 for u ∈ coNα , implies

that F ′(u) ̸= 0.
(H3) The operator G′ is uniformly continuous on bounded sets and satisfies condition

(S)1.
(H4) The level set Nα is bounded and u ̸= 0 implies

⟨G′(u), u⟩ > 0, lim
t→+∞

G(tu) = +∞, and inf
u∈Nα

⟨G′(u), u⟩ > 0.

It is known that (u, λ) solve (3.1) if and only if u is a critical point of F with respect to
Nα, see [16].
For any n ∈ N, denote by An, the class of all compact, symmetric subsets K of Nα. We
define:

±cn =

{
supK∈An

infu∈K ±F (u) if An ̸= ∅
0 if An = ∅

for n = 1, 2, ...; and

χ± :=

{
sup{n ∈ N : ±cn > 0} if c1 > 0

0 if c1 = 0

Theorem 3.1. [16](Ljusternik-Schnirelman; L-S principle) Under the assumptions (H1)
- (H4) the following assertion holds:

(i) Existence of an eigenvalue: if ±cn > 0 , (+ or -) then (3.1) possesses a pair
(un, u−n) of eigenvectors with eigenvalue λn ̸= 0 and F (un) = cn. Moreover, if
F ′ and G′ are positive homogeneous,( i.e. F ′(tu) = tF ′(u) and G′(tu) = tG′(u)
for all u ∈ X, t > 0 ) then cn = αλn.

(ii) Multiplicity: (3.1) has at least χ+ + χ− pairs (u,−) of eigenvectors with eigen-
values that are different from zero. If ±cm = ±cm+1 = ... = ±cm+p > 0, p > 1,
(+ 0r -) then the set of all eigenvectors of (3.1) such that F (u) = c has genus
greater than or equal to p+ 1. In particular, this set is infinite.

(iii) Critical levels: ±∞ > ±c1 ≥ ±c2 ≥ ... ≥ 0 and cm → 0 as m → ∞.
(iv) Infinitely many eigenvalues: If χ+ = ∞ or χ− = ∞ and F (u) = 0, for u ∈ coNα

implies that ⟨F ′(u), u⟩ = 0; then there exists a sequence (λm) of infinitely many
distinct eigenvalues for (3.1) such that λ → 0 as m → ∞.

(v) Weak convergence of eigenvectors: Assume that F (u) = 0, c ∈ coNα, implies
u = 0. then max(χ+, χ−) = +∞, and there exists a sequence of eigensolutions
(um, λm) of (3.1) such that um ⇀ 0, λm → 0, as m → ∞ and λm ̸= 0 for all m.

we have the following corollaries:

Corollary 3.2. By virtue of a radical projection, the level set Nα is homomorphic to the
unit sphere in X and 0 /∈ Nα.
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Corollary 3.3. χ± > dimX1 provided there exists a linear subspace X1 of X such that
±F > 0 on Nα ∩X1, (+ or -).

Corollary 3.4. χ+ = ∞ or χ− = ∞, when the set of zeros No
α := {u ∈ Nα;F (u) = 0}

is compact or more generally there exists a closed linear subspace X1 of X such that
dim( X

X1
) = ∞ and dist(∥u∥−1u,X1) < η for all u ∈ No

α and fixed η ∈]0, 1[.

Example 3.5. The assumptions (H1)-(H4) are fulfilled provided the following hold:
(i) X is a real separable H−space with dimX = ∞. We identify X with X∗.
(ii) A : X → X is a linear, compact, and symmetric operator. We set F (u) =

2−1 ⟨Au, u⟩ and G(u) = 2−1 ⟨u, u⟩ .
Then F ′ = A,G′ = I, Nα is a sphere, and eigenvalue problem

F ′(u) = λG′(u) u ∈ Nα, λ ∈ R

corresponds to
Au = λu, λ ∈ R

with the normalizing condition G(u) = α, i.e., u ∈ Nα. It can be shown that
c±m = αλ±

m when ± c±m > 0.

