
ISSN 1686-0209

Thai Journal of Mathematics
Special Issue: The 17th IMT-GT ICMSA 2021
Pages 212–228

http://thaijmath.in.cmu.ac.th

Hybrid Finite Integration Method for Solving Partial

Differential Equations

Nifatamah Makaje1, Areeyuth Sama-Ae1,Aniruth Phon-On1,Areena Hazanee1,∗

1Department of Mathematics and Computer Science, Prince of Songkla University, Pattani campus, Pattani
94000
e-mail : nifatamah.m@psu.ac.th (N. Makaje); areeyuth.s@psu.ac.th (A. Sama-Ae); aniruth.p@psu.ac.th (A.
Phon-On); areena.h@psu.ac.th (A. Hazanee, corresponding author*)

Abstract In this paper, a Hybrid Finite Integration Method (HFIM), modified based on the research

of P.H. Wen et al. (Wen et al. 2015), is presented to solve partial differential equations. The method

requires the integral matrix, induced by the combination of the trapezoidal rule and Simpson’s rule to

produce the integral matrix. This paper also confirms the advantage of using HFIM that only one integral

matrix is required to solve the n-th order differential equation. The integral matrix is straightforward to

implement and not complicated. Moreover, in order to demonstrate the HFIM’s accuracy and efficiency,

we illustrate numerical examples and compared the results with the finite difference method and the

traditional FIM.

MSC: 35G15; 37J35; 65N06; 65N22

Keywords: numerical method; differential equation; finite integration method; trapezoidal rule; Simp-

sons rule

Submission date: 15.03.2022 / Acceptance date: 31.03.2022

1. Introduction

Many problems in science, engineering and economics can be formulated as mathe-
matical models involving partial differential equations (PDEs). Since the exact solutions
of these equations in many cases are too complicated to determine in closed form, it is
common using numerical methods to approximate solutions. There are many techniques
to deal with the numerical solution of PDEs such as the finite difference method (FDM),
finite element method (FEM), finite volume method (FVM), boundary element method
(BEM) and spectral method.

In 2013 Wen et al. [1] proposed the finite integration method (FIM) to solve numerical
solution of differential equations. The finite integration matrices of the first order can
be constructed by implementing ordinary linear approach (OLA) or radial basis function
(RBF) interpolation. These matrices of first order can be directly used to obtain finite
integration matrices of higher order. Therefore, the advantage of the FIM is using only

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c⃝ 2020 by TJM. All rights reserved.2022

(2022)

Hybrid Finite Integration Method for Solving Partial Differential Equations

an (one layer) integral matrix to solve any n-th order differential equation. Moreover,
the first order integral matrix of FIM has a form of lower triangular matrix so the FIM
procedure is simple and saves the computational core memory. There are many researchers
developed and modified the FIM to improve the accuracy of the approximated solutions.
The common idea to improve the FIM is to construct the first order integral matrix using
various numerical methods such as the trapezoidal rule [1–3], radial basis interpolating
function [1, 2], Simpson’s rule, Cotes integral formula, Lagrange formula [2], Chebyshev
polynomial interpolation [4, 5], or Legendre polynomial interpolation [6]. The traditional-
and modified-FIM have been successfully applied to solve differential equations in 1D as
well as in multi-dimensional PDE. Moreover, the FIM has been implemented to deal with
direct and indirect problem solving [7–11].

In 2020, Makaje et al. [12] modified FIM by combining the trapezoidal rule and the
Simpsons rule in order to construct the first order integral triangular matrix to solve the
initial value problem and boundary value problem. This hybrid method provided higher
accuracy than the traditional FIM and FDM. However, this work has been only focus on
one dimensional but not yet considering the PDE problems. This became the motivation
for us to extend this hybrid FIM method to solve PDEs.

This paper is organized as follows. In Section 2, the hybrid FIM is introduced by
expressing the integral matrix, A, induced by the combination of the trapezoidal rule and
the Simpson’s rule. The use of HFIM for solving the heat equation is presented in Section
3, whereas Section 4 constructs the case of the Poisson equation solved by HFIM. Several
examples are studied in Section 5 to verify the accuracy and efficiancy of using HFIM to
solved PDEs. Section 6 presents the conclusion of this study.

2. A Hybrid Finite Integration Method

In this section, we present the hybrid finite integration method (HFIM) which is the
numerical method for approximating any n-layer integrations. This method is modified
based on the traditional FIM, presented by P.H. Wen et al. [1], together with the trape-
zoidal rule and the Simpsons rule. We firstly mention the use of the trapezoidal rule and
Simsons rule that the trapezoidal rule employ the first-order interpolating polynomial
to connect two points equally spaced whereas the Simpsons rule use the second-order
interpolating polynomial to connect three points equally spaced, then the number of in-
terval of using the trapezoidal rule can be any positive integer whereas the Simsons rule
has to be even number. The HFIM was first introduced in [12] by considering the finite
integral from 0 to the spatial domain x ∈ [0, L] defined as F (1)(x) :=

∫ x
0 f(y)dy . Let

{0 = x1 < x2 < . . . < xN = L} be a partition of the interval [0, L], where h =
L

N − 1
and

xi = (i − 1)h, for i = 1, 2, 3, . . . , N. Then the first order approximated definite integral
becomes,

F (1)(xk) :=

∫ xk

x1

f(y)dy for k ∈ {1, 2, . . . , N}. (2.1)

When k = 1, , the definite integral from x1 to x1 equal to zero,
∫ x1

x1

f(y)dy = 0.

