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Abstract In this paper, First of all, we study the semilocal convergence of the fifth order iterative
method using recurrence relation under the assumption that first order Fréchet derivative satisfies the
more general ω-continuity condition. We calculate also the R-order of convergence and provide some a
priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear
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method under the assumptions that the first order Fréchet derivative satisfies the same ω−continuity
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1. Introduction
We consider the problem of solving

F (x) = 0 (1.1)
where F : Ω ⊆ X → Y is a nonlinear Fréchet differentiable operator in an open convex
domain Ω of a Banach space X with values in a Banach space Y . Newton’s method and
its variants are used to solve nonlinear equation (1.1). Many topics related to Newton’s
method still attract attentions from the researchers. We have local and semilocal conver-
gence analysis of iterative methods. The local convergence is based on the information

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright © 2022 by TJM. All rights reserved.



22 Thai J. Math. Vol. 20 (2022) /P. Maroju et al.

around the solution. The semilocal convergence is based on the assumption at initial
approximation and the domain. The construction of a semilocal and local convergence
of an iterative methods for solving nonlinear equations in Banach spaces is an important
research area in the field of the numerical analysis. One of the most important problems is
to find the existence and uniqueness regions of solution for iterative methods. In general,
the domain of existence region is small. So, we use the semilocal and local convergence
analysis to enlarge the domain of existence region. Another important problems is to
find a priori error bounds. The well known Kantorovich theorem [1] gives sufficient con-
ditions for the semilocal convergence of Newton’s method as well as the error estimates
and existence-uniqueness regions of solutions. We have two approaches to establish the
convergence of iterative methods. Those are a majorizing sequence, recurrence relation
approach. Rall in [2] suggested a recurrence relation approach for the convergence of iter-
ative methods. The main assumption for the semilocal and local convergence of iterative
methods are Lipschitz/Hölder/ω-continuity conditions. Many researchers [3–10] discussed
the semilocal convergence of several iterative methods of different orders using recurrence
relation approach. In recent year, the semilocal convergence of fifth order method dis-
cussed by [11] using recurrence relations approach, they used the assumption that the
first order Fréchet derivative satisfies the Lipschitz continuity condition. The Semilocal
and local convergence of fifth order method discussed by [12] under the assumption that
the first order fréchet derivative satisfies the Hölder continuity. The main motivation of
this paper is to sometimes the Hölder continuity condition fails for many examples, in
this case, we use more generalized continuity condition that is ω−continuity condition to
discuss the semilocal and local convergence of iterative method.

In this paper, First, we analyze the semilocal convergence of a fifth-order method
considered in [13] under the assumption that the first order Fréchet derivative satisfies
the ω-continuity condition. We use the recurrence relation approach, where the problem
in Banach space into real sequences and its properties, providing a suitable convergence
domain. Finally, we apply our semilocal convergence result to a nonlinear Hammerstein
integral equation of the second kind and obtain an existence and uniqueness of the solution
for this type of equations. Next, we discuss the local convergence of the iterative method
under the assumption that the first order Fréchet derivative satisfies the ω-continuity
condition. Similarly, from the local convergence theorem we obtain the existence and
uniqueness of the solution.

This paper is organized into four main sections. Section 1 is the introduction. In
Section 2, the semilocal convergence of the fifth order iterative method and theorem for
the existence and uniqueness region of the solution are establishing. Numerical example
is worked out to demonstrate the efficacy of our convergence theorem. In Section 3, the
local convergence analysis of the iterative method and the theorem for the existence and
uniqueness for the solution is given. One numerical example is worked out. Finally,
conclusions form the section 4.

