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Abstract Laos is one of those countries whose people are engaged in farming. Farming in developing

countries strongly relies on climate. Being one of the key factors of climate change, the temperature has

become a fundamental topic of recent research in this area. The aims of this study were two folds, namely

(i) to study how temperature in Laos changed in the last decades, and (ii) to propose an appropriate

model for temperature prediction in Laos. In this work, the daily temperatures in Laos in the last 26 years

(1995-2020) were analyzed. Suggested by the ARIMA model that the current temperature in Laos could

depend on the temperatures up to 8 previous days. However, taking the Akaike Information Criterion

(AIC) and Root Mean Square Error (RMSE) into account, the ARIMA (4,0,0) seems to be a good enough

model. While the multiple linear regression (MLR) of time-lag variables suggested that the last 1, 4, 6,

and 8 days of temperatures have contributed significantly to the current day temperature. In a way, the

two models agreed on the number of the predictors which is 4, even though they have different time lags.

Furthermore, the random forest model with 4 predictors (lags 1, 4, 6, and 8) even slightly outperformed

the random forest model with predictors of 8 previous consecutive days in terms of RMSE. Besides, by

fitting a simple linear regression to the seasonally adjusted temperature, it showed that the temperature

in the capital of Laos has not significantly changed in the last 26 years.
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1. Introduction

Temperature change is one of the major concerns in this developing world. A small
amount of average temperature change could have a greater effect on the environment and
all creatures on Earth. Especially, when it comes to food production and sustainability,
it is the issue that drew everyones attention. Temperature could have effects in any field
such as environment, society, economic, etc. One way or another, inevitably, the effects
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will come to human beings. Several research have confirmed that temperature has effects
on crop yields [1–4] and cattle production [5]. Even though crops need temperature to
survive, extreme high or low temperatures can have a negative effect on plants growth
and yields [6]. In fact, a study on temperature thresholds [1] for several food crops such
as soybean, wheat, tomato, peanut, has reported that extreme temperature has effects on
crop production. Moreover, an increasing temperature and precipitation variability also
increases the risk to crop production [3].

Laos is a developing country in Southeast Asia with a primarily agricultural economy.
Vientiane is Laos’ capital and the largest city, located on the Mekong River near Thai-
land’s border. According to the 2020 Census, the city has a population of 948,477 people.
Vientiane is a 3,920-square-kilometer metropolis with an average elevation of 174 meters
above sea level. The climate in Vientiane is tropical savanna, with a distinct wet and
dry season. The dry season in Vientiane lasts from November to March. The wet season
begins in April and lasts for around seven months in Vientiane. Throughout the year,
Vientiane is extremely hot and humid, while temperatures in the city are slightly milder
during the dry season than during the wet season [7]. According to the United Nations’
Food and Agriculture Organization (FAO) [8], biological resources contribute more than
66% percent of Laos’ GDP. Understanding how the temperature in Laos would change is
therefore quite beneficial.

The goal of this study was to predict daily temperatures in Laos from 1995 to 2020
based on daily temperatures. The seasonal pattern was first explored on the assumption
that the season repeats itself every year. The trend of the daily temperature was then
calculated using simple linear regression on the seasonally adjusted daily temperature
over a 26-year period. Following that, the ARIMA model was used to make a predic-
tion. Finally, the time-lag variables were employed as predictors for the current daily
temperature in multiple linear regression (MLR) and random forest models.

2. DATA AND METHODS

Following the collection of daily temperatures, preprocessing for missing value impu-
tation was carried out, as shown in Figure 1. The data was then fitted with ARIMA,
MLR, and random forest models, as well as seasonal patterns and trends were studied.
The methodologies were addressed in depth in the following three subsections.
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Figure 1. The conceptual framework of this study

2.1. Study area and data collection

In this study, daily temperature in Vientiane city of Laos has been considered. The
location of Vientiane city is presented in Figure 2.

Figure 2. The location of Vientiane city in Laos map

With a total of 9266 measurements, the daily average temperature of Vientiane, Laos
was obtained from https://academic.udayton.edu/kissock/http/Weather/ [9]. The Na-
tional Climatic Data Center contributed this information, which is free to use for research
and non-commercial reasons. It was discovered that there were 56 missing values in the
original data. Each missing value was replaced with the 26-year average of tempera-
tures on the corresponding day of the year. Figure 3 shows the time-series plots of daily
temperature in Vientiane from 1995 to 2020 after all missing values were imputed.
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Figure 3. The plots of daily average temperature in Vientiane city dur-
ing 1995-2020

The data was separated into two portions for the prediction models, with 70 percent and
30 percent for the training and testing datasets, respectively. The predictive model was
built using the training dataset, and the model was evaluated using the testing dataset.
Figure 4 shows time-series graphs of observation data for the training and testing sets.

Figure 4. Time-series plots of daily average temperature for training
dataset (black) and testing dataset (blue)

2.2. METHODS

In this study, simple linear regression was used to examine the trend of observation
data. The following is the formula for a simple linear regression model (Equation 2.1):

ŷ = α0 + α1X + ϵ, (2.1)

where ŷ is the outcome variable, α0 is the intercept, α1 is the slope, X is the independent
variable and ϵ is the error term.

