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1 Introduction

The concept of asymptotically nonexpansive mappings was introduced by
Goebel and Kirk [4] in 1972. They also proved that every asymptotically non-
expansive mapping of a nonempty closed bounded subset of a uniformly convex
Banach space always has a fixed point. Since then many authors have studied
iterative approximation methods of fixed points for asymptotically nonexpansive
mappings. In 1991, Schu [13], [14] introduced the modified Mann iteration method
and proved that such iterative sequences converge strongly to a fixed point of an
asymptotically nonexpansive mapping in a Hilbert space. Rhoades [12] extended
the results in [13] to uniformly convex Banach spaces and to the modified Ishikawa
iteration methods.

Recently, Gu and He [6] studied a multi-step iterative sequence involving fi-
nite nonexpansive mappings in a uniformly convex Banach space. They obtained
weak and strong convergence theorems for approximating common fixed points of
nonexpansive mappings. Liu et.al. [8, 9] introduced new iterative methods, the
modified three-step and the modified Ishikawa iteration methods with respect to
a pair of mappings. They also proved some convergence theorems which improve
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and unify many results due to Chang [1], Liu and Kang[7], Osilike and Aniagbosor
[11], Rhoades [12], and Schu [13, 14] and others.

Inspired and motivated by the works in [8, 9], we introduce a new iterative
method with respect to finite mappings, and establish some strong and weak con-
vergence theorems of our iteration method in uniformly convex Banach spaces.
The results presented in this paper generalize, improve and unify many results
due to Liu et.al. [8, 9] and also Gu and He [6].

2 Preliminaries

Let K a nonempty subset of a real Banach space E and T : K → K be a
mapping with the fixed point set F (T ), i.e., F (T ) = {x ∈ K : x = Tx}.

Definition 2.1. A mapping T : K → K is said to be

1. asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that ‖Tnx − Tny‖ ≤ kn‖x − y‖ for all x, y ∈ K and
n ≥ 1;

2. nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K;

3. semi-compact if K is closed and for any bounded sequence {xn} in K with
limn→∞ ‖xn−Txn‖ = 0, there exist a subsequence {xnk

} ⊂ {xn} and x ∈ K
such that limk→∞ xnk

= x;

4. demi-closed at a point p ∈ K if whenever {xn} is a sequence in K which
converges weakly to a point x ∈ K and {Txn} converges strongly to p, it
follows that Tx = p.

It is clear that every nonexpansive mapping is asymptotically nonexpansive.
But the converse is not true (see [4]).

Definition 2.2 ([3]). A Banach space E is uniformly convex if for all {xn}, {yn} ⊂
{z ∈ X : ‖z‖ = 1} such that

∥∥xn+yn

2

∥∥ → 1, we have ‖xn − yn‖ → 0.

Definition 2.3 ([10]). A Banach space E satisfies Opial’s condition if for each
sequence {xn} in E which converges weakly to a point x ∈ E, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ for all y ∈ E with y 6= x.

Let K be a nonempty subset of a Banach space E. Let S1, S2, . . . , SN : K →
K be N nonexpansive mappings, T1, T2, . . . , TN : K → K be N asymptotically
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nonexpansive mappings. Then the sequence {xn} defined by





x1 ∈ K,

x
(N)
n = xn,

x
(N−1)
n = a

(N)
n Tn

Nx
(N)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

x
(N−2)
n = a

(N−1)
n Tn

N−1x
(N−1)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

...
x

(2)
n = a

(3)
n Tn

3 x
(3)
n + b

(3)
n S3xn + c

(3)
n u

(3)
n ,

x
(1)
n = a

(2)
n Tn

2 x
(2)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

xn+1 = a
(1)
n Tn

1 x
(1)
n + b

(1)
n S1xn + c

(1)
n u

(1)
n , n ≥ 1,

(2.1)

is called the N -step iterative sequence, where {u(i)
n } are bounded sequences in K

and {a(i)
n }∞n=1, {b(i)

n }∞n=1, {c(i)
n }∞n=1 ⊂ [0, 1] such that a

(i)
n + b

(i)
n + c

(i)
n = 1, for all

i = 1, 2, . . . , N .
The purpose of this paper is to study the weak and strong convergence of

finite-step iteration sequence with errors terms {xn} defined by (2.1) to a common
fixed point for a pair of a finite family of nonexpansive mappings and a finite family
of asymptotically nonexpansive mappings in a uniformly convex Banach space.