2. Semilocal Convergence
In this section, the semilocal convergence of iterative method is established. The

convergence analysis discussed under the general continuity conditions. First of all, the
properties of real sequences are discussed. Also, some recurrence relations are established.
A convergence theorem with the existence and uniqueness theorem for the solutions is
derived. Finally, numerical example is worked out to validate our approach.
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2.1. Preliminary Results
Let x0 ∈ Ω and the nonlinear operator F : Ω ⊂ X → Y be continuously first order

Fréchet differentiable where Ω is an open set in X and Y are Banach spaces. The fifth
order iterative method for solving nonlinear equation in Banach spaces write it as

yn = xn − ΓnF (xn)
zn = yn − 5ΓnF (yn)
xn+1 = zn − 1

5Γn(−16F (yn) + F (zn)).

 (2.1)

Let F ′(x0)
−1 = Γ0 ∈ L(Y,X) exists at some x0 ∈ Ω, where L(Y,X) is the set of bounded

linear operators from Y into X. For y0, z0 ∈ Ω, we assume that Kantorovich’s conditions
[1].

C1. ∥Γ0∥ ≤ β
C2. ∥Γ0F (x0)∥ ≤ η
C3. ∥F ′(x) − F ′(y)∥ ≤ ω(∥x − y∥), ∀x, y ∈ Ω, where ω(t) is a non-decreasing

continuous real function for t > 0 and satisfy ω(0) ≥ 0.
C6. There exist a non-negative real function ϕ ∈ C[0, 1] with ϕ(s) ≥ 1, such that
ω(st) ≤ ϕ(s)ω(t), for s ∈ [0, 1], t ∈ (0,∞).

Let a0 = βω(η) and define the sequence an+1 = anf(an)ϕ(cn), cn = f(an)g(an)

f(x) =
1

1− xϕ(1 + h(x))
, (2.2)

g(x) = xM + h(x)(x+ 1) + xh(x)Mϕ(h(x)), (2.3)

and

h(x) =
4xM

5
+

xMϕ(1 + a0M)

5
(1 + a0M), (2.4)

where, M =
∫ 1

0
ϕ(t). We now describe the properties of the sequence {an} and the

real functions (2.2), (2.3) and (2.4) through the following Lemmas.

Lemma 2.1. Let f , g and h be the functions defined in (2.2), (2.3) and (2.4) respectively.
Then

(i) f is a increasing function and f(x) > 1 for x ∈ (0, r0).
(ii) g and h are increasing for x ∈ (0, tp), p ∈ (0, 1].

Proof. The proof is trivial and hence omitted here.

Lemma 2.2. Let f(x), g(x) defined above and a0 ∈ (0, r0), where r0 be the smallest
positive zero of the polynomial f(a0)ϕ(a0)− 1 = 0 . Then,

(i) f(a0)ϕ(a0) < 1.
(ii) the sequence {an} is decreasing and an < r0 for n ≥ 0.

Let r0 be the smallest positive zero of the polynomial f(a0)ϕ(a0)−1 = 0. Using Taylor’s
expansion of F (y0) around x0,

z0 − x0 = y0−x0 − 5Γ0F (y0) = y0 − x0−5Γ0

∫ 1

0

[F ′(x0 + t(y0−x0))− F ′(x0)](y0−x0)dt.
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Apply norm on both sides, we get

∥z0 − x0∥ ≤ ∥y0 − x0∥+ 5βη

∫ 1

0

ω(t∥y0 − x0∥)dt

≤ ∥y0 − x0∥+ 5βηω(η)

∫ 1

0

ϕ(t)dt

= ∥y0 − x0∥+ 5a0

∫ 1

0

ϕ(t)dt∥y0 − x0∥.

Also,

∥z0 − y0∥ ≤ 5βω(η)

∫ 1

0

ϕ(t)dt∥y0 − x0∥ = 5a0

∫ 1

0

ϕ(t)dt∥y0 − x0∥.