Here, λ±
m, is the eigenvalue of A. All eigenvalues that are different from zero

of A are obtained from c±m according to their multiplicity. Therefore, A has
at least χ+ + χ− pairs (u,−u) of eigenvectors on Nα with the corresponding
eigenvalues that are different from zero. If λ±

m has the multiplicity p + 1, i.e.,
λ±
m = λ±

m+1 = · · · = λ±
m+p, then the corresponding eigenvectors on Nα form a

p−dimensional sphere and the genus of this set is p+1 according to the genus of
spheres.

Example 3.6. As an another application of the this theorem, we consider the classical
boundary eigenvalue problem

−λ

N∑
i=1

Di

(
|Diu(x)|p−2

Diu(x)
)
= g′ (u(x)) , (3.2)

with Dirichlet condition on boundary.
(E1) Let Ω be a bounded region in RN , N ≥ 1. Furthermore, let p ≥ 2. we set

ξ = (ξl, · · · , ξN ), Di; =
∂
∂ξi

·
(E2) g : R → R is continuously differentiable, with g(0) = 0 and g′(u)u > 0 for all real

numbers u ̸= 0. There exist constants c, d > 0 such that the following growth
condition holds for all u ∈ R:

|g(u)| ≤ c(1 + |u|p), |g′(u)| ≤ d(1 + |u|p−1).

Let X = W 1,p
0 (Ω). The generalized problem for (3.2) reads as follows: We seek

u ∈ X,λ ∈ R such that
λb(u, v) = a(u, v) for all v ∈ X, G(u) = α (3.3)
for fixed α > 0. Here,

G(u) = p−1

∫
Ω

N∑
i=1

|Diu|p dx, F (u) =

∫
Ω

g(u) dx,
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b(u, v) =

∫
Ω

N∑
i=1

|Diu|p−2DiuDiv dx, a(u, v) =

∫
Ω

g′(u)v dx,

it is easy to see that With the assumptions (E1) and (E2), the following two
assertions hold:
(i) (3.3) has an eigensolution (u, λ), with u ̸= 0, λ > 0.
(ii) If g is even, then (3.3) has infinitely many eigensolutions (um, λm), with

um ̸= 0, λm > 0 for all m ∈ N such that um ⇀ 0 in X as well as λm → 0 as
m → ∞.

4. Perturbated p-Laplacian Operator
In this section we consider X = W 1,p(Ω), the sobolev space and following nonlinear

elliptic equation in divergence form.

−
N∑
j=1

Djaj (x, u(x), Du(x)) + a0(x, u(x), Du(x)) = f, (4.1)

where Ω is a bounded domain in RN , N ≥ 1.
The weak solution u for (4.1) reads as follows:

N∑
j=1

∫
Ω

aj (x, u(x), Du(x))Djφdx+

∫
Ω

a0 (x, u(x), Du(x))φdx =

∫
Ω

fφ dx (4.2)

for all φ ∈ C∞
o (Ω).

Remark 4.1. Under assumptions of sufficient smoothness of the boundary of the domain
Ω, the functions aj and the weak solution u(x), in the case X = W 1,p

0 we obtain that
u(x)is a solution of the equation (4.1) in the usual sense, and satisfying the boundary
conditions u(x) = 0, for x ∈ ∂Ω, i.e. u(x) is a solution of the Dirichlet problem.

We define the nonlinear operator A : X → X∗ by the equality

⟨Au,φ⟩ =
N∑
j=1

∫
Ω

aj (x, u(x), Du(x))Djφdx+

∫
Ω

a0 (x, u(x), Du(x))φdx (4.3)

for u, φ ∈ X.

Proposition 4.2. Under the condition (P1), (P2) the operator A : X → X∗ defined by
(4.3) is continuous and bounded.

Proof. Boundedness: condition (P1), implies that the function x → aj (x, u(x), Du(x)) is
measurable for arbitrary u ∈ X. Further, by (P2) and lemma (2.15)∫

Ω

|aj (x, u(x), Du(x)) |q dx

≤ const×
[∫

Ω

K(x)qdx+

∫
Ω

|u(x)|(p−1)qdx+

∫
Ω

|Du(x)|(p−1)qdx

]
≤ const [const+ ∥u∥pX ] ≤ const [1 + ∥u∥pX ]
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so (∫
Ω

|aj (x, u(x), Du(x)) |q dx
) 1

q

≤ const
[
1 + ∥u∥

p
q

X

]
.

