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Abstract: In this article it is found the admitted Lie group of the dynamics
equation of pion meson motion. This is the first and necessary step in application
of group analysis method to partial differential equation.
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1 Introduction

The pion meson equation has been playing an important role in nuclear and par-
ticle physics over decades: it is believed that the self-interaction of pion meson
particles may be modelled by the pion meson dynamics equation. This paper is
concerned with the methodology for finding exact solutions of partial differential
equations by using group analysis method. The group analysis method, described
in Ovsiannikov (1978), is used to derive the admitted Lie group of the pion meson
equation. Many applications of group analysis one can find in the Handbook of
Lie group analysis edited by Ibragimov (1994), (1995), (1996).

2 Pion Meson Equation

The equation describing a motion of a pion meson particle in atom is the following
equation1

2u + m2u + λu3 = 0, (1)

where u is a function of x, y, z, t, m is the mass of pion meson,

2 ≡ ∂2

∂t2
−

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
.

1See, for example, [1, 2, 3]
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The cubic term in (1) describes the pion self-interaction with the effective cou-
pling constant λ. For the convenience of the calculations we rewrite the dynamics
equation (1) as the following

F ≡ utt − (uxx + uyy + uzz + au + bu3) = 0, (2)

where a = −m2, b = −λ. Equation (2) is studied further.

3 Determining Equations

The first step in finding the admitted Lie group of equations (2) is a construction of
determining equations [4]. The determining equations are linear partial differential
equations for the coefficients of the infinitesimal generator

X = ξx∂x + ξy∂y + ξz∂z + ξt∂t + ζ∂u. (3)

Here ξx, ξy, ξz, ξt, ζ are dependent functions of x, y, z, t, u. The prolongation (4)
of the generator (3)

X
2

= X + ζα
i ∂uα

i
+ ζα

i1i2∂uα
i1i2

, (α = 1, ...,m) (4)

is given by the formulas:

ζα
i = Di(ηα)− uα

j Di(ξj), (i = 1, ..., n),
ζα
i1i2

= Di2(ζ
α
i1

)− uα
ji1

Di2(ξ
j), (i1, i2 = 1, ..., n),

Di = ∂xi +
∑
α

uα
i ∂uα +

∑
α,β

uα
iβ∂uα

β
+ ...,

(5)

Here we used the notations x1 = x, x2 = y, x3 = z, x4 = t, and for the derivatives

uα
i =

∂uα

∂xi
, uα

ij =
∂2uα

∂xi∂xj
, . . . .

A collection of all derivatives of the k-th order is denoted by u(k) =
{
uα

j1...jk

}
.

A one parameter Lie group is called admitted by partial differential equation
(2) if

X
(2)

F (x, u, u(1), u(2))|(F )
= 0, (6)

where the sign |(F )
means that equation (6) is considered on the manifold defined

by equations (2). The process of obtaining equations (6) consists of the following
steps. The first step is to get the second prolongation of the generator X. The
second step is acting of the second prolongation X

2
on the equation F = 0. The

next step is a transition onto the manifold, defined by (2). The obtained equa-
tion is called a determining equation. The generators, which coefficients satisfy
this equation compose a Lie algebra of admitted generators. The Lie group cor-
responding to this Lie algebra is called an admitted Lie group. For all complicate
calculations we use the symbolic manipulation program REDUCE [8].
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4 Solving the Determining Equation

The dermining equation (6) can be split with respect to parametric derivatives:
all derivatives of first and second order, except the derivative utt. After splitting
it, one gets the overdetermined system of equations for the coefficients of the
generators

ζu
uu = 0, ξt

u = 0, ξx
u = 0, ξy

u = 0, ξz
u = 0,

ξx
x = ξy

y = ξz
z = ξt

t ,
ξt
x = ξx

t , ξt
y = ξy

t , ξt
z = ξz

t ,
ξy
x = −ξx

y , ξz
x = −ξx

z , ξz
y = −ξy

z ,
ξy
zz = −ξt

ty, ξt
xx + ξt

yy + ξt
zz − 3ξt

tt = 0,
ξt
ttt − aξt

t = 0, ξx
zz + ξx

yy + 2ξt
tx = 0.