Thai J. Math. Special Issue (2022) /N. Makake et al.

When k = 2, the definite integral is approximated via the trapezoidal rule,
∫ x2

x1

f(y)dy =
h

2
[f(x1) + f(x2)].

When k > 2 , we first define

Nodd =

{
N, if N is odd

N − 1, if N is even
and Neven =

{
N, if N is even

N − 1, if N is odd

and

i) For k ∈ {3, 5, 7, . . . , Nodd} , the definite integral is approximated via the Simp-
sons rule as,

∫ xk

x1

f(y)dy =
h

3

⎡

⎣f(x1) + 4

(k−1)/2∑

i=1

f(x2i) + 2

(k−1)/2−1∑

i=1

f(x2i−1) + f(xk)

⎤

⎦ .

ii) For k ∈ {4, 6, 8, . . . , Neven} , the definite integral is approximated via the
combination of the trapezoidal rule and the Simpsons rule as,

∫ xk

x1

f(y)dy =

∫ xk−1

x1

f(y)dy +

∫ xk

xk−1

f(y)dy, k − 1 is odd,

=
h

3

⎡

⎣f(x1) + 4

(k−2)/2∑

i=1

f(x2i) + 2

(k−4)/2∑

i=1

f(x2i−1) + f(xk−1)

⎤

⎦

+
h

2
[f(xk−1) + f(xk)]

=
h

6

⎡

⎣2f(x1) + 8

(k−2)/2∑

i=1

f(x2i) + 4

(k−4)/2∑

i=1

f(x2i−1) + 5f(xk−1) + 3f(xk)

⎤

⎦ .

Therefore the first order definite integral F (1)(xk) :=
∫ xk

x1
f(y)dy can be rewritten in a

matrix form as

F(1) = A(1)f , (2.2)

where F(1) =
[∫ x1

x1
f(y)dy,

∫ x2

x1
f(y)dy, . . . ,

∫ xN

x1
f(y)dy

]T
, f = [f(x1), f(x2), . . . , f(xN)]T

and A(1) is a coefficient matrix of the first order definite integral, and we denote A(1) = A
which can be expressed in matrix form as

A =
h

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . . . 0 0
3 3 0 0 0 . . . 0 0
2 8 2 0 0 . . . 0 0
2 8 5 3 0 . . . 0 0
2 8 4 8 2 . . . 0 0
. .
. .
2 8 4 8 4 8 5 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

for N is even

Hybrid Finite Integration Method for Solving Partial Differential Equations

A =
h

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . . . 0 0 0
3 3 0 0 0 . . . 0 0 0
2 8 2 0 0 . . . 0 0 0
2 8 5 3 0 . . . 0 0 0
2 8 4 8 2 . . . 0 0 0
. .
. .
2 8 4 8 4 . . . 5 3 0
2 8 4 8 4 . . . 4 8 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

for N is odd.

Furthermore by above consideration, for each k ∈ {1, 2, 3, . . . , N} the integral
∫ xk

x1
f(y)dy

can be written as

∫ xk

x1

f(y)dy =
k∑

j=1

akjf(xj), (2.3)

where akj is the element of matrix A(0) corresponding to (2.2) for j ∈ {1, 2, 3, . . . , N}.
For the second order integration, we define the definite integral as

F (2)(xk) =

∫ xk

x1

∫ y∗

x1

f(y)dydy∗.

Applying the first order definite integral in (2.3), we have

∫ xk

x1

∫ y∗

x1

f(y)dydy∗ =
k∑

i=1

i∑

j=1

akiaijf(xj).

Explicitly,

for k = 2,
∫ x2

x1

∫ y∗

x1
f(y)dydy∗ = (a21a11 + a22a21) f(x1) + a22a22f(x2) and

for k = 3,
∫ x3

x1

∫ y∗

x1
f(y)dydy∗ =

3∑

k=1

(a3kak1) f(x1) +
3∑

k=2

(a3kak2) f(x2) + (a33a33) f(x3).

In general, for k = t, where t ∈ {2, . . . , N}, we have

∫ xt

x1

∫ y∗

x1

f(y)dydy∗ =
t∑

k=1

atkak1f(x1) +
t∑

k=2

atkak2f(x2) + · · ·+
t∑

k=t

atkaktf(xt).

This second order definite integral F (2)(xk) =
∫ xk

x1

∫ y∗

x1
f(y)dydy∗ can also be rewritten

in a matrix form as

F(2) = A(2)f , (2.4)

where A(2) is a coefficient matrix of the second order definite integral, and can be calcu-
lated as a multiplication matrix of A as

A(2) =
[
a(2)ij

]
=

[
N∑

k=1

aikakjf(xj)

]
= A ·A = A2.

Similarly, the n-order definite integral

Thai J. Math. Special Issue (2022) /N. Makake et al.

F (n)(xk) =

∫ xk

x1

· · ·
∫ y(2)

x1

∫ y(1)

x1

f(y)dydy(1) . . . dyn−1

︸ ︷︷ ︸
n layers

can be expressed in the matrix form as

A(n) = A(n)f = Anf .