The following lemmas are our main tool for proving the results.

Lemma 2.1 ([5]). Let E be a uniformly convex Banach space and K be a nonempty
closed convex subset of E. If T : K → K is an asymptotically nonexpansive
mapping, then I − T is demiclosed at zero.

Lemma 2.2 ([14]). Let E be a uniformly convex Banach space, {tn} ⊆ [b, c] ⊂
(0, 1), {xn} and {yn} be sequences in E. If lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤
a and limn→∞ ‖tnxn+(1−tn)yn‖ = a for some a ≥ 0. Then limn→∞ ‖xn−yn‖ = 0.

Lemma 2.3 ([11]). Let {an}, {bn} and {cn} be sequences of nonnegative numbers
satisfying the inequality

an+1 ≤ (1 + cn)an + bn, for all n ≥ 1.

If
∑∞

n=1 cn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particular, if {an}
has a subsequence which converges to zero, then limn→∞ an = 0.

Proposition 2.4 ([15]). Let K be a nonempty subset of a Banach space E and
T1, T2 . . . , TN : K → K be N asymptotically nonexpansive mappings. Then there
exists a sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1 and

‖Tn
i x− Tn

i y‖ ≤ kn‖x− y‖ (2.2)

for all x, y ∈ K, n ≥ 1 and i = 1, 2, . . . , N .
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Proof. Since each Ti : K → K is an asymptotically nonexpansive mapping, there
exists a sequence {k(i)

n } ⊂ [1,∞) such that limn→∞ k
(i)
n = 1 and

‖Tn
i x− Tn

i y‖ ≤ k(i)
n ‖x− y‖ for all n ≥ 1,

for all i = 1, 2, . . . , N Letting

kn = max{k(1)
n , k(2)

n , . . . , k(N)
n },

so we have {kn} ⊂ [1,∞) with limn→∞ kn = 1 and (2.2) is satisfied.

3 Main Results

Since the proof for the N -step iterative scheme is almost the same as the case
N = 3, we may consider the following scheme instead:





x1 ∈ K,

zn = a
(3)
n Tn

3 xn + b
(3)
n S3xn + c

(3)
n u

(3)
n ,

yn = a
(2)
n Tn

2 zn + b
(2)
n S2xn + c

(2)
n u

(2)
n ,

xn+1 = a
(1)
n Tn

1 yn + b
(1)
n S1xn + c

(1)
n u

(1)
n , n ≥ 1,

(3.1)

{u(i)
n } are bounded sequences in K and {a(i)

n }∞n=1, {b(i)
n }∞n=1, {c(i)

n }∞n=1 ⊂ [0, 1] such
that a

(i)
n + b

(i)
n + c

(i)
n = 1, for all i = 1, 2, 3.

Lemma 3.1. Let K be a nonempty convex subset of a real Banach space E. Let
S1, S2, S3 : K → K be nonexpansive mappings, T1, T2, T3 : K → K be asymptot-
ically nonexpansive mappings with a sequence {kn} given in Proposition 2.4 and
∩3

i=1F (Si) ∩ F (Ti) 6= ∅. If
∞∑

n=1

(kn − 1) < ∞, (3.2)

and
∞∑

n=1

c(i)
n < ∞ for all i = 1, 2, 3, (3.3)

then limn→∞ ‖xn−q‖ exists for any q ∈ ∩3
i=1F (Si) ∩ F (Ti), where {xn} is defined

by the iterative scheme (3.1).