Again, use the Taylor’s expansion of F (z0) and (2.1), we have

∥x1 − x0∥ ≤ ∥y0 − x0 −
9

5
Γ0

∫ 1

0

[F ′(x0 + t(y0 − x0))− F ′(x0)]dt(y0 − x0)

+Γ0

∫ 1

0

[F ′(x0 + t(y0 − x0))− F ′(x0)]dt(y0 − x0)

−1

5
Γ0

∫ 1

0

[F ′(x0 + t(z0 − x0))− F ′(x0)]dt(z0 − x0)∥

= ∥y0 − x0∥+
4βω(η)M

5
∥y0 − x0∥+

1

5
βMω(∥z0 − x0∥)∥z0 − x0∥

=
(
1 +

4a0M

5
+

1

5
βMω(∥z0 − x0∥)∥z0 − x0∥

)
∥y0 − x0∥. (2.5)

As,

ω(∥z0 − x0∥)∥z0 − x0∥ ≤ ω(η)ϕ(1 + a0M)(1 + a0M)η. (2.6)

Using (2.6) in (2.5), we get

∥x1 − x0∥ ≤ (1 + h(a0))η. (2.7)

Now, for a0 < r0 and applying assumptions (i)-(iv), we have

∥I − Γ0F
′(x1)∥ ≤ ∥Γ0∥∥F ′(x1)− F ′(x0)∥

≤ βω(∥x1 − x0∥)
≤ βω((1 + h(a0))∥y0 − x0∥)
≤ βω(η)ϕ(1 + h(a0))

= a0ϕ(1 + h(a0)) < 1. (2.8)

By the Banach Lemma, Γ1 exists and

∥Γ1∥ ≤ 1

1− a0ϕ(1 + h(a0))
∥Γ0∥ = f(a0)∥Γ0∥. (2.9)
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For a0ϕ(1 + h(a0)) < 1, we need a0 < r0, Now we prove the following inequalities using
induction,

(I) ∥Γn∥ ≤ f(an−1)∥Γn−1∥,
(II) ∥ΓnF (xn)∥ ≤ cn−1∥Γn−1F (xn−1)∥,
(III) ∥zn − yn∥ ≤ 5Mancn−1∥yn−1 − xn−1∥,
(IV ) ∥Γn∥∥ω(∥yn − xn∥) ≤ an−1,
(V ) ∥xn − xn−1∥ ≤ (1 + h(an−1))∥Γn−1F (xn−1∥.

 (2.10)

Using mathematical induction, we prove that the above inequalities. For n = 1, (I) hold
true from (2.9). To prove (II), using Taylor’s formula,

F (x1) = F (y0) + F ′(y0)(x1 − y0) +

∫ x1

y0

(F ′(x)− F ′(y0))dx

=

∫ 1

0

[F ′(x0 + t(y0 − x0))− F ′(x0)](y0 − x0)dt

−(F ′(y0)− F ′(x0) + F ′(x0))Γ0

(9
5
F (y0) +

1

5
F (z0)

)
−Γ0

(9
5
F (y0) +

1

5
F (z0)

)∫ 1

0

[F ′(y0 + t(x1 − y0))− F ′(y0)]dt.

Since,

∥9
5
F (y0) +

1

5
F (z0)∥ ≤ η

β
h(a0).

Then, we get

∥F (x1)∥ ≤ ω(η)ηM + ω(η)ηh(a0) + ω(η)ηh(a0)Mϕ(h(a0)) +
η

β
h(a0). (2.11)

From (2.9), (2.11), we get
∥Γ1F (x1)∥ ≤ ∥Γ1∥∥F (x1)∥

≤ f(a0)∥Γ0∥∥F (x1)∥

= f(a0)
[
a0M + (a0 + 1)h(a0) + a0h(a0)Mϕ(h(a0))

]
η

= f(a0)g(a0)∥y0 − x0∥ = c0∥y0 − x0∥. (2.12)
Also, From (2.9), we get

∥z1 − y1∥ ≤ 5∥Γ1∥∥F (y1)∥
≤ 5a0f(a0)

2g(a0)ϕ(c0)M∥y0 − x0∥
= 5a1c0M∥y0 − x0∥. (2.13)

By using (I) and (II), we get (IV) hold true, that is
∥Γ1ω(∥∥y1 − x1∥) = f(a0)∥Γ0ω(c0∥y0 − x0∥)