One thing to note that the coefficient matrix An is a lower triangular matrix for all n.
This is an advantage of using HFIM since it can save the computational core memory.

3. The HFIM for Solving Heat Equation

This section describes the use of the HFIM to solve the heat equation. We propose
to solve the time-dependent PDE by applying the FDM for the time discretization. For
illustration, we here consider the heat equation together with the initial and boundary
conditions:

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + p(x, t)u(x, t) + f(x, t), x ∈ (0, L), t ∈ (0, T) (3.1)

I.C. u(x, 0) = ϕ(x), x ∈ (0, L) (3.2)

B.C.
∂u

∂x
(0, t) = µ1(t),

∂u

∂x
(L, t) = µ2(t), t ∈ (0, T], (3.3)

where u(x, t) is the temperature at point x ∈ [0, L] and time t ∈ [0, T]. For the discretiza-
tion, we divide equally the time domain [0, T] as tj ∈ [t1, t2, t3, . . . , tNt] for Nt − 1 small

subintervals [tj−1, tj]; j ∈ {2, 3, . . . , Nt}, tj = (j − 1)h0 , and h0 =
T

Nt − 1
. We use the

backward FDM to approximate the time domain as

∂u

∂t
(x, tj) =

u(x, tj)− u(x, tj−1)

h0
.

Therefore the heat equation (3.1) can be discretized as

1

h0
[u(x, tj)− u(x, tj−1)] =

∂2u

∂x2
(x, tj) + p(x, tj)u(x, tj) + f(x, tj). (3.4)

Here, the discretization of temperature u(x, t) and given functions p(x, t), f(x, t) in heat
equation (3.4) are defined as

u(x, t) ≈ u(xi, tj) =: uj
i

p(x, t) ≈ p(xi, tj) =: pji

f(x, t) ≈ f(xi, tj) =: f j
i ,

where i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , Nt}.
In order to apply HFIM for solving the discrete heat equation (3.4), we apply the

integral over the equation (3.4) twice and then transform into the matrix form defined in
(2.4). Thus we have

1

h0
A2uj − 1

h0
A2uj−1 = uj +A2Pjuj +A2f j + c0x+ c1i, (3.5)

Hybrid Finite Integration Method for Solving Partial Differential Equations

where uj =
[
uj
1, u

j
2, . . . , u

j
N

]T
is an N column vector of temperature solution at time

tj ,Pj = diag
(
pj1, p

j
2, . . . , p

j
N

)
is an N diagonal matrix, f j =

[
f j
1 , f

j
2 , . . . , f

j
N

]T
, x =

[x1, x2, . . . , xN]T , i = [1, 1, . . . , 1]T are N column vectors of source function, space nodes
and constant of 1, respectively, and c0, c1 are integral constants corresponding to the
above equation. Rearranging equation (3.5) gives

[
1

h0
A2 − I−A2Pj

]
uj =

1

h0
A2uj−1 +A2f j + c0x+ c1i. (3.6)

Next, we discretize the Neumann boundary condition (3.3) as

∂u

∂x
(0, tj) = µ1(tj) =: µj

1 and
∂u

∂x
(L, tj) = µ2(tj) =: µj

2

In order to apply the boundary condition, we take the integral once over the heat equation
and approximate the integral via HFIM in (2.2). This yields

1

h0
Auj − 1

h0
Auj−1 =

∂uj

∂x
+APjuj +Af j + c0i. (3.7)

Considering the matrix equation (3.7) at x = 0, we have

1

h0

N∑

i=1

a(1)1i u
j
i −

1

h0

N∑

i=1

a(1)1i u
j−1
i = µj

1 +
N∑

i=1

a(1)1i p
j
iu

j
i +

N∑

i=1

a(1)1i f
j
i + c0.

This yields

c0 = −µj
1. (3.8)

Plugging in x = L and c0 = −µj
1 into equation (3.7), we get

N∑

i=1

[
1

h0
a(1)Ni − a(1)Nip

j
i

]
uj
i =

N∑

i=1

a(1)Ni

(
1

h0
uj−1
i + f j

i

)
+ µj

2 − µj
1. (3.9)

From equations (3.6), (3.8) and (3.9), we obtain the following block matrix equation,

⎡

⎢⎢⎢⎢⎣

1

h0
A2 − I−A2Pj −x −i

0

a(1)N

(
1

h0
I−Pj

) 1 0

0 0

⎤

⎥⎥⎥⎥⎦

⎡

⎣
uj

c0
c1

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎣

1

h0
A2uj−1 +A2f j

−µj
1

N∑

i=1

a(1)Ni

(
1

h0
uj−1
i + f j

i

)
+ µj

2 − µj
1

⎤

⎥⎥⎥⎥⎥⎦
,

(3.10)

where a(1)N =
[
a(1)N1, a

(1)
N2, . . . , a

(1)
NN

]
is an N row vector of integral coefficients a(1)Ni . In

order to solve the solution of the problem (3.1)-(3.3), we use u0 := [u(xi, 0)] = [ϕ(xi)], i ∈
{1, 2, . . . , N} , for the initial temperature at time step t1 = 0 or j = 1 , as prescribed in
the initial condition. At each time step j = 2, . . . , Nt , for computing uj , we use uj−1

for previous time step, and then substitute it into the block matrix equation. Hence, at
final time step tNt = T or j = Nt, uNt is the temperature solution as desired.

