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Abstract Einstein’s field equation describes gravity as the result of spacetime curvature due to mass

and energy. Perfect fluid spheres are the solution to Einsteins field equation. We use perfect fluid

spheres in modeling black holes. The most commonly used coordinates for perfect fluid spheres are the

Schwarzschild coordinates and isotropic coordinates. Thus far, we have obtained the general potentials of

these two coordinates. The results show that the general potentials of black holes in the form of perfect

fluid spheres in these two coordinates are functions that depend on the radius. In this paper, we are

interested in perfect fluid spheres in various coordinates; namely, general diagonal coordinates, Gaussian

polar coordinates, Buchdahl coordinates, Synge isothermal coordinates, and exponential coordinates.

We calculate the general potentials of perfect fluid spheres in various coordinates using the concept of

general potential of the Schwarzschild black hole developed by Ngampitipan, and then use the general

potentials to obtain the transmission and reflection probabilities using the bogoliubov coefficients. Finally,

we calculate the quasinormal frequencies of perfect fluid spheres in various coordinates using the WKB

approximation method.
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1. Introduction

In the previous research, we were interested in perfect fluid black holes in Schwarzschild
and isotropic coordinates and derived the potentials of these perfect fluid black holes de-
veloped by Ngampitipan [1] and Kunlapat, et al [2]. The commonly used coordinates
for perfect fluid spheres are Schwarzschild coordinates (about 55%), isotropic coordinates
(about 35%), and 10% are other coordinates [3]. There is currently only a small number
of research focusing on other coordinates. Therefore, we are interested in perfect fluid
spheres in other coordinates, and in calculating the general potentials of perfect fluid
spheres in other coordinates. In this paper, we are interested in perfect fluid spheres in
various coordinates, which is a more complicated metric and different from the metric in
previous research. In order to know the parameters ζ(r) and B(r) in the metric of perfect
fluid spheres in various coordinates and calculate the transmission and reflection proba-
bilities of perfect fluid spheres in various coordinates, we must match the Schwarzschild
exterior metric in Schwarzschild coordinates and various coordinates by coordinate trans-
formation.

2. Perfect fluid spheres in various coordinates

In this paper, we are interested in perfect fluid spheres in various coordinates; namely,
general diagonal coordinates, Gaussian polar coordinates, Buchdahl coordinates, Synge
isothermal coordinates, and exponential coordinates. Perfect fluid spheres in various
coordinates are presented as follows;

2.1. General diagonal coordinates

The metric is given by [3, 4]

ds2 = −ζ(r)2dt2 + dr2

B(r)
dr2 +R(r)2dΩ2. (2.1)

The system of the Einstein field equations for the line element becomes [5]

ρ =
1

R(r)2
(1−B(r)) +

B(r)′

R(r)
, (2.2)

pr = − 1

R(r)2
(1−B(r))− 2B(r)

R(r)

ζ(r)′

ζ(r)
, (2.3)

pt = B(r)

[
ζ(r)′′

ζ(r)
− 2

(
ζ(r)′

ζ(r)

)2

+2

(
ζ(r)′

ζ(r)

)(
1

R(r)
+

B(r)′

B(r)

)
+

B(r)′

2R(r)B(r)

]
, (2.4)

where ρ is the density, pr is the radial pressure and pt is the transverse pressure. One of
the properties of the perfect fluid sphere is isotropy (pr = pt).
From the metric in the general coordinates, we calculate

gµν =

⎛

⎜⎜⎝

−ζ(r)2 0 0 0
0 B(r)−1 0 0
0 0 R(r)2 0
0 0 0 R(r)2 sin2 θ

⎞

⎟⎟⎠ , (2.5)
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gµν =

⎛

⎜⎜⎝

−ζ(r)−2 0 0 0
0 B(r) 0 0
0 0 R(r)−2 0
0 0 0 R(r)−2 sin−2 θ

⎞

⎟⎟⎠ , (2.6)

g = −ζ(r)
2

B(r)
R(r)4 sin2 θ, (2.7)

√
−g =

√
ζ(r)2

B(r)
R(r)2 sin θ. (2.8)

where gµν is the metric tensor, gµν is the inverse of the metric tensor, and g is the
determinant of the metric tensor.
We then substitute these equations into the Klein-Gordon equation.

