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Abstract This paper studies portfolio optimization under Conditional Value-at-Risk (CVaR) in the derivatives markets in
which the quotes come with bid and ask prices, as well as quantity constraints. Assuming that the distribution is known,
the problem can be reduced to a linear programming problem using the method of Rockafellar and Uryasev (Journal of
Risk 2, 3 (2000)). The expectation is approximated using the Gaussian Quadrature integral. To illustrate the technique, we
computationally determine the optimal portfolios consisting of the standard put and call options written on the S&P500
Mini Index for various risk levels and modeling parameters. The index is modelled by the variance gamma (VG) process.
The values of base-case parameters including VG parameters are equal to zero except for the standard deviation (σ) and
the variance rate (ν). They are equal to 0.1206 and 0.0031, respectively. For this computation, the compounded interest
rate is equal to zero. The market is assumed incomplete as the quotes come with bid and ask prices, and sizes. The results
show the dependence of the optimized portfolio on the risk level and the investors probabilistic view.
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1. INTRODUCTION

Portfolio optimization is concerned with the selection of investments, including financial as-
sets, such as shares of a company, government bonds, derivatives (e.g., options and futures), etc.
Since there are many assets, all investors attempt to invest their money in a variety of securities in
order to minimize investment risks, while maximizing return on investment. Therefore, portfolio
optimization is one of the most prevalent problems faced by various investors with different levels
of capital, and is also one of the most difficult problems in the financial world [1].
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Furthermore, one of the most well-known methods for selecting a financial portfolio. is port-
folio optimization. Markowitz [2] devised the primary method for solving the portfolio selection
problem. The portfolio return is evaluated by the expected return of the portfolio, while the as-
sociated risk is measured by the variance of the portfolio return in the so-called mean-variance
(MV) portfolio optimization model. Variance is one of the risk measures. However, it is not a
coherent risk measure because the variance of a random variable is neither a sub-additive nor a
sub-additive positive homogeneity [4, 5]. Therefore, variance has its weaknesses. Alternative
risk measures such as Value-at-Risk (VaR) have been proposed to replace the variance. The risk
that VaR considers is the possibility of an unfavorable event. VaR provides the possibility of the
greatest loss with an investment time horizon and a given confidence level (e.g., 90%, 95%, and
99%).

VaR has proven to be a popular and an important tool for measuring risks. Many authors,
however, have argued that VaR is a non convex function and lacks a sub-additive. This means,
for any given portfolios X and Y, the VaR of the combinated portfolios X and Y is not less
than the sum of the VaR of portfolio X and the VaR of portfolio Y . Therefore, VaR is not a
coherent risk measure [3, 4]. Rockafellar and Uryasev [7] then suggested another alternative
risk measure, that is, Conditional Value-at-Risk (CVaR). CVaR is the expected loss under the
condition that it exceeds VaR. Therefore, VaR will never exceed CVaR. Although VaR has been
widely used, CVaR has become a more popular risk measure since it is a convex function and
the coherent risk measure [6, 10]. Furthermore, Rockafellar and Uryasev minimized the CVaR of
portfolios with CVaR for stocks. For this paper, we apply this model to minimize the CVaR of the
derivatives portfolio since derivative contracts have become popular and increasingly important
as an investing strategy for maximizing returns, while reducing funding costs. Hence, we will
focus on the optimization of portfolios for derivatives by using CVaR.

In this paper, we apply this approach to the options markets. We consider the standard call and
put options, which are written on the S&P 500 Mini Index. The quotes come with bid and ask
prices, as well as sizes. We essentially determine the optimal portfolio, the portfolio with given
a required return and the smallest CVaR. We also investigate the changes in optimized portfolios,
which are subject to various modeling parameters. We would like to know what parameters
affect the CVaR value because we know that if the CVaR value is small, the riskiness level of the
optimization portfolio also decreases in the same way.

The paper is organized as follows. Section 2 introduces the market of derivatives, and the
description of the CVaR approach. Afterward, we will use the CVaR measure for optimizing
the portfolio and for considering the minimization of the portfolio problem in the form of linear
programming in solving for CVaR optimization. Next, we will explain the Variance-Gamma (VG)
distribution for simulating the stock index. In section 3, we represent an optimal CVaR derivative
investment portfolio and illustrate multiple results after changing the parameters. Finally, we
present the discussions and conclusions in the last section.