Thai J. Math. Special Issue (2022) /N. Makake et al.

4. The HFIM for Solving Poisson Equation

The previous section has presented the use of HFIM to solve the heat equation in
1D which is a parabolic equation. In this section we will extend the study in 2D ellip-
tic equation by considering the Poisson equation together with the Dirichlet boundary
conditions:

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y), x ∈ (a, b), y ∈ (c, d) (4.1)

B.C. u(a, y) = µ1(y), u(b, y) = µ2(y), y ∈ [c, d] (4.2)

u(x, c) = ϕ1(x), u(x, d) = ϕ1(x), x ∈ [a, b] (4.3)

where u(x, y) is a real function in rectangular domain [a, b] × [c, d]. For the discretiza-
tion procedure, we divide the domain [a, b] × [c, d] to the grid with mesh points x ∈

{x1, x2, ..., xN}, y ∈ {y1, y2, ..., yM} and step sizes hx =
b− a

N − 1
and hy =

d− c

M − 1
.

Figure 1. The grid points of global and local numbering systems

Here we use the global numbering system with the total point number N ×M to index
the local node (xi, yj) for i ∈ {1, 2, ..., N} and j ∈ {1, 2, ...,M}. We define the global
numbering system along X-axis as (x̃p, ỹp) and the global numbering system along Y -
axis as (x̂q, ŷq) illustrating in Figure 1 for p = N(j − 1) + i, q = M(i− 1) + j and p, q ∈
{1, 2, ..., NM}. Along the finite integration introduced in Section 2, the first order integral
approximations with respect to x and y can be defined via using HFIM as U (1,x)(x, y) :=∫ x
a u(ξ, y) dξ and U (1,y)(x, y) :=

∫ y
c u(x, ζ) dζ. Therefore the integral approximations at

Hybrid Finite Integration Method for Solving Partial Differential Equations

the global points Ũ (1,x)(x̃p, ỹp) can be expressed as

Ũ (1,x)(x̃p, ỹp) =
p∑

k=1

ã(1,x)k ũ(x̃k, ỹk)

where ã(1,x)k defined as ã(1,x)k = air, when i = p−N
⌊ p

N

⌋
, r = k−N

⌊
k

N

⌋
and 1 ≤ r ≤ i,

otherwise ã(1,x)k = 0. Then the first order integral with respect to x can be rewritten in a
matrix form as

Ũ
(1,x)

= Ã
(1,x)

ũ, (4.4)

where Ũ
(1,x)

=
[∫ x̃∗

1

a u(ξ, ỹ1) dξ,
∫ x̃∗

2

a u(ξ, ỹ2) dξ, ...,
∫ x̃∗

NM

a u(ξ, ỹNM) dξ
]T

,

ũ = [ũ(x̃1, ỹ1), ũ(x̃2, ỹ2), ..., ũ(x̃NM , ỹNM)] T ,

and Ã
(1,x)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1) 0 · · · 0
0 A(1) · · · 0
...

...
. . . 0

0 0 · · · A(1)

︸ ︷︷ ︸
M Blocks

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×NM

for A(1) is a first-order integral matrix

introduced in Section 2. Whereas the first order integral with respect to y at the global
points Û (1,y)(x̂q, ŷq) can be expressed as

Û (1,y)(x̂q, ŷq) =
q∑

k=1

â(1,y)k û(x̂k, ŷk),

where â(1,y)k defined as â(1,y)k = ajs, when j = q−M
⌊ q

M

⌋
, s = k−M

⌊
k

M

⌋
and 1 ≤ s ≤ j,

otherwise â(1,y)k = 0. Then the first order integral with respect to y can be rewritten in a
matrix form as

Û
(1,y)

= Â
(1,y)

û, (4.5)

where Û
(1,y)

=
[∫ ŷ∗

1

c u(x̂1, ζ) dζ,
∫ ŷ∗

2

c u(x̂2, ζ) dζ, ...,
∫ ŷ∗

NM

c u(x̂NM , ζ) dζ
]T

,

û = [û(x̂1, ŷ1), û(x̂2, ŷ2), ..., û(x̂NM , ŷNM)] T ,

and Â
(1,y)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1) 0 · · · 0
0 A(1) · · · 0
...

...
. . . 0

0 0 · · · A(1)

︸ ︷︷ ︸
N Blocks

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×NM

.

Thai J. Math. Special Issue (2022) /N. Makake et al.

Similarly as the double layer integration in Section 2, we have the second order integral
with respect to x as follows.

Ũ (2,x)(x̃p, ỹp) =

∫ x̃∗
p

a

∫ ξ1

a
u(ξ, ỹp) dξdξ1,

or the matrix form as

Ũ
(2,x)

= Â
(2,x)

ũ, (4.6)

where Ũ
(2,x)

=
[∫ x̃∗

1

a

∫ ξ1
a u(ξ, ỹ1) dξdξ1,

∫ x̃∗
2

a

∫ ξ1
a u(ξ, ỹ2) dξdξ1, ...,

∫ x̃∗
NM

a

∫ ξ1
a u(ξ, ỹNM) dξdξ1,

]T

and Ã
(2,x)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(2) 0 · · · 0
0 A(2) · · · 0
...