Hölder’s inequality implies that

|⟨Au,φ⟩| ≤
N∑
j=1

[∫
Ω

|aj(x, u(x), Du(x))|q dx

] 1
q

∥Djφ∥Lp(Ω)

+

[∫
Ω

|a0(x, u(x), Du(x))|q dx

] 1
q

∥φ∥Lp(Ω)

≤ const
[
1 + ∥u∥

p
q

X

]
∥φ∥Lp(X).

It follows that A is a bounded operator on X and ∥Au∥X∗ ≤ const
[
1 + ∥u∥

p
q

X

]
. Con-

tiniuity: to prove this, let un → u in X, as n → ∞.The compact embedding of X to
Lp(Ω), implies that there exists a subsequence (un′) and a function v(x) ∈ Lp(Ω) in which
un′ → u(x) as n → ∞ for almost all x ∈ Ω, and the majorant condition |un′(x)| ≤ v(x)
for all n′ and almost all x ∈ Ω.
Therefore, by the proposition (2.19), lemma (2.15) and (P2),

∥Aun′ −Au∥qq
= sup

∥φ∥=1

|⟨Aun′ −Au,φ⟩|q

= sup
∥φ∥=1

∣∣∣∣∣
N∑
j=1

∫
Ω

(
aj (x, un′ , Dun′)− aj(x, u,Du)

)
Djφdx

+

∫
Ω

(a0(x, un′ , Dun′)− a0(x, u,Du))φdx

∣∣∣∣∣
q

≤ const

∫
Ω

(|K(x)|q + |v(x)|q + |u(x)|q) dx.

Now majorant convergence gives ∥Aun − Au∥q → 0, i.e. Aun → Au in Lq(Ω) as n → ∞
and by convergence principle, the entire sequence converges, i.e. Au → Au in Lq(Ω).

Proposition 4.3. Under the condition (P1), (P2), (P̃3); the operator A : X → X∗

defined by (4.3) satisfies condition (S)+.

Proof. Assume that
(uk) ⇀ u in V, lim sup

k→∞
⟨Auk, uk − u⟩ ≤ 0 (4.4)

since W 1,p(Ω) is compactly embedded into Lp(Ω) (for bounded Ω with sufficiently smooth
boundary, (see theorem 2.18 )), there is a subsequence of (uk), again denoted by (uk),
such that

uk → u in Lp(Ω) and a.e. in Ω (4.5)
since (Djuk) is bounded in Lp(Ω), we may assume (on the subsequence) that

Djuk ⇀ Dju in Lp(Ω) for j = 1, · · · , n
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further

⟨Auk, uk − u⟩ =
∫
Ω

a0(x, uk, Duk)(uk − u)

+

N∑
j=1

∫
Ω

[aj(x, uk, Duk)− aj(x, uk, Du)] (Djuk −Dju) dx

+

N∑
j=1

∫
Ω

aj(x, uk, Du)(Djuk −Dju) dx.

(4.6)

The first term on the right-hand side tends to zero, from (4.5) and Hölder’s inequality
and since the multipliers of (uk − u) are bounded in Lp(Ω) by (P2). Further, the third
term on the right-hand side converges to 0 too, by (2.14) and since (4.5), (P1), (P2) and
Vitali’s theorem imply that

aj(x, uk, Du) → aj(x, u,Du) in Lq(Ω).

Consequently,from (4.4) and (4.6)

lim sup
k→∞

⟨Auk, uk − u⟩ ≤ 0

so

lim sup
k→∞

N∑
j=1

[aj(x, uk, Duk)− aj(x, uk, Du)] (Djuk −Dju) ≤ 0

and from (P̃3),

lim
k→∞

∫
Ω

|Duk −Du|p dx = 0 or Duk → Du in Lp(Ω).

Moreover toward subsequence

(Duk) → Du a.e. in Ω.

So then

∥uk − u∥X =

∫
Ω

N∑
j=1

|Djuk −Dju|p dx+

∫
Ω

|uk − u|p dx

 1
p

→ 0.

Instead of (P̃3) we may assume (P3) (In the linear replace
(P4′): There exist a constant c2 > 0 and k2 ∈ L1(Ω) such that

N∑
j=1

aj(x, η, ζ)ξj ≥ c2|ζ|p − k2(x).