2. THE PORTFOLIO OPTIMIZATION MODEL

2.1. THE MARKET
We used quotes for the S&P500 Mini Index options with the common maturity time T and

payouts that only depend on the underlying value at maturity time T . In general, the payout on
cash depends on the interest rate (r), while the options payout is determined by the value of the
underlying (ST ) at maturity T and the strike price (K) of an option. The quotes were obtained
from Bloomberg on 26th December 2020 at 2:55:00 PM, when the value of the S&P500 Mini
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Index was 295.42 and the maturity time T is one month or T = 1
12 years. The trading assets

include a bank account and the standard call and put option whose strikes are from 260 to 330,
and written on the S&P500 Mini Index, allowing us to use over 140 options. Therefore, the
payoffs for holding units x ∈ R of an asset are shown in Table 1.

TABLE 1. The payoffs as functions of the number of units x holds.

Asset Payoff as a function of the position x
Cash erTx

Call option max{(ST −K), 0}x
Put option max{(K − ST ), 0}x

The market is an incomplete market as the quotes come with bid and ask prices and sizes,
where the bid and ask price are the best potential price for the buyers and sellers in the market-
place, respectively. The market quotes come with finite quantities. The given examples of quotes
available are on the 26th of December 2020 at 2:55:00 PM for derivatives, which are demonstrated
in Table 2.

TABLE 2. Examples of market quotes on 26th December 2020 at 2:55:00 PM
for options.

Options Strike (K) Bid price Bid size(×100) Ask price Ask size (×100)
Call 294 8.85 50 9.04 128
Put 294 7.99 50 8.23 50
Call 295 8.24 50 8.42 128
Put 295 8.37 50 8.61 50
Call 296 7.65 50 7.82 128
Put 296 8.77 50 9.02 50

2.2. CONDITIONAL VALUE-AT-RISK (CVAR)
In this paper, we consider the European options exercised only at the maturity date. These

options are traded at two times, the initial time t = 0 and the maturity time t = T . For n
assets, at the initial date t = 0, we know that S0 = (Si

0)i∈n ∈ Rn is a vector of the initial
underlying prices at t = 0. Additionally, we suppose that the vector of the uncertain underlying
prices ST = (Si

T )i∈n at maturity time T is a random vector on the probability space (Ω, F, P ).
Then, for each Si

T there is an F - measurable function on Ω, which is mapped onto real number
(R). That is, Si

T ∈ L0(Ω, F, P ) becomes a linear space of collection of random variables that are
mapped onto real numbers [16].

As we mentioned above, we will define other variables such as the return (Ri(Si
T )) for each

asset i as (Ri(Si
T ))i∈n and portfolio return. Let’s start with the random vector of returns (R(ST ))

collecting the component of Ri(Si
T ) =

Si
T − Si

0

Si
0

for i = 1, 2, · · · , n. It is also a random vector

on the same probability space (Ω, F, P ) and an F - measurable function on Ω. The portfolio return
for each asset is shown in Table 3.

Next, we will determine the loss corresponding to a decision vector x associated with a fea-
sible set of portfolio X ⊆ Rn and the random vector ST called f(x, ST ). Because ST is a
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TABLE 3. The portfolio return (R(ST )) for each asset

Assets Position Portfolio return of the position
Cash - (erT − 1)/1
Call Long max{(ST −K), 0}/Ask price

Short max{(ST −K), 0}/Bid price
Put Long max{(K − ST ), 0}/Ask price

Short max{(K − ST ), 0}/Bid price

random vector, the loss function is also a real-valued random variable. Therefore, we can de-
scribe f(x, ST ) : L0(Ω, F, P ) → R. For instance, since the negative return of this portfolio is a
loss for this portfolio [7, 9], then it can be defined by

f(x, ST ) = −xTR(ST ) = −
[
x1R1(S

1
T ) + · · ·+ xnRn(S

n
T )

]
. (2.1)

Meanwhile, we have the loss function f(x, ST ) and the random vector ST , which are asso-
ciated by a probability measure P and are independent of parameter x. Thus, for a fixed x and
α ∈ R, we can define the probability function Ψ(x,α) ∈ R, which is shown in the equation
below.

Ψ(x,α) = P [f(x, ST ) ≤ α].