...
. . . 0

0 0 · · · A(2)

︸ ︷︷ ︸
M Blocks

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×NM

for A(2) is a second-order integral

matrix introduced in Section 2. And the second order integral with respect to y can be
defined as follows

Û (2,y)(x̂q, ŷq) =

∫ ỹ∗
q

c

∫ ζ1

c
u(x̂q, ζ) dζdζ1,

or the matrix form as

Û
(2,y)

= Â
(2,y)

û, (4.7)

where Û
(2,y)

=
[∫ ŷ∗

1

a

∫ ζ1
a u(x̂1, ζ) dζdζ1,

∫ ŷ∗
2

a

∫ ζ1
a u(x̂2, ζ) dζdζ1, ...,

∫ ŷ∗
NM

a

∫ ζ1
a u(x̂NM , ζ) dζdζ1,

]T

and Â
(2,y)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(2) 0 · · · 0
0 A(2) · · · 0
...

...
. . . 0

0 0 · · · A(2)

︸ ︷︷ ︸
N Blocks

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×NM

.

Likewise for the n-layer integration, we have

Ũ (n,x)(x̃p, ỹp) =

∫ x̃∗
p

a
...

∫ ξ2

a

∫ ξ1

a
u(ξ, ỹp) dξdξ1... dξn−1,

and Û (n,y)(x̂q, ŷq) =
∫ ỹ∗

q

c ...
∫ ζ2
c

∫ ζ1
c u(x̂q, ζ) dζdζ1... dζn−1

Hybrid Finite Integration Method for Solving Partial Differential Equations

which can be written in matrix forms as Ũ
(n,x)

= Ã
(n,x)

ũ and Û
(n,y)

= Â
(n,y)

û

where Ã
(n,x)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(n) 0 · · · 0
0 A(n) · · · 0
...

...
. . . 0

0 0 · · · A(n)

︸ ︷︷ ︸
M Blocks

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×NM

and Â
(n,y)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(n) 0 · · · 0
0 A(n) · · · 0
...

...
. . . 0

0 0 · · · A(n)

︸ ︷︷ ︸
N Blocks

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×NM

.

Turning to the point of solving the Poisson equation (4.1) by using HFIM, we first
apply the four layer integral over the equation as

∫ ∫ ∫ ∫ [
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)

]
dxdxdydy

=

∫ ∫ ∫ ∫
f(x, y) dxdxdydy + C0,x(y)x+ C1,x + C0,y(x)y + C1,y

(4.8)

where C0,x(y), C1,x(y) are unknown functions of y obtaining from the above integration
with respect to x and C0,y(x), C1,y(x) are unknown functions of x obtaining from the
above integration with respect to y. These unknown functions assumed to be approxi-
mated by Taylor interpolation polynomial as follows,

C0,x(y) = c(1)0,x + yc(2)0,x + y2c(3)0,x + ...+ yM−1c(M)
0,x ,

C1,x(y) = c(1)1,x + yc(2)1,x + y2c(3)1,x + ...+ yM−1c(M)
1,x ,

C0,y(x) = c(1)0,y + xc(2)0,y + x2c(3)0,y + ...+ xN−1c(N)
0,y ,

C1,y(x) = c(1)1,y + xc(2)1,y + x2c(3)1,y + ...+ xN−1c(N)
1,y .

For convenience to rewrite the integral (4.8) as the matrix form with unknowns Ũ(x̃p,

ỹp), Û(x̂q, ŷq), C0,x(y), C1,x(y), C0,y(x) and C1,y(x), we are fixing on considering the global
numbering system along X-axis. Therefore we transform all nodal points of integration in
the global numbering system along Y -axis to the global numbering system along X-axis

defined by Ã
(2,y)

= T · Â
(2,y)

· T −1 where T = [tk1,k2]NM×NM is the transformation
matrix defined by

tk1,k2 =

{
1 ; k1 = N(j − 1) + i, k2 = M(i− 1) + j,

0 ; otherwise,

for i ∈ {1, 2, ..., N}, j ∈ {1, 2, ...,M}.

Thai J. Math. Special Issue (2022) /N. Makake et al.

Hence the matrix form of (4.8) via the global numbering system along X-axis can be
written as

[
Ã

(2,x)
+ Ã

(2,y)
]
ũ = Ã

(2,x)
Ã

(2,y)
f̃ +XΨyC0,x +ΨyC1,x +YΨxC0,y +ΨxC1,x,

(4.9)

where f̃ =
[
f̃(x̃1, ỹ1), f̃(x̃2, ỹ2), ..., f̃(x̃NM , ỹNM)

]T
is anNM column vector of function

f(x, y), C0,x, C1,x are M column vectors of unknown constant value of c(j)0,x, c(j)1,x for

j ∈ {1, 2, ...,M}, C0,y, C1,y are N column vectors of unknown constant value of c(i)0,y, c
(i)
1,y

for i ∈ {1, 2, ..., N} and the coefficient matrices of unknown functions defined as

Ψy =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

1 y1
1 · · · yM−1

1

...
...

...
...

1 y1
1 · · · yM−1

1

⎤

⎥⎥⎦

⎡

⎢⎢⎣
...

...
...

...

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 y1
M · · · yM−1

M

...
...

...
...

1 y1
M · · · yM−1

M

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×M

, XΨy =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

x1 x1y
1
1 · · · x1y

M−1
1

...
...

...
...

xN xNy1
1 · · · xNyM−1

1

⎤

⎥⎥⎦

⎡

⎢⎢⎣
...