Proof. Let q ∈ ∩3
i=1F (Si) ∩ F (Ti). Since S1, S2 and S3 are nonexpansive and

T1, T2 and T3 are asymptotically nonexpansive, it follows from (3.1) that

‖zn − q‖ ≤ a(3)
n ‖Tn

3 xn − q‖+ b(3)
n ‖S3xn − q‖+ c(3)

n ‖u(3)
n − q‖

≤ a(3)
n kn‖xn − q‖+ b(3)

n ‖xn − q‖+ c(3)
n ‖u(3)

n − q‖
≤ a(3)

n kn‖xn − q‖+ b(3)
n kn‖xn − q‖+ c(3)

n ‖u(3)
n − q‖

≤ (a(3)
n + b(3)

n )kn‖xn − q‖+ c(3)
n ‖u(3)

n − q‖
≤ kn‖xn − q‖+ t(3)n , where t(3)n = c(3)

n ‖u(3)
n − q‖. (3.4)
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Since {u(3)
n } is bounded and

∑∞
n=1 c

(3)
n < ∞,

∑∞
n=1 t

(3)
n < ∞, and from (3.4), we

have

‖yn − q‖ ≤ a(2)
n ‖Tn

2 zn − q‖+ b(2)
n ‖S2xn − q‖+ c(2)

n ‖u(2)
n − q‖

≤ a(2)
n kn‖zn − q‖+ b(2)

n ‖xn − q‖+ c(2)
n ‖u(2)

n − q‖
≤ a(2)

n k2
n‖xn − q‖+ a(2)

n t(3)n + b(2)
n k2

n‖xn − q‖+ c(2)
n ‖u(2)

n − q‖
≤ (a(2)

n + b(2)
n )k2

n‖xn − q‖+ a(2)
n t(3)n + c(2)

n ‖u(2)
n − q‖

≤ k2
n‖xn − q‖+ t(2)n , where t(2)n = a(2)

n t(3)n + c(2)
n ‖u(2)

n − q‖. (3.5)

From {u(2)
n } is bounded,

∑∞
n=1 c

(2)
n < ∞ and

∑∞
n=1 t

(3)
n < ∞,

∑∞
n=1 t

(2)
n < ∞.

Then, by (3.1) and (3.5),

‖xn+1 − q‖ ≤ a(1)
n ‖Tn

1 yn − q‖+ b(1)
n ‖S1xn − q‖+ c(1)

n ‖u(1)
n − q‖

≤ a(1)
n kn‖yn − q‖+ b(1)

n ‖xn − q‖+ c(1)
n ‖u(1)

n − q‖
≤ a(1)

n k3
n‖xn − q‖+ a(1)

n t(2)n + b(1)
n k3

n‖xn − q‖+ c(1)
n ‖u(1)

n − q‖
≤ (a(1)

n + b(1)
n )k3

n‖xn − q‖+ a(1)
n t(2)n + c(1)

n ‖u(1)
n − q‖

≤ (1 + (k3
n − 1))‖xn − q‖+ t(1)n , for n ≥ 1, (3.6)

where t
(1)
n = a

(1)
n t

(2)
n + c

(1)
n ‖u(1)

n − q‖. Since {u(1)
n } is bounded,

∑∞
n=1 c

(1)
n < ∞ and∑∞

n=1 t
(2)
n < ∞,

∑∞
n=1 t

(1)
n < ∞. Notice that (3.2) holds if and only if

∑∞
n=1(k

3
n −

1) < ∞. By Lemma 2.3, we have limn→∞ ‖xn − q‖ exists. This completes the
proof.

Lemma 3.2. Let K be a nonempty convex subset of a uniformly convex Banach
space E. Let S1, S2, S3 : K → K be nonexpansive mappings, T1, T2, T3 : K → K be
asymptotically nonexpansive mappings with a sequence {kn} given in Proposition
2.4 and ∩3

i=1F (Si) ∩ F (Ti) 6= ∅. Suppose that (3.2) and (3.3) hold and

‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, 3. (3.7)

Suppose that there is δ > 0 such that

δ ≤ a(i)
n ≤ 1− δ for all n ≥ 1 and i = 1, 2, 3. (3.8)

If {xn} is defined by the iterative scheme (3.1), then

lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0,

for all i = 1, 2, 3.