Moreover, for a continuous function with x and a measurable function with ST of the uncertain
loss function f(x, ST ), we have

E[f(x, ST )] < ∞, for each x ∈ X.

Afterwards, we can change it to an integration form based on Definition 2.1 from a stochastic
problem.

Definition 2.1. For each x, the loss f(x, ST ) is a random variable in R as ST is a random variable
and p(ST ) denotes the probability density function for ST in R. The probability of the loss not
exceeding a threshold α is determined by the cumulative distribution function [7],

Ψ(x,α) =

∫

f(x,ST )≤α
p(ST ) dST . (2.2)

Note that the region of integration f(x, ST ) ≤ α is the set A = {ω ∈ Ω | f(x, ST ) ≤ α }.

Definition 2.2. The β-VaR value for the loss random variable associated with portfolio x and
probability level β in (0, 1) will be represented by αβ(x), which can be defined as [7]:

αβ(x) = min{α ∈ R | Ψ(x,α) ≥ β }. (2.3)

Definition 2.3. The β-CVaR value for the loss random variable associated with x and probability
level β in (0, 1) will be represented by φβ(x), which can be defined as [7]:

φβ(x) = E[f(x, ST ) | f(x, ST ) ≤ αβ(x)] (2.4)

=
E[1f(x,ST )≤αβ(x)f(x, y)]

P (f(x, ST ) ≤ αβ(x))
(2.5)

= (1− β)−1

∫

f(x,ST )≥αβ(x)
f(x, ST )p(ST ) dST . (2.6)
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Lemma 2.4. (Rockafellar and Uryasev, [7]) The minimization of β-CVaR for the loss associated
with x over all x ∈ X is equivalent to minimizing Fβ(x,α) over all (x,α) ∈ X × R as follows;

min
x∈X

φβ(x) = min
(x,α)∈X×R

Fβ(x,α), (2.7)

where

Fβ(x,α) = α+ (1− β)−1

∫

ST∈Rm

[f(x, ST )− α]+p(ST ) dST , (2.8)

where

[f(x, ST )− α]+ =

{
f(x, ST )− α, f(x, ST )− α > 0

0, f(x, ST )− α ≤ 0.

In Lemma 2.4, we use Fβ(x,α) to optimize CVaR instead of the function φβ(x). Fβ(x,α)
can be used to approximate CVaR or φβ(x) because it is a convex function and from Lemma 2.4.
Additionally, if X is a convex set, then the CVaR minimization problem

min
(x,α)∈X×R

Fβ(x,α) (2.9)

is a convex programming problem. Therefore, this function has the following principal properties
that make it useful for the calculation of VaR and CVaR [12]:

(1) Fβ(x,α) is a convex function of α.
(2) αβ is a minimum over α of Fβ(x,α).
(3) φβ is the minimum value over α of Fβ(x,α).

Since the integral in Definition (2.4) of Fβ(x,α) can be approximated in various ways, we use
the gaussian legendre quadrature to approximate the integration term of Equation (2.8) for this
paper.

Theorem 2.5. The minimization of CVaR in derivatives market where the derivatives are written
only on a single underlying can be written as:

min
(x,α)∈X×R

F̃β(x,α) = min
(x,α)∈X×R

α

+
1

(1− β)

q∑

k=1

[
−

n∑

i=1

[
xiRi(S

k
T )

]
− α

]+

p(Sk
T )wk,

(2.10)

where Sk
T is the solution of the gaussian polynomial on the interval [0, c], where c is a large

number, p(Sk
T ) is a probability density function of Sk

T and wk is the corresponding weight of Sk
T

that is defined as:

wk =
2

(1− (Sk
T )

2)[P ′
q(S

k
T )]

2
,

for k = 1, · · · , q where q is the number of gaussian quadrature points and the related orthogonal
polynomials are legendre polynomials, determined by Pq(ST ). If we consider the qth polynomial
normalized given Pq(1) = 1, the kth gaussian node, Sk

T is the kth root of Pq .

Lemma 2.4 determines the auxiliary function that is used to approximate the CVaR value, so
we know that the term of integration in Equation (2.8) is a multiple integration, but for this paper
we use only the underlying value (ST ) that the spot price is equal to 295.42. Then we will change
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the multiple integration to integration in one dimension. The auxiliary function that is used to
approximate the CVaR value in Theorem 2.5 is defined as:

Fβ(x,α) = α+ (1− β)−1

∫

ST∈R
[f(x, ST )− α]+p(ST ) dST , (2.11)

where

[f(x, ST )− α]+ =

{
f(x, ST )− α, f(x, ST )− α > 0

0, f(x, ST )− α ≤ 0.