...
...

...

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1 x1y
1
M · · · x1y

M−1
M

...
...

...
...

xN xNy1
M · · · xNyM−1

M

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×M

Ψx =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

1 x1
1 · · · xN−1

1

...
...

...
...

1 x1
1 · · · xN−1

1

⎤

⎥⎥⎦

⎡

⎢⎢⎣
...

...
...

...

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 x1
N · · · xN−1

N

...
...

...
...

1 x1
N · · · xN−1

N

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×N

, YΨy =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

y1 y1x
1
1 · · · y1x

N−1
1

...
...

...
...

yM yMx1
1 · · · yMxN−1

1

⎤

⎥⎥⎦

⎡

⎢⎢⎣
...

...
...

...

⎤

⎥⎥⎦

⎡

⎢⎢⎣

y1 y1x
1
N · · · y1x

N−1
N

...
...

...
...

yM yMx1
N · · · yMxN−1

N

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NM×N

.

Next we discretize the Dirichlet boundary conditions (4.2) - (4.3) and apply to the
matrix equation (4.9), this yields the following block matrix equation,

⎡

⎢⎢⎢⎢⎣

Ã
(2,x)

+ Ã
(2,y)

XΨy Ψy YΨx Ψx

Ia 0 0 0 0
Ib 0 0 0 0
Ic 0 0 0 0
Id 0 0 0 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

ũ
C0,x

C1,x

C0,y

C1,y

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

Ã
(2,x)

Ã
(2,y)

f̃
µ
1

µ
2

ϕ
1

ϕ
2

⎤

⎥⎥⎥⎥⎥⎦
,

(4.10)

where µ
1
, µ

2
are M column vectors of boundary functions µ1(y), µ2(y),

ϕ
1
, ϕ

2
are M column vectors of boundary functions ϕ1(x), ϕ2(x),

Ia, Ib are M ×NM matrices corresponding to the boundary on the left-hand

Hybrid Finite Integration Method for Solving Partial Differential Equations

and right-hand sides of rectangular domain.
and Ic, Id are N ×NM matrices corresponding to the boundary on the bottom and

top sides of rectangular domain.

5. Numerical Examples

This section presents three benchmark test examples in order to demonstrate the
HFIM’s accuracy and efficiency. The first two examples are problems of heat equation
with Neumann boundary conditions and initial condition. Whereas the last example is a
problem of Poisson equation together with Dirichlet boundary conditions. Furthermore,
we will compare results with the FDM and the traditional FIM.

5.1. Example 1

We consider the first example with the following heat problem,

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + (x+ t+ 1)u(x, t)− (2 + x2t+ x3)et, (x, t) ∈ (0, 1)× (0, 1)

I.C. u(x, 0) = ϕ(x) = x2, x ∈ (0, 1)

B.C.
∂u

∂x
(0, t) = µ1(t) = 0,

∂u

∂x
(1, t) = µ2(t) = 2et, t ∈ (0, 1].

The analytical solution of this example is u(x, t) = x2et which is used for testing the accu-
racy of the approximation with RMSE. In order to test the accuracy of the approximation,
let us introduce the root mean square error (RMSE) defined as

RMSE(u(x, tj)) =

√√√√ 1

N

N∑

i=1

(
vji − uj

i

)
, (5.1)

where vji and uj
i represent the analytical and numerical solutions of u(xi, tj) , respectively.

In order to apply HFIM to solve this example, we substitute known functions and parame-
ters, i.e. Pj , f j , µj

1, µ
j
2, h0, and others into equation (3.10). Then the approximate solution

can be obtained by solving the system of linear equation (3.10). Table 1 shows the RMSEs
of the temperature u(x, 1) obtained by using HFIM with N,Nt ∈ {20, 40, 60, 80, 100} .

Table 1. The RMSEs of the temperature u(x, 1) obtained by using
HFIM with N,Nt ∈ {20, 40, 60, 80, 100}, for Example 1.

N 20 40 60 80 100
Nt 20 40 60 80 100
RMSE(u) 5.3742E-2 2.4067E-2 1.5505E-2 1.1437E-2 9.0593E-3
N 20 40 60 80 100
Nt 100 100 100 100 100
RMSE(u) 9.0630E-3 9.0605E-3 9.0599E-3 9.0595E-3 9.0593E-3
N 100 100 100 100 100
Nt 20 40 60 80 100
RMSE(u) 5.3723E-2 2.4064E-2 1.5504E-2 1.1436E-2 9.0593E-3

It is obvious to see that when increased the number of time subintervals Nt , the
RMSE(u) decrease. Here, with Nt = 100 among various N ∈ {20, 40, 60, 80, 100} gives

Thai J. Math. Special Issue (2022) /N. Makake et al.

the smallest errors, i.e. RMSE(u) ≈ 8.9 × 10−3 . This means that by using small
spacing subinterval Nt = 100 and N = 20 can yield the small error among those N ∈
{20, 40, 60, 80, 100}. The illustration of both analytical and approximation solution u(x, t)
obtained using N = 20 and Nt = 100 can be seen in Figure 2 that the agreement between
the numerical and the analytical solutions is excellent.

Figure 2. The analytical (—) and numerical (· · ·) solutions of u(x, 1)
obtained using HFIM with N = 20 and Nt = 100, for Example 1.

