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1. Introduction
The convolution of a function with a fixed density is a smoothing operation that pro-

duces a certain average of the function. Averaging is an important operation in analysis
and naturally arises in many situations. The study of averages of functions is better
understood and simplified by the introduction of the maximal function. This is defined
as the largest average of a function over all balls containing a fixed point. Maximal
functions play a key role in differentiation theory, where they are used in obtaining al-
most everywhere convergence for certain integral averages. Although maximal functions
do not preserve qualitative information about the given functions, they maintain crucial
quantitative information, a fact of great importance in the subject of Fourier analysis.

A very significant role in the estimation of different operators in analysis is played by
the Hardy-Littlewood maximal function

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

There are a lot of papers dedicated to the study of properties of the Hardy-Littlewood
maximal function, its variants, and their applications.
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In 1930, Hardy and Littlewood (see [1]) proved a remarkable result, known as the
Hardy-Littlewood maximal theorem, which can be formulated in the following way:

∥Mf∥Lp(Rn) ≤ C∥f∥Lp(Rn), forp > 0.

In 1939, N. Wiener (see [2]) proved a weak type (1, 1) inequality for the Hardy-
Littlewood maximal function. Later these facts extended to various Lie groups, symmetric
spaces, some measure spaces (see [3], [4] [5], [6]).

For 0 < α < n, the operator

Rαf(x) =

∫
Rn

|x− y|αf(y)dy

is called a classical Riesz potential.
By the classical Hardy-Littlewood-Sobolev theorem, if 1 < p < ∞ and αp < n, then

Rαf is an operator of strong type (p, q), where 1

q
=

1

p
− α

n
. If p = 1, then Rαf is an

operator of weak type (1, q), where 1

q
= 1− α

n
(see [7], [8]).

The Hardy-Littlewood-Sobolev theorem is an important result in fractional integral
theory and potential theory. There are a lot of generalizations of this theorem. The
Hardy-Littlewood-Sobolev theorem was proved for Riesz potentials associated to doubling
measures in [9] and nondoubling measures in [10], [11]. In [12] and [13], generalized
potential-type integral operators were considered and (p, q) properties of these operators
were proved. In [14], [15], [16], [17] the Hardy-Littlewood-Sobolev theorem was extended
to Orlicz and Musielak-Orlicz spaces for generalized Riesz potentials.

In this paper, we define the Hardy-Littlewood maximal function and the Riesz potential
on the commutative hypergroup. The sufficient condition is found for a weak type (1, 1)
and a strong type (p, p), 1 < p ≤ ∞, boundedness of the Hardy-Littlewood maximal
functions. Also we prove the analogue of the Hardy-Littlewood-Sobolev theorem for the
fractional integrals (Riesz potentials) on the commutative hypergroups.

2. Preliminaries
Let K be a set. A function ρ : K ×K → [0,∞) is called quasi-metric if:

(1) ρ (x, y) = 0 ⇔ x = y;
(2) ρ (x, y) = ρ (y, x) ;
(3) there exists a constant c ≥ 1 such that for every x, y, z ∈ K

ρ (x, y) ≤ c (ρ (x, z) + ρ (z, y)) .

Let all balls B(x, r) = {y ∈ K : ρ(x, y) < r} be λ-measurable and assume that the
measure λ fulfils the doubling condition

0 < λB(x, 2r) ≤ DλB(x, r) < ∞. (2.1)

A space (K, ρ, λ) which satisfies all conditions mentioned above is called a space of
homogeneous type (see [4]).