2.2. Gaussian polar coordinates

The metric is given by [3, 4]

ds2 = −ζ(r)2dt2 + dr2 +R(r)2dΩ2. (2.9)

The system of the Einstein field equations for the line element becomes [5]

ρ = 0, (2.10)

pr = − 2

R(r)

ζ(r)′

ζ(r)
, (2.11)

pt =

[
ζ(r)′′

ζ(r)
− 2

(
ζ(r)′

ζ(r)

)2

+ 2

(
ζ(r)′

ζ(r)

)(
1

R(r)

)]
, (2.12)

with one of the properties of the perfect fluid sphere being isotropy (pr = pt).
From the metric in the Gaussian polar coordinates, we calculate

gµν =

⎛

⎜⎜⎝

−ζ(r)2 0 0 0
0 1 0 0
0 0 R(r)2 0
0 0 0 R(r)2 sin2 θ

⎞

⎟⎟⎠ , (2.13)

gµν =

⎛

⎜⎜⎝

−ζ(r)−2 0 0 0
0 1 0 0
0 0 R(r)−2 0
0 0 0 R(r)−2 sin−2 θ

⎞

⎟⎟⎠ , (2.14)

g = −ζ(r)2R(r)4 sin2 θ, (2.15)

√
−g = ζ(r)R(r)2 sin θ. (2.16)

We then substitute these equations into the Klein-Gordon equation.
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2.3. Buchdahl coordinates

The metric is given by [3, 4]

ds2 = −ζ(r)−1dt2 + ζ(r)2dr2 + ζ(r)R(r)2dΩ2. (2.17)

The system of the Einstein field equations for the line element becomes [5]

ρ =
1

ζ(r)R(r)2
(1− ζ(r)−2) +

2ζ(r)−5/2ζ(r)′

R(r)
, (2.18)

pr = − 1

ζ(r)R(r)2
(1− ζ(r)−2)− ζ(r)−5/2ζ(r)′

R(r)
, (2.19)

pt = ζ(r)−2

[
1

2

(
ζ(r)′

ζ(r)

)2

− 3

2

ζ(r)′√
ζ(r)R(r)ζ(r)

]
, (2.20)

with one of the properties of the perfect fluid sphere being isotropy (pr = pt).
From the metric in the Buchdahl coordinates, we calculate

gµν =

⎛

⎜⎜⎝

−ζ(r)−1 0 0 0
0 ζ(r)2 0 0
0 0 ζ(r)R(r)2 0
0 0 0 ζ(r)R(r)2 sin2 θ

⎞

⎟⎟⎠ , (2.21)

gµν =

⎛

⎜⎜⎝

−ζ(r) 0 0 0
0 ζ(r)−2 0 0
0 0 ζ(r)−1R(r)−2 0
0 0 0 ζ(r)−1R(r)−2 sin−2 θ

⎞

⎟⎟⎠ , (2.22)

g = −ζ(r)3R(r)4 sin2 θ, (2.23)

√
−g =

√
ζ(r)3R(r)2 sin θ. (2.24)

We then substitute these equations into the Klein-Gordon equation.

2.4. Synge isothermal coordinates

The metric is given by [3, 4]

ds2 = −ζ(r)−2{dt2 − dr2}+ {ζ(r)−2R(r)2dΩ2}. (2.25)

The system of the Einstein field equations for the line element becomes [5]

ρ =
1

ζ(r)−2R(r)2
(1− ζ(r)2) +

2ζ(r)2ζ(r)′

R(r)
, (2.26)

pr = − 1

ζ(r)−2R(r)2
(1− ζ(r)2) +

2ζ(r)2ζ(r)′

R(r)
, (2.27)

pt = ζ(r)2
[(

ζ(r)′

ζ(r)

)2

− ζ(r)′′

ζ(r)