Time series models can be constructed using stationary variables, which have statistical
qualities that remain constant across time, such as mean and variance. The prediction
model was fitted using the autoregressive integrated moving average model. According
to the literature, the ARIMA model is one of the best models for predicting a time series.
The process of obtaining the model [10] involved fitting an appropriate model, estimating
the parameters, and evaluating the model. As related to the result of this paper, the
ARIMA(4,0,0) is given by (Equation 2.2):

ŷt = µ+ φ1yt−1 + φ2yt−2 ++φ3yt−3 + φ4yt−4 + et (2.2)

where, ŷt is the predicted average daily temperature at observation t; φ1, φ2, φ3 and φ4

are coefficients of the lag variable yt−1, yt−2, yt−3 and yt−4, respectively, and et is the
value not explained by the lag variables.
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Multiple linear regression analysis is a statistical method for developing a suitable
regression model for predicting the value of the outcome variable, or the variable under
investigation. The multiple linear regression model takes the following form based on the
values of independent variables or predictors (Equation 2.3):

ŷt = b0 + b1yt−1 + b2yt−2 + ...+ bkyt−k (2.3)

where ŷt is the outcome variable (predicted temperature at time t)
yt−i is the temperature at time t− i , i = 1, 2, ..., k
b0 is the intercept (constant term)
bi is the coefficients for temperature at time t− i , i = 1, 2, ..., k
k is the number of predictors (lag variables)

In general, time-series data is always faced with seasonal effects. To investigate the
effect of season in the observation data, the seasonal patterns have been analyzed. It is
natural to assume that at the same time of the year the season would approximately be
the same. Therefore, for simplicity, the season has been taken from the average values of
temperatures at the same day of the year throughout the whole 26 years. By removing
(subtracting) the seasonal effect from the original observations and adjusting by adding
back the average value of the original series. Once the daily average temperature was
seasonally adjusted, its trend has been investigated by fitting simple linear regression
[11, 12]. As the seasonal patterns give the picture of how temperature repeatedly vary
during a particular time of the period, its trend provided a long-term direction of changes.
The linear change could be either increasing, decreasing, or not going anywhere.

ARIMA and regression models has been used for prediction in many studies [13–16].
For example, Hassan (2014) used ARIMA and regression models to predict the daily and
monthly clearness index for several Canadian cities [13]. The two models were both linear
models. The main difference was that ARIMA model takes only the time-lag variables
as its predictors, while the predictors of regression model can be any variables including
time-lag variables. To avoid ambiguity, an ARIMA(p,d,q) with different choices of the
parameters p, d, and q will be considered as a different model. Moreover, the appropri-
ated model will be selected by measuring the values of the Akaike Information Criterion
(AIC) and the Root Mean Squared Error (RMSE). To determine the parameters q and p
parameters of ARIMA model, the graph of Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) as shown in Figure 5 will be considered.

Figure 5. ACF and PACF of the training dataset
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Once the parameter p, d, and q were fixed for an ARIMA model, the MLR and random
forest will join in and play the role of confirmation. Notice that the integer p also indicates
the number of factors. Namely, all the time-lag variables starting from p days earlier
including all days later until yesterday (cannot be skipped) will be taken as the predictors.
For example, if p = 8, it means that the ARIMA model includes all time-tag variables
of the previous 8 consecutive days as its predictors. But this is not the case for multiple
regression since any predictors can be included or excluded from the model. In fact, fitting
MLR with, say, 8 factors of 8 consecutive days, the most insignificant factor is removed.
Repeatedly fitting with the remaining factors and removing one most insignificant factor
at a time until only significant factors are left. Finally, the random forest model [17] is
applied to confirm again the result by the ARIMA and MLR models.

3. RESULTS

3.1. Seasonal Pattern and Trend Analysis

The seasonal pattern (red curve in Figure 6) is a repetition, for each year, of those
366 average values derived earlier. The seasonal pattern was subtracted from the original
temperature and adjusted by adding its overall average to achieve the seasonally adjusted
temperature (Figure 7).

Figure 6. The plots of original daily temperature and its seasonal pat-
terns in Vientiane city during 1995-2020

Figure 7. The plots of seasonal adjusted daily temperature in Vientiane
city from 1995 to 2020
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Figure 8. The plots of the trend (red line) and seasonal adjusted daily
temperature (grey dots) in Vientiane city during 1995-2020

In this study, the trend (red line in Figure 8) revealed changes of -0.0000139 (decreases
of 0.0000139) degree Celsius per day with p-value 0.088. Moreover, by simple calculation,
the temperature in Vientiane city has a tendency of decreasing around 0.0049275 degree
Celsius per year or 0.4927500 degree Celsius per century. However, notice that the p-
value is greater than 0.05. Therefore, the change was not statistically significant. In
other words, it is statistically saying that the change was not different from zero.