In the theory of locally compact groups there arise certain spaces which, though not
groups, have some of the structure of groups. Often, the structure can be expressed in
terms of an abstract convolution of measures on the space.
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A hypergroup (K, ∗) consists of a locally compact Hausdorff space K together with a
bilinear, associative, weakly continuous convolution on the Banach space of all bounded
regular Borel measures on K with the following properties:

1. For all x, y ∈ K, the convolution of the point measures δx ∗ δy is a probability
measure with compact support.
2. The mapping: K×K → C(K), (x, y) 7→ supp(δx∗δy) is continuous with respect
to the Michael topology on the space C(K) of all nonvoid compact subsets of K,
where this topology is generated by the sets

UV,W = {L ∈ C(K) : L ∩ V ̸= ∅, L ⊂ W}
with V,W open in K.
3. There is an identity e ∈ K with δe ∗ δx = δx ∗ δe = δx for all x ∈ K.
4. There is a continuous involution ∼ on K such that

(δx ∗ δy)∼ = δy∼ ∗ δx∼

and e ∈ supp(δx ∗ δy) ⇔ x = y∼ for x, y ∈ K (see [18], [19], [20], [21], [22] ).
A hypergroup K is called commutative if δx ∗ δy = δy ∗ δx for all x, y ∈ K. It is well

known that every commutative hypergroup K possesses a Haar measure which will be
denoted by λ (see [19]). That is, for every Borel measurable function f on K,∫

K

f(δx ∗ δy)dλ(y) =
∫
K

f(y)dλ(y) (x ∈ K).

Define the generalized translation operators T x, x ∈ K, by

T xf(y) =

∫
K

fd(δx ∗ δy)

for all y ∈ K. If K is a commutative hypergroup, then T xf(y) = T yf(x) and the
convolution of two functions is defined by

(f ∗ g)(x) =
∫
K

T xf(y)g(y∼)dλ(y).

Let p > 0. By Lp (K,λ) denote a class of all λ-measurable functions f : K → (−∞, +∞)

with ∥f∥Lp(K,λ) =

(∫
K

|f (x)|p dλ (x)
) 1

p

< ∞.

The notation χA(x) denotes the characteristic function of set A.
Define a function Λx(y) = T xχB(e,r)(y

∼).

3. Main Results
In this section we formulate the main results of this paper.

Define Hardy-Littlewood maximal function

Mf(x) = sup
r>0

1

λB(e, r)

(
|f | ∗ χB(e,r)

)
(x)

and fractional integral (or Riesz potential)
Iαf(x) =

(
ρ(e, ·)α−N ∗ f

)
(x), 0 < α < N

on commutative hypergroup (K, ∗) equipped with the quasi-metric ρ.
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Theorem 3.1. Let (K, ∗) be a commutative hypergroup, with quasi-metric ρ and doubling
Haar measure λ. Assume that there exist constants c1 > 0 and c2 > 0 such that for every
x, y ∈ K and r > 0

suppΛx(·) ⊂ B(x, c1r)

and
λB(x, r)T xχB(e,r)(y

∼) ≤ c2λB(e, r).

Then
1) The maximal operator M satisfies a weak type (1, 1) inequality, that is, there
exists a constant C > 0 such that for every f ∈ L1(K,λ) and α > 0

λ{x : Mf(x) > α} ≤ C

α

∫
K

|f(x)|dλ(x).

2) The maximal operator M is of strong type (p, p), for 1 < p ≤ ∞, that is,
∥Mf∥Lp(K,λ) ≤ Cp∥f∥Lp(K,λ),

for some constant C and every f ∈ Lp(K,λ).

Proof. It is clear that there exists nonnegative integer m such that c1 ≤ 2m and λB(x, c1r) ≤
DmλB(x, r), where D is a constant on doubling condition (2.1). Then we have

Mf(x) = sup
r>0

1

λB(e, r)

∫
K

T x|f(y)|χB(e,r)(y
∼)dλ(y)

= sup
r>0

1

λB(e, r)

∫
K

|f(y)|T xχB(e,r)(y
∼)dλ(y)

≤ sup
r>0

1

λB(e, r)

∫
B(x,c1r)

|f(y)|T xχB(e,r)(y
∼)dλ(y)

= sup
r>0

1

λB(x, r)