(7)

Solving these equations one obtains the coefficients of the infinitesimal generators
admitted by equation (2).

Note that equations (7) mean that the coefficients ξt, ξx, ξy, ξz do not de-
pend on the variable u and the coefficient ζu is linear with respect to u: ζu =
uh1(x, y, z, t) + h2(x, y, z, t).

Let us start analysis of the remained equations from the equations

ξt
x = ξx

t , ξx
x = ξt

t , (8)

ξt
xx + ξt

yy + ξt
zz − 3ξt

tt = 0, (9)

ξx
zz + ξx

yy + 2ξt
tx = 0. (10)

The general solution of the first equation in (8) is ξx = ϕx, ξt = ϕt with some
function ϕ = ϕ(x, y, z, t). Note that the equations ξy

x + ξx
y = 0 and ξz

x + ξx
z = 0

give
ξy = −ϕy + ξ̃y(t, y, z), ξz = −ϕz + ξ̃z(t, y, z).

After substituting ξx and ξt into equations (8), (9) and (10), one has

ϕxx = ϕtt, (11)

ϕtyy + ϕtzz − 2ϕtxx = 0, (12)

ϕxzz + ϕxyy + 2ϕtxx = 0. (13)

The general solution of the wave equation (11) (D’Alembert solution) is

ϕ = H(t− x, y, z) + ψ(t + x, y, z) = 0, (14)

where y and z are considered as parameters. Substituting (14) into (12) and (13)
gives

H122 + ψ122 + H133 + ψ133 − 2H111 − 2ψ111 = 0, (15)

−H133 + ψ133 −H122 + ψ122 − 2H111 + 2ψ111 = 0. (16)

Here the numbers 1, 2 or 3 mean the partial derivative of the functions H and ψ
with respect to the first, second and third independent variables, respectively.
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Taking linear combinations of equations (15) and (16) one can rewrite them
as follows

ψ122 + ψ133 − 2H111 = 0, (17)

H122 + H133 − 2ψ111 = 0. (18)

Since the function H depends on t − x and the function ψ depends on t + x,
from the last equations one obtains

H111 = g(y, z), ψ122 + ψ133 = 2g(y, z), (19)

ψ111 = h(y, z), H122 + H133 = 2h(y, z). (20)

Here g and h only depend on y and z.
After integrating the first equations in (19) and (20) with respect to the first

argument, one obtains

H = (t−x)3

6 g(y, z) + (t−x)2

2 α1(y, z) + (t− x)β1(y, z) + γ(y, z),
ψ = (t+x)3

6 h(y, z) + (t+x)2

2 α2(y, z) + (t + x)β2(y, z),
(21)

where α1, α2, β1, β2, γ1 and γ2 are some functions obtained after integrating. Sub-
stituting the expressions of the functions H, ψ (21) into the remained equations
of (19), (20), one has

(t + x)2

2
(hyy + hzz) + (t + x)(α2yy + α2zz) + β2yy + β2zz − 2g = 0, (22)

(t− x)2

2
(gyy + gzz) + (t− x)(α1yy + α1zz) + β1yy + β1zz − 2h = 0. (23)

The left hand sides of (22), (23) are polynomials with respect to t. Splitting
these equations with respect to t, one obtains the following equations

gyy + gzz = 0, hyy + hzz = 0,
α1yy + α1zz = 0, α2yy + α2zz = 0,

β2yy + β2zz = 2g, β1yy + β1zz = 2h.
(24)

Analysis of the remained equations in (7) is done on computer by using
REDUCE [8]. The methology for this is: substituting the representations of
ξx, ξy, ξz, ξt and splitting them with respect to x (and later with respect to t).
For example, from the equations ξy

t − ξt
y = 0 and ξz

t − ξt
z = 0 one obtains

gy = gz = hy = hz = 0, α2 = α1 + k,

ξ̃y = 4α1y t2 + 2t(β1y + β2y ) + ψy,

ξ̃z = 4α1z t2 + 2t(β1z + β2z ) + ψz.