= f(a0)βω(η)ϕ(c0)

= a0f(a0)ϕ(c0) = a1. (2.14)
From, (2.7), we get (V) hold true for n = 1. Hence, by induction process, it can be proved
that (I)-(V) hold true for n+ 1.
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2.2. Convergence Analysis
Theorem 2.3. Let X and Y be Banach spaces and F (x) be a nonlinear Fréchet differ-
entiable operator in an open convex domain Ω. Let the assumptions (i)-(iii) are satisfied.
Let us denote a0 = Kβηp and a0 < rp. Then, the sequence {xn} defined in (2.1) and
starting at x0 converge to a solution x∗ of the equation (1.1). In that case the solution x∗

and the iterates xn, yn and zn lies in B(x0, Rη), where, R = ϕ(h(a0)+1)
1−(f(a0)g(a0))

.

Proof. In order to establish the convergence of {xn}, It is sufficient to show that {xn},
{yn} and {zn} lie in B(x0, Rη) and a Cauchy sequence. From (2.10), we get

∥yn − xn∥ ≤ f(an−1)g(an−1)∥yn−1 − xn−1∥

≤
n−1∏
j=0

f(aj)g(aj)∥y0 − x0∥

≤
n−1∏
j=0

f(aj)g(aj)η, (2.15)

and

∥xm+n − xm∥ ≤ ∥xm+n − xm+n−1∥+ . . .+ ∥xm+1 − xm∥
≤ (1 + h(am+n−1))∥ym+n−1 − xm+n−1∥+ . . .+ (1 + h(am))∥ym − xm∥

≤ (1 + h(am))
[m+n−2∏

j=0

f(aj)g(aj) + . . .+

m−1∏
j=0

f(aj)g(aj)
]
η. (2.16)

Now, for a0 = r0, we obtain f(a0)ϕ(c0) = 1, an = an−1 = .... = a0. This gives

∥yn − xn∥ ≤ (1 + h(a0))(f(a0)ϕ(c0))
n∥y0 − x0∥,

and

∥xm+n − xm∥ ≤ (1 + h(a0))∥y0 − x0∥
m+n−1∑

i=0

(f(a0)g(a0))
i. (2.17)

Hence, if we take m = 0, we get

∥xn − x0∥ ≤ (1 + h(a0))∥y0 − x0∥
n−1∑
i=0

(f(a0)g(a0))
i. (2.18)

Also,

∥yn − x0∥ ≤ ∥yn − xn∥+ ∥xn − x0∥

≤ (1+h(a0))(f(a0)g(a0))
n∥y0−x0∥+ (1+h(a0))∥y0−x0∥

n−1∑
i=0

(f(a0)g(a0))
i

= ϕ(1 + h(a0))
[
(f(a0)g(a0))

n +

n−1∑
i=0

(f(a0)g(a0))
i
]
η

= ϕ(1 + h(a0))
1− (f(a0)g(a0))

n+1

1− (f(a0)g(a0))
η < Rη, (2.19)
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and
∥zn − yn∥ ≤ 5∥Γn∥∥F (yn)∥

≤ 5Mβcn0∥y0 − x0∥
= 5a0M∥y0 − x0∥. (2.20)

Hence,
∥zn − x0∥ ≤ ∥zn − yn∥+ ∥yn − x0∥

= 5a0M∥y0 − x0∥+ ϕ(1 + h(a0))
1− (f(a0)g(a0))

n+1

1− (f(a0)g(a0))
∥y0 − x0∥

<
(
5Ma0 + ϕ(1 + h(a0))

1− (f(a0)g(a0))
n+1

1− (f(a0)g(a0))

)
η < Rη. (2.21)

Thus, xn, yn, zn ∈ B(x0, Rη). Also, we can conclude that {xn} is a Cauchy sequence.
On taking the limit as n → ∞ in (2.18), we get x∗ ∈ B(xα,0, Rη). To show that x∗ is
a solution of F (x) = 0. We have that ∥F (xn)∥ ≤ ∥F ′(xn)∥∥ΓnF (xn)∥ and the sequence
{∥F ′(xn)∥} is bounded as

∥F ′(xn)∥ ≤ ∥F ′(x0)∥+K∥xn − x0∥p < ∥F ′(x0)∥+KRηp.