Afterward, we reform the integral term in Equation (2.11) to the summation term which appear
in the equation below.

q∑

k=1

[
f(x, Sk

T )− α
]+

p(Sk
T )wk,

where

f(x, Sk
T ) = −xTR(Sk

T ) = −
[

n∑

i=1

[
xiRi(S

k
T )

]
]
.

Unlike Rockafellar and Uryasev, [7] who used the Monte Carlo method to simulate the value
of the underlying at time T to estimate the expectation, our method uses the gaussian quadrature.
This reduces the time to estimate the expectation and to solve the optimization problem greatly.
As we know, it requires a large number of simulation to acquire accurate estimate for the expec-
tation. This is even more true for derivative portfolios which need much more simulated paths.
In addition to the great deal of time used for simulation, having many simulated paths makes the
optimization bigger. This is because, to solve the optimization problem, we need to introduce
dummy variables to transform the problem in Lemma 2.4 to a linear programming problem. The
number of the dummy variables is equal to the number of simulation.

Another issue for using the simulation approach to estimate the expectation in the optimization
problem is that the simulated values of the underlying at maturity time are not far enough from
the spot. This means that some derivatives such as a call option whose strike is very high will
never expire in the money. The optimal solution will consist of short selling that option as much
as possible. However, the probability that call option will expire in the money is not zero.

The expectation is essentially an integral whose domain is a nonnegative real number. How-
ever, we can not evaluate such improper integral. Thus, we only estimate it on the domain where
the underlying value at maturity is from zero to some large enough number.

2.3. NUMERICAL IMPLEMENTATION

As you can see, the approximate function of the auxiliary function (F̃β(x,α)) in Equation
(2.10) has an indicator function in terms of [f(x, ST )− α]+ which is hard to minimize. We then
operate this function by using a similar technique to Rockafellar and Uryasev, [7] to make it easy
to simplify. Then our minimization portfolio now is as follows:

min
(x,α)∈X×R

α+
1

(1− β)

q∑

i=1

u(Si
T )p(S

i
T )wi, (2.12)

where

u(Si
T ) =

[
f(x, Si

T )− α
]+

.
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Subject to

u(Si
T ) ≥ 0,

u(Si
T ) +

[
xTR(Si

T ) + α
]
≥ 0, i = 1, 2, ..., n,

∑
x = 1,

xT R̄(ST ) = Q,

x,α ∈ R,

where R̄(ST ) is the average return and Q is the required return.
Thus, we can consider the minimization portfolio problem (2.12) as a linear programming

problem. We solve this problem using Linprog that is a built-in function in Matlab. Hence, we
will explain Linprog’s syntex to solve the linear programming problem.

To begin with, let zT =
[
x1, x2, · · · , xn,α, u1, u2, · · · , uq

]
, then the Linprog’s syntex is as

follows:

min fT z, (2.13)

subject to

A× z ≤ b,

Aeq × z = beq,

lb ≤ z ≤ ub,

where f, b, beq, lb, ub are vectors and A,Aeq are matrices.
The command for using the Linprog’s syntex to solve the linear programming problem is

linprog(f,A, b, Aeq, beq, lb, ub). The solutions are the optimal portfolio z and the optimal value
of fT z.

After we change the minimization portfolio from the model (2.12) to the linear programming
problem in the model (2.13), for the maturiy time T , our problem can be written as,

min fT z, (2.14)

subject to

A× z ≤ b,

Aeq × z = beq,

lb ≤ z ≤ ub,

where fT =

[
0 0 · · · 0 1

1

1− β
p(S1)w1

1

1− β
p(S2)w2 · · · 1

1− β
p(Sq)wq

]
,

A = −

⎡

⎢⎢⎢⎣

R(S1
1) R(S2

1) · · · R(Sn
1 ) 1 1 0 · · · 0

R(S1
2) R(S2

2) · · · R(Sn
2 ) 1 0 1 · · · 0

...
...

. . .
...

...
...

...
. . .