∫
B(x,c1r)

|f(y)|
T xχB(e,r)(y

∼)λB(x, r)

λB(e, r)
dλ(y)

≤ c2 sup
r>0

1

λB(x, r)

∫
B(x,c1r)

|f(y)|dλ(y) ≤ c2D
mMρf(x),

where
Mρf(x) = sup

r>0

1

λB(x, r)

∫
B(x,r)

|f(y)|dλ(y)

is a maximal operator on (K, ρ, λ). It is well known that the maximal operator Mρ is of
weak type (1, 1) and is bounded on Lp(K,λ) (see [4], [6]). This fact and the inequality
Mf(x) ≤ c2D

mMρf(x) completes the proof.

Corollary 3.2. Let (K, ∗) be a commutative hypergroup, with quasi-metric ρ and doubling
Haar measure λ. Assume that there exist constants c1 > 0 and c2 > 0 such that for every
x, y ∈ K and r > 0

suppΛx(·) ⊂ B(x, c1r)

and
λB(x, r)T xχB(e,r)(y

∼) ≤ c2λB(e, r).
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If f is a locally integrable function with respect Haar measure λ on (K, ∗), then

lim
r→0+

1

λB(e, r)

∫
K

|T xf(y)− f(x)|χB(e,r)(y
∼)dλ(y) = 0

for a.e. x ∈ K.

Proof. From the proof of Theorem 3.1 we have
1

λB(e, r)

∫
K

|T xf(y)−f(x)|χB(e,r)(y
∼)dλ(y) ≤ 1

λB(e, r)

∫
K

T x|f(y)−f(x)|χB(e,r)(y
∼)dλ(y)

≤ c2D
m

λB(x, c1r)

∫
B(x,c1r)

|f(y)− f(x)|dλ(y).

Since
lim
r→0

1

λB(x, r)

∫
B(x,r)

|f(y)− f(x)|dλ(y) = 0

(see [4], [6]) we have the required result.

Theorem 3.3. Let (K, ∗) be a commutative hypergroup, with quasi-metric ρ and doubling
Haar measure λ and let 0 < α < N , 1 ≤ p < N

α and 1
p − 1

q = α
N . Assume that there exist

positive constants c1, c2 and c3 such that for every x, y ∈ K and r > 0

suppΛx(·) ⊂ B(x, c1r)

and
λB(x, r)T xχB(e,r)(y

∼) ≤ c2λB(e, r) ≤ c3r
N .

If f ∈ Lp(K), then the integral

Iαf(x) =

∫
X

T xρ(e, y)α−Nf(y∼)dλ(y)

is absolutely convergent for almost every x ∈ K.
If 1 < p < N

α and f ∈ Lp(K,λ) then Iαf ∈ Lp(K,λ) and
∥Iαf∥Lp(K,λ) ≤ Cp∥f∥Lp(K,λ), (3.1)

where Cp > 0 is independent of f .
If 1

q = 1− α
N and f ∈ L1(K,λ) then

λ{x : Iαf(x) > β} ≤
(
C

β
∥f∥L1(K,λ)

)q

, β > 0, (3.2)

where C > 0 is independent of f .

Proof. 1) Let f ∈ Lp(K,λ) and 1 ≤ p < N
α . Write Iαf(x) in the form

Iαf(x) =

∫
B(e,1)

ρ(e, y)α−NT xf(y∼)dλ(y)

+

∫
K\B(e,1)

ρ(e, y)α−NT xf(y∼)dλ(y) = J1(x) + J2(x).
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Let us estimate J1(x). It is clear that

|J1(x)| ≤
∫
K

ρ(e, y)α−NχB(e,1)(y)T
x|f(y∼)|dλ(y)

By Young’s inequality
∥J1(·)∥Lp(K,λ) ≤ ∥ρ(e, ·)α−NχB(e,1)(·)∥L1(K,λ)∥T xf∥Lp(K,λ)