Theorem 4.4. Assume (P1), (P2), (P3′), (P4′). Then the (bounded) operator A, defined
by (4.3) with an arbitrary (possibly unbounded) domain Ω ⊂ RN , satisfied in condition
(S)+.
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Proof. Assume that uk ⇀ u, in X and lim supk|∞ ⟨A(uk), uk − u⟩ ≤ 0. We have shown
that uk → u, in X.
We will show, this is true for a suitable subsequence of (uk). Then by Cantor’s trick this
will imply for (uk), too.
Assume that (Ωm) is a sequence of bounded domains with sufficiently smooth boundary
∂Ωm such that Ωm ⊆ Ωm+1 and Ω =

∪∞
m=1 Ωm.

From Sobolev embedding theorem, for any fixed m, there is a subsequence of (uk) which
is convergent in Lp(Ωm), and so a subsequence of this subsequence is a.e. convergent to
u in Ωm. Using a “diagonal process” one obtains a subsequence of (uk), which converges
to u a.e. in Ω.
For simplicity, we shall denote this subsequence also by (uk), so

uk → u a.e. in Ω (4.7)

We claim that

Duk → Du a.e. in Ω. (4.8)

For this, we set

Pk(x) =

N∑
j=1

[aj(x, uk, Duk)− aj(x, u,Du)] (Djuk −Dju)

+ [a0(x, uk, Duk)− a0(x, u,Du)] (uk − u).

(4.9)

Then
⟨A(uk)−A(u), uk − u⟩ =

∫
Ω

Pk(x) dx

and by the assumption

lim sup
k→∞

∫
Ω

Pk(x) dx ≤ 0. (4.10)

Due to (4.9)

Pk(x) =

N∑
j=1

aj(x, uk, Duk)uk − gk(x),

where

gk(x) =

 N∑
j=1

aj(x, u,Du)(Djuk −Dju) + a0(x, u,Du)(uk − u)


+

 N∑
j=1

aj(x, uk, Duk)Dju+ a0(x, uk, Duk)u

 (4.11)

By (P2)

|gk(x)| ≤c4
[
|u|p−1 + |Du|p−1 + k1(x)

]
[|uk|+ |Duk|+ |u|+ |Du|] +

c5
[
|uk|p−1 + |Duk|p−1 + k1(x)

]
[|u|+ |Du|] .

(4.12)

Hölder’s inequality implies that the sequence (gk) is equiintegrable.
Further, by Young’s inequality from (4.12), for any ε > 0, there exist a constant c(ε) and
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a function k4 ∈ L1(Ω) such that
|gk(x)| ≤ ε|Duk|p + c(ε) [|uk|p + |u|p + |Du|p + k4(x)] (4.13)

Choosing sufficiently small ε > 0, one obtains from (P4′), (4.13) and definition of Pk(x)

Pk(x) ≥ c2|Duk|p − k2(x)− |gk(x)|

≥ c2
2
|Duk|p − c6 [|uk|p + |u|p + |Du|p + k5(x)]

(4.14)

for some constant c6 and k5 ∈ L1(Ω). Let
P+
k (x) = max {Pk(x), 0} , P−

k (x) = −min {Pk(x), 0}
then by (4.14),

0 ≤ P−
k (x) ≤ k2(x) + |gk(x)|

where the sequence on the right hand side is equiintegrable. Hence, the sequence (P−
k )k∈N

is equiintegrable.
We show that P−

k converges to 0 a.e. in Ω. Indeed, Pk can be written in the form
Pk(x) = qk(x) + rk(x) + sk(x) (4.15)

where

qk(x) =

N∑
j=1

[aj(x, uk, Duk)− aj(x, uk, Du)] (Djuk −Dju),

rk(x) =

N∑
j=1

[aj(x, uk, Du)− aj(x, u,Du)] (Djuk −Dju),

sk(x) = [a0(x, uk, Duk)− a0(x, u,Du)] (uk − u).

Denote by χk the characteristic function of the set {x : P−
k (x) > 0} then

−P−
k = χkqk + χkrk + χksk. (4.16)

From (4.14)

c2
2
|Duk|p ≤ c6 [|uk|p + |u|p + |Du|p + k5(x)] if Pk(x) < 0.