Since F is continuous, by taking limit as n → ∞, we get F (x∗) = 0.

Theorem 2.4. Let F satisfy the assumptions and assume that the equation 2βω(R +

r)
∫ 1

1/2
ϕ(t)dt = 1 in r has a positive root. Then, the solution x∗ is unique in B(x0, r)∩Ω.

Proof. To prove the uniqueness of the solution, if y∗ be the another solution of (1) in
B(x0, r) ∩ Ω then we have

0 = F (y∗)− F (x∗) =

∫ 1

0

F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗).

Clearly, y∗ = x∗, if
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt is invertible. This follows from

∥Γ0∥∥
∫ 1

0

[F ′(x∗ + t(y∗ − x∗))− F ′(x0)]dt∥ ≤ β

∫ 1

0

ω(∥x∗ + t(y∗ − x∗)− x0∥)dt

≤ β

∫ 1

0

ω((1− t)∥x∗ − x0∥+ t∥y∗ − x0∥)dt

≤ β

∫ 1/2

0

ω((1− t)∥x∗ − x0∥+ t∥y∗ − x0∥)dt

+

∫ 1

1/2

ω((1− t)∥x∗ − x0∥+ t∥y∗ − x0∥)dt

≤ β
[ ∫ 1/2

0

ϕ(1− t)ω(R+ r)dt

+

∫ 1

1/2

ϕ(t)ω(R+ r)dt
]

= 2βω(R+ r)

∫ 1

1/2

h(t)dt = 1, (2.22)
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and by Banach Lemma. Thus, y∗ = x∗.

2.3. Numerical Examples
An interesting possibility arising from the study of the convergence of the iterative

methods for solving equations is to obtain results of existence and uniqueness of solutions
for different types of equations. In this section, we provide some results of this type for a
nonlinear Hammerstein integral equation of the second kind

Example 2.5.

x(s) = 1 +

∫ 1

0

G(s, t)
[
x(t)8/5 +

x(t)2

10

]
dt s ∈ [0, 1] (2.23)

for x ∈ X = C[a, b] is the space of continuous functions on [0, 1] with max norm ∥x∥ =
maxs∈[0,1] |x(s)|, where G(s, t) is the kernel,

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t,

(2.24)

Solving (2.23) is same as solve F (x) = 0, where F : Ω ⊆ C[a, b] → C[a, b] and

[F (x)](s) = x(s)− 1−
∫ 1

0

G(s, t)
[
x(t)8/5 +

x(t)2

10

]
dt s ∈ [0, 1]. (2.25)

Now, we find the First order Fréchet derivative of (2.23),

F ′(x)u(s) = u(s)−
∫ 1

0

G(s, t)
[8
5
x(t)3/5 +

x(t)

5

]
u(t)dt.

From this,

∥F ′(x)− F ′(y)∥ ≤ 1

5
(∥x− y∥3/5 + ∥x− y∥).

Here, we observe that F ′ does not satisfy the Lipschitz and Hölder continuity condition
for all x, y ∈ Ω but it satisfies the ω−continuity condition. Then, it follows that ω(z) =
1
5 (z

3/5 + z). For a fixed x0(s) = 1, we have ∥Γ0∥ = ∥F ′(x0)
−1∥ ≤ 40

31 = β, ∥Γ0F (x0)∥ ≤
11
62 = η. Using these all, we get a0 = βω(η) = 0.137224 ≤ 0.401291. Hence, we observed
that the the convergence theorem satisfies all the conditions. Hence, the solution of (2.23)
exists in B(x0, 0.238277) ⊆ Ω and the solution is unique in the ball B(x0, 2.54114) ∩ Ω.