≤ C∥ρ(e, ·)α−NχB(e,1)(·)∥L1(K,λ)∥f∥Lp(K,λ)

and
∥ρ(e, ·)α−NχB(e,1)(·)∥L1(K,λ) =

∫
B(e,1)

ρ(e, y)α−Ndλ(y)

≤
∞∑
k=1

∫
2−k≤ρ(e,y)<2−k+1

ρ(e, y)α−Ndλ(y)

≤
∞∑
k=1

(
2−k

)α−N
∫

ρ(e,y)<2−k+1

dλ(y)

≤ C

∞∑
k=1

2(N−α)k2N(−k+1) < C

Then
∥J1(·)∥Lp(K,λ) ≤ C∥f∥Lp(K,λ),

e.g. J1(x) is absolutely convergent almost every x ∈ K.
By Hölder’s inequality we have

|J2(x)| ≤
∫

K\B(e,1)

ρ(e, y)α−NT x|f(y∼)|dλ(y)

≤ ∥T xf(·)∥Lp(K,λ)

 ∫
K\B(e,1)

ρ(e, y)(α−N)p′
dλ(y)


1
p′

≤ C∥f∥Lp(K,λ)

 ∫
K\B(e,1)

ρ(e, y)(α−N)p′
dλ(y)


1
p′

and ∫
K\B(e,1)

ρ(e, y)(α−N)p′
dλ(y)

≤
∞∑
k=0

∫
2k<ρ(e,y)≤2k+1

ρ(e, y)(α−N)p′
dλ(y)

≤
∞∑
k=0

2(N−α)p′k

∫
ρ(e,y)≤2k+1

dλ(y)
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≤
∞∑
k=0

2(N−α)p′k2(k+1)N < C

Hence for 1 ≤ p < N
α

|J2(x)| ≤ C∥f∥Lp(K,λ)

Thus for all functions f ∈ Lp(K,λ), 1 ≤ p < N
α the fractional integrals Iαf(x) are

absolutely convergent for almost every x ∈ K.
2) Split Iαf(x) in the standard way

Iαf(x) =

∫
B(e,r)

ρ(e, y)α−NT xf(y∼)dλ(y) +

∫
K\B(e,r)

ρ(e, y)α−NT xf(y∼)dλ(y)

= U1(x, r) + U2(x, r).

Then for U1(x, r) we have the estimate

|U1(x, r)| ≤
∫

B(e,r)

ρ(e, y)α−NT x|f(y∼)|dλ(y).

≤
∞∑
k=1

∫
2−kr≤ρ(e,y)<2−k+1r

ρ(e, y)α−NT x|f(y∼)|dλ(y)

≤
∞∑
k=1

(
2−kr

)α−N
∫

ρ(e,y)<2−k+1r

T x|f(y∼)|dλ(y)

=

∞∑
k=1

(
2−kr

)α−N
λB(e, 2−k+1r)

1

λB(e, 2−k+1r)

∫
B(e,2−k+1r)

T x|f(y∼)|dλ(y)

≤ CrαMf(x).

Therefore it follows that
|U1(x, r)| ≤ CrαMf(x), (3.3)

where C > 0 does not depend f , x and r.
Estimate U2(x, r). By Hölder’s inequality we have

|U2(x, r)| ≤

 ∫
K\B(e,r)

|T xf(y∼)|pdλ(y)


1
p
 ∫
K\B(e,r)

ρ(e, y)(α−N)p′
dλ(y)


1
p′

.

Here  ∫
K\B(e,r)

ρ(e, y)(α−N)p′
dλ(y)


1
p′

=

 ∞∑
k=0

∫
2kr≤ρ(e,y)<2k+1r

ρ(e, y)(α−N)p′
dλ(y)


1
p′
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≤

 ∞∑
k=0

(
2kr
)(α−N)p′

∫
ρ(e,y)<2k+1r

dλ(y)


1
p′

≤ C

( ∞∑
k=0

(
2kr
)(α−N)p′ (

2k+1r
)N) 1

p′

≤ Cr
α−N+N

p′

= Cr−
N
q .