Hence, (4.7) the sequence (χkDuk) is bounded for a.e. x.
From (4.7) and (P2)

(χkrk) → 0 a.e. and (χksk) → 0 a.e..
Since χkqk ≥ 0 a.e., it follows from (4.16)

(P−
k ) → 0 a.e.. (4.17)

Thus, by equiintegrality of (P−
k )k∈N and Vitali’s theorem

lim
k→∞

∫
Ω

P−
k dx = 0 (4.18)

Since 0 ≤ P+
k = Pk + P−

k , from (4.10), (4.18) we obtain limk→∞
∫
Ω
P+
k dx = 0 and

(P+
k ) → 0 a.e. for a subsequence (again denoted by (P+

k ), for simplicity).
(P−

k ) → 0 ,a.e. implies that (Pk) → 0 a.e.
Hence, (4.14) implies that for a.e. x ∈ Ω the sequence (Duk(x)) is bounded.
Consider such a fixed x ∈ Ω. Assuming that (4.8) is not valid there is a subsequence
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of (Duk(x)), (again denoted by (Duk(x)), for simplicity), in which converges to some
ζ∗ ̸= (Du)(x). Since

uk(x) → u(x) , rk(x) → 0 , sk(x) → 0;

we obtain that

0 = lim
k→∞

pk(x) =

N∑
j=1

[aj(x, u(x), ζ
∗)− aj(x, u(x), Du(x))] (ξ∗j −Dju(x))

Thus (P3′) implies ζ∗ = Du(x), which contradicts to ζ∗ ̸= Du(x) .
So, we have shown

Duk → Du a.e. in Ω

and
∥uk − u∥X → 0 or uk → u in X.

5. Application of L-S Principle to Perturbated p-Laplacian
In sequel, we assume that for left hand of (4.1), there exists an even Frechet differen-

tiable functional G1 ∈ C1(X,R), such that

⟨G′
1u, v⟩ = −

N∑
j=1

∫
Ω

Djaj (x, u(x), Du(x)) v(x) dx.

Moreover we assume that G1(0) = 0, and for u ̸= 0,
lim
t→∞

G1(tu) = +∞, and ⟨G′u, u⟩ > 0.

This assumption is requirement for applying the L-S Theorem for p-Laplacian.

Remark 5.1. We point that the goal is investigation of p-Laplacian equation with a
perturbation, such as a0(x, u,Du), that in this case we may get G1(u) =

1
p |u|

p and see
that ⟨G′(u), v⟩ =

∫
Ω
|∇u|p−2∇u · ∇v ([12]).

However, for a detailed discussion in regards with Frechet-differentiability of G, one
can refer to ([13]).

Remark 5.2. In general for a differential operator A, in the form

Au =
∑

|α|,|β|

Dα
(
Aα

(
x,Dβu

))
that arise naturally in physics, we note that, the operators of this type are generally the
Euler-Lagrange equations of some energy functionals of the form I (x, u,Du, · · · , Dmu).

But for therm a0(x, u,Du) in (4.1), we use of the following lemma.

Lemma 5.3. If a0(x, η, ξ) satisfy Hölder condition of order α > 1, on X, respect to η,
then the functional G2 : X → R defined by

G2(u) =

∫
Ω

a0(x, u(x), Du(x)) dx

is continuously Frechet-differentiable and

⟨DG2(u), v⟩ =
∫
Ω

a0(x, u(x), Du(x))v(x) dx.
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Proof. We have

lim
∥v∥→0

G2(u+ v)−G2(u)− ⟨DG2(u), v⟩
∥v∥

= lim
∥v∥→0

∫
Ω
[a0(x, u+ v,Du+Dv)(u+ v)− a0(x, u,Du)u− a0(x, u,Du)v] dx

∥v∥

= lim
∥v∥→0

1

∥v∥

∫
Ω

[a0(x, u+ v,Du+Dv)− a0(x, u,Du)] (u+ v) dx

≤
∫
Ω

∥v∥α−1(u+ v) dx = 0.

the continuiuty of DG2 is obvious from condition on a0.