5.2. Example 2

The previous Example 1 displayed that the HFIM can solve the time dependent PDE
with very good performance observed by RMSEs and the illustration of the solution. In
this example, we are considering the heat equation together with the initial and boundary
conditions solved by using HFIM, in comparison with the FDM and the traditional FIM.
Note that the traditional FIM presented in [1] is constructed based on the FIM with
ordinary linear approximation (OLA) namely the trapezoidal rule over the space domain
[0, L] , whereas the FDM used here is backward difference in time and central difference
in space.

The following heat problem is considered in Example 2,

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t)− (2 + 4x2)u(x, t) + cos(t)ex

2

, (x, t) ∈ (0, 1)× (0, 1)

I.C. u(x, 0) = ϕ(x) = 0, x ∈ (0, 1)

B.C.
∂u

∂x
(0, t) = µ1(t) = 0,

∂u

∂x
(1, t) = µ2(t) = 2e sin(t), t ∈ (0, 1].

The analytical solution of this example is u(x, t) = sin(t)ex
2

. For using HFIM to this
example, all known functions and parameters are applied to equation (3.10) and solve
the block matrix equation in order to get the approximate solution. The RMSEs of the
numerical result u(x, 1) obtained using HFIM, FDM and traditional FIM are tabulated in
Table 2 with Nt ∈ {10, 20, 30, . . . , 100} and the number of grid points is fixed as N = 10.

From Table 2, it can be observed that the RMSEs obtained using HFIM decrease with
increasing of the number of time Nt, i.e. from RMSE(u) ≈ 1 × 10−2 to RMSE(u) ≈
5 × 10−3 for Nt = 10 to Nt = 100, respectively. Whereas, the RMSEs obtained us-
ing FDM and traditional FIM are playing around RMSE(u) ≈ 1 × 10−2 for all Nt ∈
{10, 20, 30, . . . , 100}.

Hybrid Finite Integration Method for Solving Partial Differential Equations

Table 2. The RMSEs of the temperature u(x, 1) obtained by using
HFIM, FDM and traditional FIM with Nt ∈ {10, 20, 30, . . . , 100} and
N = 10, for Example 2.

N Nt HFIM FDM Traditional FIM

10 10 1.8396E-2 2.5463E-2 2.5279E-2
10 20 1.0785E-2 1.8299E-2 1.7663E-2
10 30 8.3658E-3 1.6107E-2 1.5240E-2
10 40 7.1785E-3 1.5057E-2 1.4050E-2
10 50 6.4739E-3 1.4443E-2 1.3343E-2
10 60 6.0075E-3 1.4041E-2 1.2874E-2
10 70 5.6761E-3 1.3758E-2 1.2541E-2
10 80 5.4286E-3 1.3548E-2 1.2292E-2
10 90 5.2367E-3 1.3385E-2 1.2098E-2
10 100 5.0836E-3 1.3256E-2 1.1944E-2

Additionally, we consider the converging performance under the error tolerance ϵs =
1 × 10−2. Among the methods tested, i.e. HFIM, FDM and the traditional FIM, we
found that the HFIM converges fastest with minimum number of steps taken at Nt =
30. Increasing the number of nodes M results in more accurate solutions u(x, 1) for all
methods but the RMSEs of the FDM and the traditional FIM are not lower than error
tolerance when Nt = 100. We, also, note here that the algorithm of the FDM is relatively
stable even for a large number of nodes Nt, the errors are at the accuracy degree of 10−2

when Nt ∈ {10, 20, 30, . . . , 100}.

5.3. Example 3

We now consider the use of HFIM to solve the Poisson equation together with the
Dirichlet boundary conditions and compare our results with results obtained by the FDM
and the traditional FIM. The root mean square error (RMSE) employed in this example
is defined as

RMSE(ũ(x̃, ỹ)) =

√√√√ 1

NM

NM∑

p=1

(ṽp − ũp), (5.2)

where ṽp and ũp represent the analytical and numerical solutions of ũ(x̃p, ỹp), respectively,
via the global numbering system along X-axis.

We consider the following Poisson equation with a = c = 0 and b = d = 1,

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = −2x2 sin(πx) sin(πy),

subject to the boundary conditions u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0. The
analytical solution of this boundary value problem is u(x, y) = sin(πx) sin(πy). In this
example we present numerical results obtained with N = M ∈ {5, 10, 15}.

We have tried solving system of linear equations (4.10) and found that this system
is ill-conditioned since the condition number of the left-hand side matrix herein is large.
The singular value decomposition (SVD) technique needs to be applied here to solve
the linear system. In this study we operate this decomposition by using command in

Thai J. Math. Special Issue (2022) /N. Makake et al.

MATLAB namely ‘svd’, i.e. [U, S, V] = svd(X), which produces matrices U , S, V that
X = U × S × V T , whereas S is a diagonal matrix with nonnegative diagonal elements
in decreasing order and having the same dimension as matrix X, and U , V are unitary
matrices with the size corresponding to X = U × S × V T . One thing can be noted that
if the inaccurate results is found by using SVD technique, then in order to improve the
accuracy we suggest to truncate the diagonal matrix S by omitting its last some small
singular values. This method is called the truncated SVD (TSVD), and the MATLAB
command for the TSVD is ’svds’, see more in [13].