Proof. Let q ∈ ∩3
i=1F (Si) ∩ F (Ti). By Lemma 3.1, we have

d = lim
n→∞

‖xn − q‖ exists. (3.9)
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It follows from (3.4), (3.5), (3.9) and limn→∞ kn = 1 that

lim sup
n→∞

‖zn − q‖ ≤ d, (3.10)

and
lim sup

n→∞
‖yn − q‖ ≤ d. (3.11)

Moreover,

d = limn→∞ ‖xn+1 − q‖
= limn→∞ ‖a(1)

n (Tn
1 yn − q + c

(1)
n (u(1)

n − S1xn)) + (1− a
(1)
n )(S1xn − q + c

(1)
n (u(1)

n − S1xn))‖.

From S1 is nonexpansive, T1 is asymptotically nonexpansive, (3.9), and (3.11), we
have

lim sup
n→∞

‖S1xn − q + c(1)
n (u(1)

n − S1xn)‖ ≤ d,

and

lim sup
n→∞

‖Tn
1 yn − q + c(1)

n (u(1)
n − S1xn)‖ ≤ d.

By Lemma 2.2, we get

lim
n→∞

‖S1xn−Tn
1 yn‖ = lim

n→∞
‖(S1xn−q+c(1)

n (u(1)
n −S1xn))−(Tn

1 yn−q+c(1)
n (u(1)

n −S1xn))‖ = 0.

(3.12)
It follows from (3.7) that,

lim
n→∞

‖xn − Tn
1 yn‖ = 0. (3.13)

Consequently,

d = lim inf
n→∞

‖xn − q‖
≤ lim inf

n→∞
‖xn − Tn

1 yn‖+ ‖Tn
1 yn − q‖

= lim inf
n→∞

‖Tn
1 yn − q‖

≤ lim inf
n→∞

kn‖yn − q‖
= lim inf

n→∞
‖yn − q‖

≤ lim sup
n→∞

‖yn − q‖ ≤ d.

Hence,

d = lim
n→∞

‖yn−q‖ = lim
n→∞

‖a(2)
n (Tn

2 zn−q+c(2)
n (u(2)

n −S2xn))+(1−a(2)
n )(S2xn−q+c(2)

n (u(2)
n −S2xn))‖.
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From S2 is nonexpansive, T2 is asymptotically nonexpansive, (3.9), and (3.10), we
have

lim sup
n→∞

‖S2xn − q + c(2)
n (u(2)

n − S2xn)‖ ≤ d,

and

lim sup
n→∞

‖Tn
2 zn − q + c(2)

n (u(2)
n − S2xn)‖ ≤ d.

Applying Lemma 2.2, we have

lim
n→∞

‖S2xn−Tn
2 zn‖ = lim

n→∞
‖(S2xn−q+c(2)

n (u(2)
n −S2xn))−(Tn

2 zn−q+c(2)
n (u(2)

n −S2xn))‖ = 0.

(3.14)
Again, it follows from (3.7) that

lim
n→∞

‖xn − Tn
2 zn‖ = 0. (3.15)

Consequently,

d = lim inf
n→∞

‖xn − q‖
≤ lim inf

n→∞
‖xn − Tn

2 zn‖+ ‖Tn
2 zn − q‖

= lim inf
n→∞

‖Tn
2 zn − q‖

≤ lim inf
n→∞

kn‖zn − q‖
= lim inf

n→∞
‖zn − q‖

≤ lim sup
n→∞

‖zn − q‖ ≤ d.

Hence,

d = lim
n→∞

‖zn−q‖ = lim
n→∞

‖a(3)
n (Tn

3 yn−q+c(3)
n (u(3)

n −S3xn))+(1−a(3)
n )(S3xn−q+c(3)

n (u(3)
n −S3xn))‖.