Now we ready to apply the L-S theorem for (1.1).
We consider λh′(u), instead of λ|u|p−2u in right-hande of (1.1), and assume that

(H) h : R → R is even and continuously differentiable function with h(0) = 0 , and
h′(u)u > 0 , for all real number u ̸= 0, and there exist constants c, d > 0 such that the
following growth condition holds for all u ∈ R,

|h(x)| ≤ c(1 + |x|p)

|h′(x)| ≤ d(1 + |x|p−1)

So the weak solution of

D(Ω) :

{
Au = λh′(u), in Ω;
u = 0, on ∂Ω;

(5.1)

reeds as follows:

⟨Au, v⟩ = λ

∫
Ω

h′(x)v dx (5.2)

for all v ∈ C∞
0 (Ω), that A defined by (4.3).

Now we define functional H,G : X → R, by

H(u) =

∫
Ω

h(u(x)) dx;

and
G(u) = G1(u) +G2(u).

Lemma 5.4. H and G are continuously Frechet-differentiable on X with

⟨H ′(u), v⟩ =
∫

h′(u)v dx (5.3)

⟨G′(u), v⟩ = ⟨Au, v⟩ (5.4)
for all u, v ∈ X.

Proof. To check this, first we prove that H is Gateaux differentiable, and H ′
G is continu-

ous.
From the growth assumption on h, H(u) is well defined via the sobolev inequality and
sobolev embedding theorem. Now for fixed u, v ∈ X, it is obvious that, for almost every
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x ∈ R
,

lim
t→0

h(u(x) + tv(x))− h(u(x))

t
= h′(u(x))v(x)

so there exists a real number θ such that |θ| ≤ |t| and

∣∣∣∣h(u(x) + tv(x))− h(u(x))

t

∣∣∣∣ = |h′(u(x) + θv(x))v(x)|

≤ d(1 + |u+ θv|p−1)|v|
≤ (constant)(|v|+ |u|p−1|v|+ |v|p)

As the function |v|+ |u|p−1|v|+ |v|p is in L1(Ω) by dominated convergence, we have

lim
t→0

∫
Ω

h(u+ tv)− h(u)

t
=

∫
Ω

h′(u)v dx

The right hand side is a function of v and is a continuous linear functional on W1,p(Ω).
It is the Gateaux differential of H and therefore (Frechet) differentiable.
H is continuous, so take a sequence {uk} in W1,p such that uk → u. up to a subsequences,
by the Hölder inequality;

|(H(uk)−H(u))v| ≤
∫
Ω

|h′(uk)− h′(u)| |v| dx

≤
(∫

Ω

|h′(uk)− h′(u)|p dx

) 1
p
(∫

Ω

|v|q dx
) 1

q

since limk→∞ |h′(uk(x)− h′(u(x)))| = 0 a.e. in Ω and

|h′(uk)− h′(u)|p ≤ c
(
1 + |uk|p−1 + |u|p−1

)p
≤ c

(
1 + |w|p−1 + |u|p−1

)p ∈ L1(Ω)

then by dominated convergence,
∫
|h′(uk)− h′(u)|p dx → 0 so that

∥H(uk)−H(u)∥ = sup{(H(uk)−H(u))(v); ∥v∥ = 1, v ∈ W1,p}

≤
(∫

|h′(uk)− h′(u)|p dx
) 1

p

→ 0

as k → 0.
For G(u), this is result of above argument in begining of this section.

Lemma 5.5. H ′ is strongly continuous.

Proof. by embedding theorem of Sobolev spaces, we have embedding X ↪→ Lp(Ω) is
compact. so if un ⇀ u in X then un → u in Lp(Ω) and since H ′ is continuous H ′(un) →
H ′(u).
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6. Main Results

Theorem 6.1. With assumption (H), (P1), (P2), (P3), (P4′) on the coefficient function
of the equation (5.2), the following two assertion hold:

(i) (5.2) has an eigensolution with λ > 0, and eigenfunction u ̸= 0.
(ii) If h is even, then (5.2) has infinitely many eigensolutions (un, λn), with un ̸=

0, λn > 0, for all n ∈ N, such that λn → 0.