where ψy = ψy(y, z), ψz = ψz(y, z) are some functions and k is constant. Further
substitutions into the equations ξy

y = ξz
z = ξt

t and ξz
y + ξy

z = 0 leads us to

α1zz = α1yy = α1yz = 0,
β1yy = h, β2yy = g, β1yz = β2yz = 0.
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The last equations together with (24) can easily be integrated for the functions
α1, α2, β1 and β2. Then these solutions have to be substituted in the remained
equations (7). The result of all calculations is the following.

The kernel of admitted Lie groups corresponds to the generators

X1 = ∂x, X2 = ∂y, X3 = ∂z, X4 = t∂x + x∂t,
X5 = t∂y + y∂t, X6 = t∂z + z∂t, X7 = y∂z − z∂y,

X8 = z∂x − x∂z, X9 = y∂x − x∂y, X10 = ∂t.

An extension of the kernel can be for a = 0:

X11 = t∂t + x∂x + y∂y + z∂z − u∂u,
X12 = 2tx∂t + (t2 + x2 − y2 − z2)∂x + 2xy∂y + 2xz∂z − 2xu∂u,
X13 = 2ty∂t + 2xy∂x + (t2 − x2 + y2 − z2)∂y + 2yz∂z − 2yu∂u,
X14 = 2tz∂t + 2xz∂x + 2yz∂y + (t2 − x2 − y2 + z2)∂z − 2zu∂u,
X15 = (t2 + x2 + y2 + z2)∂t + 2tx∂x + 2ty∂y + 2tz∂z − 2tu∂u

The table of commutators [Xi, Xj ] is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 10 0 0 0 −3 −2 0 1 2 ∗ 11 2 ∗ 9 2 ∗ 8 2 ∗ 4
2 0 0 0 10 0 3 0 1 0 2 −2 ∗ 9 2 ∗ 11 −2 ∗ 7 2 ∗ 5
3 0 0 0 10 −2 1 0 0 3 −2 ∗ 8 2 ∗ 7 2 ∗ 11 2 ∗ 6
4 0 −9 −8 0 −6 −5 −1 0 15 0 0 12
5 0 7 6 0 4 −2 0 0 15 0 13
6 0 −5 4 0 −3 0 0 0 15 14
7 0 9 −8 0 0 0 −14 13 0
8 0 7 0 0 14 0 −12 0
9 0 0 0 13 −12 0 0
10 0 10 2 ∗ 4 2 ∗ 5 2 ∗ 6 2 ∗ 11
11 0 12 13 14 15
12 0 0 0 0
13 0 0 0
14 0 0

Here for convenience instead of the generator Xi it is written its integer number
i, and also it is so for right hand side number if two numbers are separated by the
sign ∗.

5 One-Dimensional Case

For the one-dimensional case (the case of the two independent variables (x, t)) the
kernel of the admitted groups corresponds to the three generators

Y1 = ∂x, Y2 = ∂t, Y3 = t∂x + x∂t.
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For this algebra it is easily to construct an optimal system [?] of admitted subal-
gebras:

{Y1, Y2, Y3}, {Y1, Y2}, {Y1, Y3}, {Y2 + DY1}, {Y1}, {Y3},
where D is an arbitrary constant. Invariant solutions can only be constructed for
the one-dimensional subalgebras.

The representation of invariant solution for the subalgebra {Y2 + DY1} is a
travelling wave

u = u(x−Dt).

In this case the dynamics equation (1) is reduced to the following ordinary differ-
ential equation

(D2 − 1)u′′ = au + bu3.

The representation of invariant solution for the subalgebra {Y1} is

u = u(t).

In this case the dynamics equation is reduced to the equation

u′′ = au + bu3.

The representation of invariant solution for the subalgebra {Y3} is

u = u(ξ), ξ = x2 − t2.

In this case the dynamics equation is reduced to the equation

ξu′′ + u′ = −(au + bu3)/4.
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