3. Local Convergence
In this section, we shall discuss the local convergence of the iterative method (2.1). Let

ω0, w : [0,∞) → [0,∞) with ω0(0) = w(0) = 0 be a nondecreasing continuous functions
and r0 be defined as follows. Let us suppose that there exist x∗ ∈ Ω such that for each
x ∈ Ω the following assumptions hold,

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), (3.1)

∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ ω0(∥x− x∗∥), (3.2)

∥F ′(x∗)−1(F ′(x)− F ′(y))∥ ≤ ω(∥x− y∥), (3.3)
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∥F ′(x∗)−1F ′(x)∥ ≤ 1 + ω0(∥x− x∗∥), (3.4)

and define,

r0 = sup{t ≥ 0 : ω0(t) < 1}. (3.5)

Under these assumptions we can show the main local convergence result for the method
(2.1) in the form of following theorem.

Theorem 3.1. Let X and Y be Banach spaces and F (x) be a nonlinear Fréchet differen-
tiable operator in an open convex domain Ω. Let us suppose that there exist x∗ ∈ Ω such
that the assumptions (3.1)-(3.4) are satisfied and B(x∗, r) ⊆ Ω, , where r is the radius.
Then, the sequence {xn} generated for initial approximation x0 by the method (2.1) is well
defined, remains in B(x∗, r) for n = 0, 1, . . . and converge to x∗. Moreover the following
estimates hold,

∥yn − x∗∥ ≤ g1(∥xn − x∗∥)∥xn − x∗∥, (3.6)

∥zn − x∗∥ ≤ g2(∥xn − x∗∥)∥xn − x∗∥, (3.7)

and

∥xn+1 − x∗∥ ≤ g3(∥xn − x∗∥)∥xn − x∗∥, (3.8)

where the functions gi for i = 1, 2, 3 are defined. Furthermore, if
∫ 1

0
ω0(θR)dθ < 1 for

R ≥ r, then the the point x∗is the only solution of F (x) = 0 in B(x∗, R).

Proof. We show that the sequence {xn} is well defined and converge to the solution x∗

so that the estimates (3.6)-(3.8) hold true with the help of mathematical induction. By
the hypothesis x0 ∈ B(x∗, r)− x∗ Using (3.2), we have that

∥F ′(x∗)−1(F ′(x0)− F ′(x∗))∥ ≤ ω0(∥x0 − x∗∥) < ω0(r). (3.9)

From (3.5) we have ω0(r) < 1. Hence by Banach lemma, we get

∥F ′(x0)
−1F ′(x∗)∥ ≤ 1

1− ω0(∥x0 − x∗∥)
. (3.10)

From first step of the iteration method (2.1), we get

y0 − x∗ = x0 − x∗ − F ′(x0)
−1F (x0)

= −F ′(x0)
−1F ′(x∗)

∫ 1

0

F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)]

(x0 − x∗)dθ (3.11)

Using, (3.3), (3.10) and (3.11), we get

∥y0−x∗∥ ≤ ∥F ′(x0)
−1F ′(x∗)∥

∫ 1

0

∥F ′(x∗)−1[F ′(x∗+θ(x0−x∗))−F ′(x0)]∥∥(x0−x∗)∥dθ

=

∫ 1

0
ω((1− θ)∥x0 − x∗∥)dθ∥x0 − x∗∥

1− ω0(∥x0 − x∗∥)
= g1(∥x0 − x∗∥)∥x0 − x∗∥. (3.12)



30 Thai J. Math. Vol. 20 (2022) /P. Maroju et al.

Which shows (3.6) hold for n = 0 and y0 ∈ B(x∗, r), where,

g1(t) =

∫ 1

0
ω((1− θ)t)dθ

1− ω0(t)
(3.13)

then, h1(t) = g1(t) − 1, with h1(0) = −1, h1(t) → +∞ as t → r−0 . Then by the
intermediate value theorem we say that the function h1 have smallest zero r1 in the
interval (0, r0). Then we get, 0 < r < r1 < r0 and 0 ≤ g1(t) < 1∀t ∈ (0, r1).