3.2. Predictive Models
In case of daily temperature in Laos, the ACF and PACF in Figure 9 suggested that

there could be up to 8 time-lag variables to be considered as factors in the ARIMA model.
In other words, the temperatures of the 8 previous days predict the current temperature.
Therefore, the ARIMA(p, 0, 0) for p = 1, 2, , 8 has been created. It turned out that for
the increasing number of p from 1 to 8, the AIC and RMSE of the training dataset were
strictly decreasing. However, when applying the model to the training dataset, the RMSE
were strictly increasing, even though the increase and decrease were small. In fact, the
AIC and RMSE of the training set were decreasing by the proportion of less than 1% and
only at the 2nd place decimals, respectively.

The ARIMA(4,0,0) seems to be a reasonable model for making economic sense so that
the result may be acceptable with a less difficult equation. The resulting model was
illustrated and showed how well it fit the training and testing datasets in Figure 9 with
their RMSE were 1.5756 and 2.0028, respectively. Moreover, the equation of ARIMA
(4,0,0) is given by

ŷt = 3.5184 + 0.7700yt−1 − 0.0099yt−2 + 0.0224yt−3 + 0.0882yt−4 (3.1)

where yt−k, k = 1, 2, 3, 4 are the time-lag temperatures of k days earlier, and ŷt is the
predicted current temperature.

Figure 9. The time-series plots of ARIMA(4,0,0) predicted values for
training (red dots) and testing (blue dots) datasets compared with orig-
inal observations



Thai J. Math. Special Issue (2022) /R. Khaleng et al.

Now, taking the first suggestion by the PACF for the ARIMA model, it was reasonable
to start multiple linear regression with 8 time-lag variables. Then, following the general
process of removing one less significant variable at a time, namely the variable with highest
p-value (greater than 0.05) given by the regression model. It turns out that there are 4
time-lag variables left. Indeed, only the lags 1, 4, 6, and 8 days earlier that significantly
had contribution to the current temperature. The result by the regression model fitting
to the training (RMSE=2.4286) and testing (RMSE=2.1132) datasets is shown in Figure
10 and its equation is given by

ŷt = 2.6293 + 0.7248yt−1 + 0.0399yt−4 + 0.0464yt−6 + 0.0744yt−8 (3.2)

where yt−k, k = 1, 4, 6, and 8 are the time-lag temperatures of k days earlier, and ŷt is
the predicted temperature at time t.

Figure 10. The time-series plots of MLR model predicted values for
training (red dots) and testing (green dots) datasets against original ob-
servations

Two random forest models have been created with 4 and 8 time-lag variables as sug-
gested by MLR, and PACF, respectively. The random model with 4 time-lag variables
included the temperature at day 1, 4, 6 and 8 days earlier. Both models have been treated
with 500 trees and randomly selected 3 independent variables for each tree. The final pre-
dictive value has been calculated by taking arithmetic mean of all predicted value from
500 trees.

The result by the both of random forest models (treated with 4 and 8 time-lag variables)
fitting to the training (RMSE=1.6247 and 1.6026) and testing (RMSE=1.5171 and 1.6026)
datasets are shown in Figures 11 and 12, respectively.

Figure 11. The time-series plots of random forest model (4 time-lag
variables) predicted values for training (red dots) and testing (purple
dots) datasets against original observations
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Figure 12. The time-series plots of random forest model (8 time-lag
variables) predicted values for training (red dots) and testing (purple
dots) datasets against original observations

Finally, the results by the random forest models show that when the number of factors
reduced from 8 to 4, following the best MLR obtained, the RMSE slightly change, as
shown in Table 1.

Table 1. The RMSE of the Training and Testing sets by ARIMA, MLR,
and the random forest (RF) models

RMSE
Training set Testing set

ARIMA (4,0,0) 1.5756 2.0028
MLR with lags 1, 4, 6 and 8 2.4286 2.1132
RF with 8 factors of lags 1.6026 1.6026
RF with lags 1, 4, 6, and 8 1.6247 1.5171

4. DISCUSSION AND CONCLUSION

This research aimed to study how temperature in Laos change in the last decades and
propose an appropriate model for temperature prediction in Vientiane city, Laos. By
analyzing the trend of daily average temperature by using simple linear regression, it can
be observed that trend of the temperature in Vientiane city has not been changed.

From the results, the equations of ARIMA(4,0,0) and the multiple linear regression
model were finally obtained as the Equations (3.1) and (3.2), respectively. The first
notice is that they had the same number of predictors which is four. However, the fours
are different. While the current day temperature by ARIMA(4,0,0) was predicted by the
temperatures of the previous four consecutive days up until yesterday, the current day
temperature by the multiple regression model was predicted by the temperatures of the
previous 8, 6, 4, and 1 days. Furthermore, the result by the random forest model also
provides evidence for the lags and the number of lags of the factor. Noticed that the
lag predictors could also be suggested by the importance of variables of random forest
method. One could argue that the multiple linear regression and the random forest would
be better since they could select any lag variables. However, the ARIMA was helpful for
giving the idea of the number of time-lag variables to start with.
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