Proof. According to lemma (5.5),(5.4) and propositions (4.2) and (4.3), H and G are
continuously Frechet-differentiable on X. H ′ is strongly continuous, G′ is continuous and
bounded.
Condition (H) yields that ⟨H ′(u), u⟩ > 0 for all u ̸= 0 in X.
Now we verify the assumption (H1)-(H2) of theorem 3.1.
(H1) This is obviously fulfilled.
(H2) We have H(u) = 0 ⇐⇒ ⟨H ′(u), u⟩ > 0 ⇐⇒ u = 0, since for u ̸= 0. have

⟨H ′(u), u⟩ > 0 and H(u) =
∫ 1

0
⟨H ′(tu), u⟩ dt.

(H3) this is obvious from lemma (4.3), proposition (4.3) and comment after definition
(2.6).

(H4) In begining of this section, we assumed this condition on G.

Remark 6.2. The above arguments can easily applied to other laplacian equation with
Dirichlet boundary condition, and get similar results on existence of eigenvalues and
eigenfunctions.

We note that if f ∈ C1 and Tu = f(x, u, . . . ,Dmu), we have

⟨T ′u, v⟩ =
∑

|α|≤m

fα (x, u, . . . ,Dmu)Dαv where fα ≡ ∂f

∂ξα
.

Proposition 6.3. Suppose Ω is a bounded domain in RN , whose boundary ∂Ω is reg-
ular, and suppose f(x, y1, . . . , yk) satisfies the Caratheodory condition and the growth
conditions,

|f(x, y1, . . . , ym)| ≤ c

{
1 +

m∑
α=1

|y − α|σα

}
(6.1)

where c is an absolute constant and ym is a vector variable. the f(u) = f(x, u,Du, . . . ,Dmu)
defines a bounded continuous mapping from Wm,p(Ω) to Ls(Ω), provided the numbers {σα}
satisfy the inequalities

σα <
1

s

{
1

p
− m− |α|

N

}−1

Proof. By Sobolev’s inequality, we note that for u ∈ Wm,p(Ω), Dαu ∈ Lp(α)(Ω), that
1

p(α) ≥ 1
p − m−|α|

N . Consequently, |Dαu|σα ∈ Ls(Ω) provided σαs ≤ p(α), i.e.σα ≤ p(α)
s .

Thus the result follows from proposition 4.2 and theorem 2.18. Since these results

Now we have the following theorem.
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Theorem 6.4. suppose A is a bounded operator from Wm,p
0 (Ω) to W−m,q

0 (Ω), defined
implicitly by

⟨Au, v⟩ =
∑

|α|≤m−1

∫
Ω

Aα

(
x, u,Du, . . . ,Dm−1u

)
Dαv

that the continuous functions Aα

(
x, u,Du, . . . ,Dm−1u

)
satisfy the growth condition 6.1,

then A is a compact operator. In fact A maps weakly convergent sequences in Wm,p
0 (Ω)

into strongly convergent sequences.

Proof. Let un ⇀ u in Wm,p
0 (Ω), then

∥Aun −Au∥ = sup
∥v∥=1

⟨Aun −Au, v⟩

and
⟨Aun −Au, v⟩

=
∑

|α|≤m−1

∫
Ω

[
Aα

(
x, un, Dun, . . . , D

m−1un

)
−Aα

(
x, u,Du, . . . ,Dm−1u

)]
Dαv

≤
∑

|α|≤m−1

Kα

∥∥Aα

(
x, un, Dun, . . . , D

m−1un

)
−Aα

(
x, u,Du, . . . ,Dm−1u

)∥∥
Lqα (Ω)

with Sobolev embedding theorem qα so chosen that Aα

(
x, u,Du, . . . ,Dm−1u

)
: Wm−1,p∗

0 (Ω)

→ Lqα is compact and p∗ < Np
N−p . Now if un ⇀ u in Wm,p

0 (Ω), so un → u (strongly)
in Wm−1,p∗

0 (Ω). On the other hand, by virtue of the hypothesis on the growth condition
and proposition 6.3, Aα

(
x, u,Du, . . . ,Dm−1u

)
is a continuous function from Wm−1,p

0 (Ω)
to Lqα . consequently, ∥Aun −Au∥ → 0 as n → ∞, so that A is a compact mapping.

We can apply this theorem in many different cases, for example in perturbed p-
Laplacian with addition condition on perturbed term, and used of results in spectrum
theory for compact operators, that characterize the spectrum.
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