...
R(S1

q ) R(S2
q ) · · · R(Sn

q ) 1 0 0 · · · 1

⎤

⎥⎥⎥⎦
, b =

⎡

⎢⎢⎢⎣

0
0
...
0

⎤

⎥⎥⎥⎦
,

Aeq =

[
1 1 · · · 1 0 0 0 · · · 0

R̄(S1) R̄(S2) · · · R̄(Sq) 0 0 0 · · · 0

]
, beq =

[
1
Q

]
,

R(Sj
i ) is a return of the jth asset of the ith scenario, and R̄(Sj) is a mean return of the jth asset.
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2.4. VARIANCE-GAMMA (VG) DISTRIBUTION
Nowadays, there are many distributions that can be used to simulate stock market returns. For

example, normal distribution, t distribution, and VG distribution. As we all know, the daily stock
market returns are not normally distributed because the stock market return distributions seem
to have tails that are much fatter than normal distribution, so it is more suitable to use it with
other distributions that have fat tails. The authors suggested the VG distribution instead of normal
distribution because VG is obtained by evaluating the Brownian motion with a constant drift at a
gamma distributed time change [14, 15]. The parameters of VG provide control over the skewness
and kurtosis of the return distribution.

We will define the options price of the Variance-Gamma (VG) distribution [15]. Let the option
price be given by

S(t) = S(0) exp(mt+X(t;σS , νS , θS) + ωSt), (2.15)

where ωS =
1

νS
ln (1− θSνS − σ2

SνS/2), m is average rate of return on the option, and the

statistical parameters are denoted by the subscript S.
Afterwards, we change the rate of return from the average rate of return to the compound

interest rate r. Then the risk neutral process be given by

S(t) = S(0) exp(rt+X(t;σRN , νRN , θRN ) + ωRN t), (2.16)

where ωRN =
1

νRN
ln (1− θRNνRN − σ2

RNνRN/2) and the risk neutral parameters are denoted

by the subscript RN .

Theorem 2.6. The density function for the price z = S(t) at the exercise time (t) has a log-VG
distribution dynamics of Equation (2.15) and is defined as [15]:

fV G(z) =
2 exp (θx/σ2)

ν(t/ν)2̄πσΓ(
t

ν
)

(
x2

2σ2/ν + θ2

) t

2ν
−
1

4
XK t

ν
−
1

2

1

σ2

√
x2(2σ2/ν + θ2),

(2.17)

where K is the modified bessel function of the second kind and

x = ln (z)− ln (S(0))−mt− t

ν
ln (1− θν − σ2ν/2).

As an example, the price of call option in case of long position, c(S(0);K,T ), for the strike
K and maturity time T , is determined by

c(S(0);K,T ) = e−rTE [max (ST −K, 0)] , (2.18)

where r is the interest rate and this expectation is taken under the risk neutral process of Equation
(2.16).

As explained above, we have a mathematical model that is used to minimize the CVaR for the
options portfolio in Equation (2.12). Afterwards, we will change this situation of minimization
to a numerical implement by adopting the model while solving a linear problem as shown in
Equation (2.14). As you can see, the options prices ST are random variables. Then, we will
simulate the options prices by using VG distribution with only the underlying value. Lastly, we
will minimize the CVaR value for this portfolio and discuss the results in the next section.
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3. RESULTS

As the previous section, we have realized that the distribution that is suitable for simulating
the vector of return needs to be a continuous distribution. In this paper, we assume that the log
return of the S&P500 Mini Index is VG distributed. At the maturity time T = 1

12 years, we use
the gaussian quadrature with 500 points to estimate the integration shown in Equation (2.11). We
also assume that the random vector of the underlying prices ST does not depend on the decision
vector x. Unless otherwise stated, the parameters used in computation are as in Table 4. They
are computed using 10 years of historical data. We would like to optimize the portfolio, which
has a minimum CVaR and a given expected return. In addition, the initial wealth that is used for
the investment is $100, 000 and the percentage of required return is 400, which is a high value
because the percentage of required return of options must be greater than the required return of
shares for trading. Moreover, limited amount of buying and selling are allowed using bid and ask
sizes and taking account of the bid and ask prices.

TABLE 4. Base-case parameters including VG parameters and the
compounded interest rate(r).