Therefore
|U2(x, r)| ≤ Cr−

N
q ∥f∥Lp(K,λ) (3.4)

From (3.3) and (3.4), we have

|Iαf(x)| ≤ C
(
rαMf(x) + r−

N
q ∥f∥Lp(K,λ)

)
Minimum of the right-hand side is attained at r =

[∥f∥Lp(K,λ)

Mf(x)

] p
N

. So

|Iαf(x)| ≤ C (Mf(x))
p
q ∥f∥1−

p
q

Lp(K,λ)

Hence, by the Theorem 3.1 we have∫
K

|Iαf(x)|qdλ(y) ≤ C∥f∥q−p
Lp(K,λ)

∫
K

(Mf(y))
p
dλ(y) ≤ C∥f∥qLq(K,λ)

3) Let f ∈ L1(K,λ). It is clear that
λ{x ∈ K : |Iαf(x)| > 2β} ≤ λ{x ∈ K : |U1(x, r)| > β}+ λ{x ∈ K : |U2(x, r)| > β}

Further, from inequality (3.3) and from Theorem 3.1 we derive that

βλ{x ∈ K : |U1(x, r)| > β} = β

∫
{x∈K:|U1(x,r)|>β}

dλ(y)

≤ β

∫
{x∈K:CrαMf(x)>β}

dλ(y)

= βλ

{
x ∈ K : Mf(x) >

β

Crα

}
≤ β

Crα

β

∫
K

|f(y)|dλ(y) = Crα∥f∥L1(K,λ)

and
|U2(x, r)| ≤

∫
K\B(e,r)

ρ(e, r)α−N |T xf(y∼)|dλ(y)

≤ rα−N

∫
K\B(e,r)

|T xf(y∼)|dλ(y)



Hardy-Littlevood Maximal Functions and Fractional Integrals on Hypergroups 9

≤ Cr−
N
q

∫
K

|f(y)|dλ(y) = Cr−
N
q ∥f∥L1(K,λ).

Thus, if β = r−
N
q ∥f∥L1(K,λ), then |U2(x, r)| ≤ β, and, consequently, λ{x ∈ K : |U2(x, r)| >

β} = 0. Thus
λ{x ∈ K : |Iαf(x)| > 2β} ≤ C

β
rα∥f∥L1(K,λ)

= Crα+
N
q = CrN = Cβ−q∥f∥qL1(K,λ) ≤

(
C

β
∥f∥L1(K,λ)

)q

.

The theorem is proved.

Theorem 3.4. Let 1 < p < N
α , 1

p − 1
q = α

N . Then for a measure λ, finite over balls and
not having any atoms, the condition

λB(e, r) ≤ C2r
N (3.5)

is necessary for the inequality (3.1) to hold

Proof. If λB(e, r) = 0, then (3.5) is trivially true. Let λB(e, r) > 0. Take f(x) =
χB(e,r)(x

∼). We have

Iαf(x) =

∫
X

T xρ(e, y)α−NχB(e,r)(y)dλ(y) =

∫
B(e,r)

T xρ(e, y)α−Ndλ(y)

≥
∫

B(e,r)

T xrα−Ndλ(y) = rα−NλB(e, r).

By applying (3.1) we get

rα−NλB(e, r)1+
1
q =

 ∫
B(e,r)

(
rα−NλB(e, r)

)q
dλ(x)


1
q

≤

∫
K

(
IαχB(e,r)(x

∼)
)q

dλ(x)

 1
q

≤ C

∫
K

(
χB(e,r)(x)

)p
dλ(x)

 1
p

≤ CλB(e, r)
1
p

which is equivalent to λB(e, r)1+
1
q+

1
p ≤ C(rN )1−

α
N . Since 1 + 1

q + 1
p = 1 − α

N , the last
inequality is, precisely, condition (3.5).
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