As before, from S3 is nonexpansive, T3 is asymptotically nonexpansive, and (3.9),
we have

lim sup
n→∞

‖S3xn − q + c(3)
n (u(3)

n − S3xn)‖ ≤ d, (3.16)

and

lim sup
n→∞

‖Tn
1 yn − q + c(1)

n (u(1)
n − S1xn)‖ ≤ d. (3.17)

Using Lemma 2.2, we have

lim
n→∞

‖S3xn−Tn
3 xn‖ = lim

n→∞
‖(S3xn−q+c(3)

n (u(3)
n −S3xn))−(Tn

3 yn−q+c(3)
n (u(3)

n −S3xn))‖ = 0.

(3.18)
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By (3.7), it follows that

lim
n→∞

‖xn − Tn
3 xn‖ = 0. (3.19)

Therefore, by (3.12), (3.13), (3.14), (3.15), (3.18), and (3.19), we have

lim
n→∞

‖xn − Sixn‖ = 0 for i = 1, 2, 3. (3.20)

Using (3.15), (3.19), (3.20), and

‖xn − Tn
2 xn‖ ≤ ‖xn − Tn

2 zn‖+ ‖Tn
2 zn − Tn

2 xn‖
≤ ‖xn − Tn

2 zn‖+ kn‖zn − xn‖
≤ ‖xn − Tn

2 zn‖+ kn(cn‖Tn
3 xn − xn‖+ (1− cn)‖S3xn − xn‖),

we have

lim
n→∞

‖xn − Tn
2 xn‖ = 0. (3.21)

Next, using (3.13), (3.15), (3.20), and

‖xn − Tn
1 xn‖ ≤ ‖xn − Tn

1 yn‖+ ‖Tn
1 yn − Tn

1 xn‖
≤ ‖xn − Tn

1 yn‖+ kn‖yn − xn‖
≤ ‖xn − Tn

1 yn‖+ kn(bn‖Tn
2 zn − xn‖+ (1− bn)‖S2xn − xn‖),

we get

lim
n→∞

‖xn − Tn
1 xn‖ = 0. (3.22)

From (3.19), (3.21), and (3.22), we have

lim
n→∞

‖xn − Tn
i xn‖ = 0, for i = 1, 2, 3. (3.23)

Next, we consider

‖xn − xn+1‖ ≤ an‖xn − Tn
1 yn‖+ (1− an)‖xn − S1xn‖

≤ ‖xn − Tn
1 yn‖+ ‖xn − S1xn‖ → 0, (3.24)

and hence

lim
n→∞

‖xn − xn+1‖ = 0. (3.25)

It follows from (3.23) and (3.25) that

‖xn+1 − Tixn+1‖ ≤‖xn+1 − Tn+1
i xn+1‖+ ‖Tn+1

i xn+1 − Tixn+1‖
≤‖xn+1 − Tn+1

i xn+1‖+ k1‖Tn
i xn+1 − xn+1‖

≤‖xn+1 − Tn+1
i xn+1‖+ k1(‖Tn

i xn+1 − Tn
i xn‖

+ ‖Tn
i xn − xn‖+ ‖xn − xn+1‖)

≤‖xn+1 − Tn+1
i xn+1‖+ k1(1 + kn)‖xn − xn+1‖

+ k1‖xn − Tn
i xn‖
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for i = 1, 2, 3. This implies that

lim
n→∞

‖xn − Tixn‖ = 0, for i = 1, 2, 3.

We are ready to establish weak and strong convergence theorems of our itera-
tion.

Theorem 3.3. Let E be a uniformly convex Banach space satisfying Opial’s con-
dition and K be a nonempty closed convex subset of E. Let S1, S2, S3 : K → K be
nonexpansive mappings, T1, T2, T3 : K → K be asymptotically nonexpansive map-
pings with a sequence {kn} given by in Proposition 2.4 and ∩3

i=1F (Si) ∩ F (Ti) 6=
∅. If the conditions (3.2), (3.3), (3.7) and (3.8) are satisfied, then the three-step
iteration sequence {xn} defined by (3.1) converges weakly to a common fixed point
of S1, S2, S3, T1, T2, and T3.