µ σ ν θ r
0 0.1206 0.0031 0 0

TABLE 5. The expectation, the standard deviation, the VaR and CVaR of the
CVaR minimization portfolio with any confidence levels

Confidence levels Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
95 499,965.6332 213,504.6531 -233,244.3822 -111,693.2899
99 499,969.6131 350,159.1180 -30,841.4099 74,066.4235

From Table 5, if we compare the expectation and the standard deviation of the payoff for 95%
and 99% confidence levels, we can see that the expectation and the standard deviation of the
payoff with 99% confidence level are greater than the values at 95% confidence level. In addition,
the 95% VaR and 99% VaR are -233,244.3822 and -30,841.4099, respectively. We know that the
95% VaR is less than 99% VaR and they are negative values, which means we will make a profit
if we invest in assets as in Figure 3. In contrast, the 95% CVaR and 99% CVaR are different,
since the 95% CVaR is a negative value, but the 99% CVaR is positive, then we can obtain a profit
at the 95% confidence interval; however, for the 99% confidence interval, we found that we will
lose money because of the positive value of the loss value or the CVaR value.

Moreover, Figure 1 demonstrates the histogram of the net payoff of the portfolio after 30 days
with 95% confidence level. It shows that the cutoff point of this histogram is around $230,000,
which is 95% VaR value, so the VaR cutoff point of this histogram is equal to 95% VaR value
and the area after the VaR cutoff point is 95% of the histogram. Therefore, the average loss that
exceed the VaR value in the left tail is the CVaR value for each confidence level. For example,
the net payoff of the portfolio selected that exceed 95% VaR value in Figure 1 has many values.
There are both positive and negative values, but the average of this area is positive since 95%
CVaR value is equal to -111,693.2899. Similarly, Figure 2 demonstrates the histogram of the net
payoff of the portfolio after 30 days, with 99% confidence level. The average of the right area that
exceed VaR value is negative so that 99% CVaR is positive and equals to 74,066.4235. Therefore,
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FIGURE 1. The histogram of net payoff of the optimal portfolio by the
minimization of CVaR after 30 days with 95% confidence level obtained by

using 300,000 out-of-sample simulated index value

FIGURE 2. The histogram of net payoff of the optimal portfolio by the
minimization of CVaR after 30 days with 99% confidence level obtained by

using 300,000 out-of-sample simulated index value

we can confirm the theory that the 99%CVaR value must be greater than or equal to the 95%CVaR
value.

To study the effect of optimal portfolio, we repeat the optimization and change the parameters
(e.g., σ and ν) for simulating the index values by using the VG distribution. Table 6 and Table
7 exhibit the rise of σ and ν, followed similarly by the rise in value of CVaR. In addition, the
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FIGURE 3. The proportion of cash and asset j from optimizing the portfolio
selected after 30 days with 95% confidence level obtained by using 300,000

out-of-sample simulated index value

TABLE 6. The expectation, the standard deviation, the 95%VaR and
95%CVaR of the CVaR minimization portfolio after changing σ

σ Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
0.01 500,000 0.012340856 -400,000 -399,999.9999
0.05 499,999.8871 3,185.094854 -399,783.0798 -398,670.0211

0.1206 499,965.6332 213,504.6531 -233,244.3822 -111,693.2899
0.2 499,133.7618 702,889.2016 346,956.6677 547,731.8037

TABLE 7. The expectation, the standard deviation, the 95%VaR and
95%CVaR of the CVaR minimization portfolio after changing ν

ν Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
0.001 507,904.9454 218,008.4877 -234,286.3407 -118,346.7735

0.0031 499,965.6332 213,504.6531 -233,244.3822 -111693.2899
0.01 499,874.4617 219,069.9503 -232,618.4550 -87,185.3817
0.1 499,788.1843 276,296.0258 -140,107.6781 100,655.6834

effect from changing the standard deviation of the return on the stock (σ) is shown in Table
6. It has also been noticed that as the standard deviation increases, the CVaR value increases.
Additionally, we have also observed that if σ = 0.2000, the portfolio can lose money because
VaR and CVaR are positive numbers, which imply that the portfolio has a 95% chance of making
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TABLE 8. The expectation, the standard deviation, the 95%VaR and
95%CVaR of the CVaR minimization portfolio with other percentages of the

required return

Required return (×100%) Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
2 300,072.1339 72,463.0421 - 167,967.0981 - 117,323.8604
3 400,069.2447 145,477.4599 - 206,585.6946 - 122,445.0835
4 499,965.6332 213,504.6531 - 233,244.3822 - 111,693.2899
5 599,811.5596 285,164.2267 - 236,238.0140 - 86,660.8016
6 699,618.6478 348,141.1252 - 243,936.2769 - 51,196.4221
7 799,394.2615 418,366.1802 - 222,496.1260 - 6,400.5556
8 899,154.1257 486,551.4825 - 192,275.9600 46,715.9098
9 998,854.9645 552,089.7232 - 147,146.9564 112,810.1560