We can write by (3.1) that

F (y0) = F (y0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (3.14)

Note that, ∥x∗+ θ(x0−x∗)−x∗∥ = θ∥x0−x∗∥ < r, so x∗+ θ(x0−x∗) ∈ B(x∗, r). Hence,
using (3.4), (3.12) and (3.14) we get

∥F ′(x∗)−1F (y0)∥ ≤
∫ 1

0

∥F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)∥dθ

≤
∫ 1

0

(1 + ω0(θ∥y0 − x∗∥))∥y0 − x∗∥dθ

≤
∫ 1

0

(1 + ω0(θg1(∥x0 − x∗∥)∥x0 − x∗∥))g1(∥x0 − x∗∥)

×∥x0 − x∗∥dθ. (3.15)

Now, from the second step of the method, we get

∥z0 − x∗∥ ≤ ∥y0 − x∗∥+ 5∥F ′(x0)
−1F (x∗)∥∥F ′(x∗)−1F (y0)∥

= ∥y0−x∗∥+ 5∥F ′(x0)
−1F ′(x∗)∥

∫ 1

0

∥F ′(x∗)−1F ′(x∗+θ(y0−x∗))(y0−x∗)dθ∥

=
(
1 +

5
∫ 1

0
(1 + ω0(θ∥y0 − x∗∥)dθ
1− ω0(∥x0 − x∗∥)

)
∥y0 − x∗∥

=
(
1 +

5
∫ 1

0
(1 + ω0(θg1(∥x0 − x∗∥)∥x0 − x∗∥))dθ

(1− ω0(∥x0 − x∗∥))

)
g1(∥x0 − x∗∥)∥x0 − x∗∥

= g2(∥x0 − x∗∥)∥x0 − x∗∥. (3.16)

Which shows (3.7) hold for n = 0 and z0 ∈ B(x∗, r), where,

g2(t) =
(
1 +

5
∫ 1

0
(1 + ω0(θg1(t)t))dθ

1− ω0(t)

)
g1(t) (3.17)

then, h2(t) = g2(t)−1, with h2(0) = −1 < 0, h2(r1) > 0. Then by the intermediate value
theorem we say that the function h2 have smallest zero r2 in the interval (0, r1). Then
we get, 0 < r < r2 < r1 and 0 ≤ g2(t) < 1∀t ∈ (0, r2). Also, we have as from (3.18) for



Semilocal and Local Convergence of a Three Step ... 31

z0 = y0 that

∥F ′(x∗)−1F (z0)∥ ≤
∫ 1

0

∥F ′(x∗)−1F ′(x∗ + θ(z0 − x∗))(x0 − x∗)∥dθ

≤
∫ 1

0

(1 + ω0(θ∥z0 − x∗∥))∥z0 − x∗∥dθ

≤
∫ 1

0

(1 + ω0(θg2(∥x0 − x∗∥)∥x0 − x∗∥))g2(∥x0 − x∗∥)

×∥x0 − x∗∥dθ. (3.18)

From the third step of the method, we get

∥x1 − x∗∥ ≤ ∥z0 − x∗∥+ 1

5
∥F ′(x0)

−1F ′(x∗)∥(∥F ′(x∗)F (y0)∥+ ∥F ′(x∗)F (z0)∥)

= g2(∥x0 − x∗∥)∥x0 − x∗∥

+
1

1− ω0(∥x0 − x∗∥)

[ ∫ 1

0

(1 + ω0(θg1(∥x0 − x∗∥)∥x0 − x∗∥))g1(∥x0 − x∗∥)∥x0 − x∗∥dθ

+

∫ 1

0

(1 + ω0(θg2(∥x0 − x∗∥)∥x0 − x∗∥))g2(∥x0 − x∗∥)∥x0 − x∗∥dθ
]

= g3(∥x0 − x∗∥)∥x0 − x∗∥. (3.19)