Figure 3. The analytical (−−) and numerical (····) solutions of ũ(x̃p, ỹp)
obtained using HFIM with N = M = 10, for Example 3.

Firstly we solve the problem with N = M = 10 and illustrate the analytical and
numerical results of ũ(x̃p, ỹp) shown in Figure 3. It indicated that the HFIM can be
used to solve the Poisson equation with Dirichlet boundary conditions accurately and
efficiently with RMSE(ũ) = 1.7305 × 10−3. The RMSEs of numerical results with N =
M ∈ {5, 10, 15} are shown in Table 3 in comparison with numerical results obtained by
the FDM and the traditional FIM. From this table it can be observed that, as expected,
the accuracies of all results are improved when numbers of N and M are increased.
Whereas the results obtained using the traditional FIM is less accurate than both results
obtained using HFIM and FDM. With N = M = 15 , it can be clearly seen that the
result obtained using the HFIM is higher, with RMSE(ũ) ≈ 10−4, than results obtained
using the traditional FIM and FDM, with RMSE(ũ) ≈ 10−3.

Table 3. The RMSEs of the solution ũ(x̃p, ỹp) obtained by using HFIM,
FDM and traditional FIM with N = M ∈ {5, 10, 15}, for Example 3.

M = N HFIM FDM Traditional FIM

5 1.3904E-2 2.1212E-2 4.0473E-2
10 1.7305E-3 4.5972E-3 9.1105E-3
15 4.4113E-4 1.9632E-3 3.9116E-3

Hybrid Finite Integration Method for Solving Partial Differential Equations

6. Conclutions

In this study, the HFIM has been developed to solve partial differential equations,
particularly for the heat equation and Poisson equation. The use of HFIM together
with FDM has been considered to solve the heat equation subjected to the Neumann
boundary conditions and the initial condition. Whereas the Poisson equation subjected
to the Dirichlet boundary conditions has been solved by using HFIM with transforming
the numbering system from local to global. The numerical results obtained using HFIM
have been investigated with very good agreement with the analytical solution in both
problems of the heat equation and Poisson equation. Moreover, the accuracy of the
solution obtained using HFIM found higher than that results obtained by using both
FDM and traditional FIM. For the application of HFIM to solve wave equation can be
studied in future work since this equation is more complicate to be solved than the heat
equation or Poisson equation as it is time-dependent with two dimensions.

ACKNOWLEDGEMENTS

Authors would like to acknowledge the financial support received from the Office of
Research Affairs of the Faculty of Science and Technology, Prince of Songkla University,
Pattani campus, Thailand, under the Research Career Development Grant 2020.

References

[1] P.H. Wen, Y.C. Hon, M. Li, T. Korakianitis, Finite integration method for partial
differential equations, Applied Mathematical Modelling, Appl Math Model. 37 (2013)
10092-10106.

[2] M. Li, C.S. Chen, Y.C. Hon, P.H. Wen, Finite integration method for solving multi-
dimensional partial differential equations, Appl Math Model. 39 (2015) 4979-4994.

[3] M. Li, Z.L. Tian, Y.C. Hon, C.S. Chen, P.H. Wen, Improved finite integration method
for partial differential equations, Eng Anal Bound Elem. 64 (2016) 230-236.

[4] R. Boonklurb, A. Duangpan, T. Treeyaprasert, Modified finite integration method
by using Chebyshev polynomial for solving linear differential equations, J Numer
Anal Ind Appl Math. 12 (2018) 1-19.

[5] A. Duangpan, R. Boonklurb, T. Treeyaprasert, Finite integration method with
shifted Chebyshev polynomials for solving Time-Fractional Burgers equations, Math-
ematics. 7 (2019) 1-24.

[6] T. Sahakitchatchawan, R. Boonklurb, S. Singhum, Modified finite integration method
by using Legendre polynomials for solving linear ordinary differential equations,
Chamchuri J Math.10 (2018) 14-27.

[7] M. Li, Y.C. Hon, T. Korakianitis, P.H. Wen, Finite integration method for nonlocal
elastic bar under static and dynamic loads, Eng Anal Bound Elem. 37 (2013) 842-849.

[8] Y. Yu, D. Xu, Y.C. Hon, Reconstruction of inaccessible boundary value in a side
ways parabolic problem with variable coefficients-Forward collocation with finite in-
tegration method, Eng Anal Bound Elem. 61 (2015) 78-90.

[9] R. Lesmana, A. Hazanee, A. Phon-On, J. Saelee, A finite integration method for
a time-dependent heat source identification of inverse problem, Proc 5th AASIC.
(2017) 444-451.

Thai J. Math. Special Issue (2022) /N. Makake et al.

[10] A. Hazanee, Finite integration method for the time-dependent heat source determi-
nation of inverse problem, Proc 6th BUU Conf. (2017) 391-401.

[11] A. Hazanee, Finite integration method based on a trapezoid rule for solving inverse
source problem for the heat equation with a non-local boundary condition, Burapha
Sci J. 23 (2018) 1345-1358.

[12] N. Makaje, A. Hazanee, A. Phon-on, Hybrid finite integration method for solving
ordinary differential equations, Proc 46th STT Conf. (2020) 323-333.

[13] A. Hazanee, D. Lesnic, The boundary element method for solving an inverse time-
dependent source problem, Proc 9th UK Conf. (2013) 5562.