10 1,098,511.3814 595,452.9670 - 133,932.1352 196,000.8996

FIGURE 4. The graph of the CVaR value with other required returns

more than 346,956.6677, and the average amount of loss function that exceed the VaR value is
547,731.8037. In the same way, If ν increases, our CVaR value will increase, so ν slightly affects
the CVaR value. Therefore, if the values of both parameters increase, our portfolios will be more
vulnerable than the base-case in Table 5 because the CVaR values are greater than the 95% CVaR
value of the base-case in Table 5. This means, the risky optimization portfolios grows higher if
we compare them with the base-case.

In addition, as the required rate of return (Q) increases, the CVaR value also increases. From
Table 8, it is observed that the required rate of return impacts all values such as the expectation,
the standard deviation, the 95% VaR and the 95% CVaR. This effects the profit of the selected
portfolio. Table 8 and Figure 4 show that we can make a higher profit if the required return is
going down because the trend of the first period of this graph of the CVaR value with required
returns is increasing rapidly in the range of the required return from 200% to 1,200%, and the
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trend of the whole graph is like a log curve. Therefore, the risky optimization portfolio rises up
from the base-case at 95% confidence level in Table 5.

FIGURE 5. The graph of the CVaR value with other confidence levels

Moreover, we know that if we consider the optimization portfolio with CVaR at confidence
levels 90%, 95%, and 99%, then all the values are very different. They are negative values, which
means that this portfolio can earn a profit, except for when the value at 99% confidence level
is positive. From Figure 5, we deduce that the expected return and the associated return risk
increase as the confidence level β decreases. Furthermore, the trend of this graph is similar to
an exponential curve. We notice that the CVaR value at 99% confidence level is the highest and
approximately $75,000.

However, the linear programming problem is solved with the interior-point solver of MOSEK
9.2 that is suitable for convex optimization. Afterward, we set up MOSEK instead of the opti-
mization problem in MATLAB. Then, we measure the CPU time used to run this minimization
problem. The elapsed time is 2.8862 seconds on a PC with Intel(R) Core(TM) i7-6500U CPU @
2.60 GHz processor and 8.00 GB memory. Therefore, the efficiency for the optimization problem
using the VG distribution and the gaussian legendre quadrature is more efficient than when using
the Monte Carlo techniques in the case of Rockafellar and Uryasev [7] as it took about 8 min-
utes with a Mathematica version of 400-800 iterations of the variable metric code on a 450 MHz
Pentium II.

4. DISCUSSIONS AND CONCLUSIONS

In portfolio optimization, risk and return are the uncertain parameters; therefore, we addi-
tionally used CVaR as the risk measure to measure the estimated risk in expected return. We
have illustrated this minimization problem on options portfolio, while we optimized the objective
function as a continuously differentiable function in MATLAB. In particular, we have shown that,
when the options values are computed through variance-gamma approximations and through the
use of the gaussian legendre quadrature instead of the Monte Carlo techniques, the efficiency for
solving this problem is better than the Monte Carlo techniques. Additionally, we know that our
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experiments are more diversified and the CVaR value depends on many parameters such as σ, ν,
and Q. From Section 3, the results show that σ, ν, and Q can be more risky if their values increase.
Moreover, the affect of the CVaR value from Figure 4 is shown as logarithmic growth, but for the
confidence level β, the affect is shown as exponential growth in Figure 5. Lastly, the confidence
levels reflect the situations of whether investors lose or make money.

In future research, we will apply the model for large data set, consider options portfolio hedg-
ing problems and investigate indifference in pricing of exotic options written on the index. Fur-
thermore, we will simultaneously analyze the problem of minimizing both standard deviation and
the CVaR as the results show that their value share similar trends.
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