Which shows (3.8) hold for n = 0 and x1 ∈ B(x∗, r), where

g3(t) = g2(t) +
1

5(1−ω0(t))

[ ∫ 1

0

(1 + ω0(θg1(t)t))g1(t)dθ +

∫ 1

0

(1 + ω0(θg2(t)t)g2(t)dθ
]

(3.20)

then, h3(t) = g3(t)−1, with h3(0) = −1 < 0, h3(r2) > 0. Then by the intermediate value
theorem we say that the function h3 have smallest zero r3 in the interval (0, r2). Then
we get, 0 < r < r3 < r2 < r1 < r0 and 0 ≤ g3(t) < 1 ∀ t ∈ (0, r).

∥x1 − x∗∥ ≤ g6(∥x0 − x∗∥)∥x0 − x∗∥ < ∥x0 − x∗∥ < r. (3.21)

Therefore the theorem hold true for n = 0. By using the mathematical induction we can
prove (3.6)-(3.8) hold true for n ≥ 1. Using the estimate ∥xn+1−x∗∥ ≤ g3(∥x0−x∗∥)∥x0−
x∗∥, where, g3(∥x0 − x∗∥) < 1, we deduce that xn → x∗ as n → ∞, and xn+1 ∈ B(x∗, r).
Now, we prove the uniqueness part of the theorem. Let y∗ ∈ Ω be another solution with
F (y∗) = 0. Define P =

∫ 1

0
F ′(x∗ + θ(x∗ − y∗))dθ. Using, (3.2), we get

∥F ′(x∗)−1

∫ 1

0

[F ′(x∗ + θ(x∗ − y∗))− F ′(x∗)]dθ∥ ≤ ∥
∫ 1

0

ω0(θ∥y∗ − x∗∥) ≤
∫ 1

0

ω0(θR) < 1.

From this it follows that P is invertible, then in view of identity

0 = F (x∗)− F (y∗) = P (x∗ − y∗).

Hence, x∗ = y∗
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3.1. Numerical Examples
In this subsection, we demonstrate the theoretical results which we have proposed in

the previous section. Therefore, we consider the one numerical example in this section,
which are defined as follows

Example 3.2. Let X = Y = C[0, 1] and consider the nonlinear integral equations of the
mixed Hammerstein type, defined by

x(s) = 1 +

∫ 1

0

G(s, t)
(
x(t)3/2 +

x(t)2

2

)
dt s ∈ [0, 1] (3.22)

where, the kernel G is the green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

(3.23)

The solution x∗(s) = 0 is the same as the solution of equation (1.1), where F is defined
as

F (x)(s) = x(s)− 1−
∫ 1

0

G(s, t)
(
x(t)3/2 +

x(t)2

2

)
dt s ∈ [0, 1]. (3.24)

Since, we have

∥
∫ 1

0

G(s, t)dt∥ ≤ 1

8
. (3.25)

Then, we get

F ′(x)u(s) = u(s)−
∫ 1

0

G(s, t)
(3
2
x(t)1/2 + x(t)

)
dt.

So,

∥F ′(x∗)−1(F ′(x)− F ′(y))∥ ≤ 1

8

(3
2
∥x− y∥1/2 + ∥x− y∥

)
. (3.26)

Therefore, we can get ω0(t) = ω(t) = 1
8

(
3
2 t

1/2 + t
)

and, v(t) = 1 + ω0(t). This problem
fails to satisfies the Lipschitz continuity condition. However, our results can apply. Hence,
using the the above choice of the function v, ω0, ω, we get that

r0 = 3.2000, r1 = 2.6303, r2 = 0.4486, r3 = 0.224209.

So, r = min{r0, r1, r2, r3} = 0.224209.

4. Conclusions
The semilocal and local convergence of fifth order iterative method for solving nonlinear

equations in Banach spaces is established under the assumption that the first order Fréchet
derivative satisfies the ω− continuity condition. The existence and uniqueness region of
solution for the method is obtained. A number of A Numerical examples are worked out
to demonstrate the efficiency of our convergence analysis.
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