Proof. It follows from Lemma 3.1 that {xn} is bounded. Hence {xn} has a sub-
sequence {xnj} which converges weakly to p. Since {xnj} ⊂ K and K is weakly
closed, p ∈ K. From Lemmas 3.2 and 2.1, we deduce that all the mappings I − Ti

and I−Si are demiclosed at zero. Hence (I−Ti)p = (I−Si)p = 0 for all i = 1, 2, 3.
That is, p ∈ ∩3

i=1F (Si) ∩ F (Ti). Suppose that {xn} does not converge weakly to
p. Then there exists another subsequence {xnk

} of {xn} which converges weakly
to some q 6= p. Arguing as above, we have q ∈ ∩3

i=1F (Si) ∩ F (Ti). By Lemma 3.1,
we have the limits a := limn→∞ ‖xn−p‖ and b := limn→∞ ‖xn−q‖ exist. Because
E satisfies the Opial’s condition, so

a = lim inf
j→∞

‖xnj − p‖ < lim inf
j→∞

‖xnj − q‖ = b

= lim inf
k→∞

‖xnk
− q‖ < lim inf

k→∞
‖xnk

− p‖ = a,

which is a contradiction. Hence, {xn} converges weakly to p ∈ ∩3
i=1F (Si) ∩ F (Ti).

Theorem 3.4. Let E be a uniformly convex Banach space and K be a nonempty
closed convex subset of E. Let S1, S2, S3 : K → K be nonexpansive mappings,
T1, T2, T3 : K → K be asymptotically nonexpansive mappings with a sequence
{kn} given by in Proposition 2.4 and ∩3

i=1F (Si) ∩ F (Ti) 6= ∅. Suppose that the
conditions (3.2), (3.3), (3.7) and (3.8) are satisfied. If one of mappings T1, T2,
and T3 is semi-compact, then the three-step iteration sequence {xn} defined by
(3.1) converges strongly to a common fixed point of S1, S2, S3, T1, T2, and T3.

Proof. It follows from Lemma 3.2, we have limn→∞ ‖Tixn − xn‖ = 0 for all
i = 1, 2, 3. Since one of mappings T1, T2, and T3 is semi-compact, there exists
a subsequence {xnk

} ⊂ {xn} such that xnk
→ q ∈ K as k →∞. By the continuity

of all the mappings Si and Ti and Lemma 3.2, we conclude that

‖Tiq − q‖ = lim
k→∞

‖Tixnk
− xnk

‖ = 0,
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and

‖Siq − q‖ = lim
k→∞

‖Sixnk
− xnk

‖ = 0,

for all i = 1, 2, 3. That is, q ∈ ∩3
i=1F (Si) ∩ F (Ti). It follows from Lemma 3.1 that

limn→∞ ‖xn − q‖ = 0 and this completes the proof.

Using the same techniques as Theorems 3.3 and 3.4, we have the following

Theorem 3.5. Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E. Let S1, S2, . . . , SN : K → K be nonexpansive mappings,
T1, T2, . . . , TN : K → K be asymptotically nonexpansive mappings with a sequence
{kn} given by in Proposition 2.4 and ∩N

i=1F (Si) ∩ F (Ti) 6= ∅. Suppose that

∞∑
n=1

(kn − 1) < ∞,

∞∑
n=1

c(i)
n < ∞,

and

‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N.

Let {xn} be the N -step iteration sequence defined by (2.1) such that there is δ > 0
such that

δ ≤ a(i)
n ≤ 1− δ, for all n ≥ 1 and i = 1, 2, . . . , N.

(i) If X has the Opial’s condition, then {xn} converges weakly to a common
fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

(ii) If one of the mappings T1, T2, . . . , TN is semi-compact, then {xn} converges
strongly to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Since there is no further generality obtained in using the scheme with error
terms rather than the one considered in this paper, it follows from letting

S1 = S2 = · · · = SN = the identity mapping

that Theorem 3.5 extends the corresponding results in [6, 8, 9].
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