]
, (2.28)

with one of the properties of the perfect fluid sphere being isotropy (pr = pt).
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From the metric in the Synge coordinates, we calculate

gµν =

⎛

⎜⎜⎝

−ζ(r)−2 0 0 0
0 ζ(r)−2 0 0
0 0 ζ(r)−2R(r)2 0
0 0 0 ζ(r)−2R(r)2 sin2 θ

⎞

⎟⎟⎠ , (2.29)

gµν =

⎛

⎜⎜⎝

−ζ(r)2 0 0 0
0 ζ(r)2 0 0
0 0 ζ(r)2R(r)−2 0
0 0 0 ζ(r)2R(r)−2 sin−2 θ

⎞

⎟⎟⎠ , (2.30)

g = −ζ(r)−8R(r)4 sin2 θ, (2.31)

√
−g = ζ(r)−4R(r)2 sin θ. (2.32)

We then substitute these equations into the Klein-Gordon equation.

2.5. Exponential coordinates

The metric is given by [3, 4]

ds2 = − exp(−2r)dt2 + exp(+2r)

{
dr2

B(r)
+R(r)2dΩ2

}
. (2.33)

The system of the Einstein field equations for the line element becomes [5]

ρ =
1

exp(+2r)R(r)2

(
1− B(r)

exp(+2r)

)
+

2B(r)

exp(+3r)R(r)

(
1− B(r)′

2B(r)

)
, (2.34)

pr = − 1

exp(+2r)R(r)2

(
1− B(r)

exp(+2r)

)
− 2B(r)

exp(+3r)R(r)
, (2.35)

pt =
B(r)

exp(+2r)

[
2− 2

exp(+r)R(r)
+

B(r)′

2B(r)

(
1

exp(+r)R(r)
− 1

)]
, (2.36)

with one of the properties of the perfect fluid sphere being isotropy (pr = pt).
From the metric in the exponential coordinates, we calculate

gµν =

⎛

⎜⎜⎝

− exp(−2r) 0 0 0

0 exp(+2r)
B(r) 0 0

0 0 exp(+2r)R(r)2 0
0 0 0 exp(+2r)R(r)2 sin2 θ

⎞

⎟⎟⎠ ,

(2.37)

gµν =

⎛

⎜⎜⎝

− exp(+2r) 0 0 0

0 B(r)
exp(+2r) 0 0

0 0 exp(−2r)R(r)−2 0
0 0 0 exp(−2r)R(r)−2 sin−2 θ

⎞

⎟⎟⎠ ,

(2.38)
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g = −exp(+4r)

B(r)
R(r)4 sin2 θ, (2.39)

√
−g =

√
exp(+4r)

B(r)
R(r)2 sin θ. (2.40)

We then substitute these equations into the Klein-Gordon equation.
We will calculate the general potentials of perfect fluid spheres in various coordinates

using the concept of general potentials of the Schwarzschild black hole developed by
Ngampitipan [1].

3. Potentials in general coordinates

We will find the general potentials of perfect fluid spheres in various coordinates by
beginning with the Klein-Gordon equation, and after we derive the equation, we obtain
the Regge-Wheeler equation.

3.1. Klein-Gordon equation and Regge-Wheeler equation

The Klein-Gordon equation is given by [1]

1√
−g

∂µ
√
−ggµν∂νψ = 0, (3.1)

where gµν is the metric tensor, gµν is the inverse of the metric tensor, and g is the
determinant of the metric tensor. After we derive this equation, it transforms to the
Regge-Wheeler equation.

The Regge-Wheeler equation is given by [1]

d2Ψ

dr2∗
+ [ω2 − V (r)]Ψ(r) = 0, (3.2)

where ω is the wave’s energy, Ψ(r) is the wave function and V (r) is the general potential
of perfect fluid spheres in various coordinates.

3.2. General Potentials of Perfect fluid spheres

Perfect fluid spheres General potentials

General diagonal coordinates V (r) = l(l+1)ζ(r)2

R(r)2 − R(r)√
B(r)

d
dr (

B(r)′ζ(r)R(r)
2B(r) −R(r)′ζ(r)))

Gaussian polar coordinates V (r) = l(l+1)ζ(r)2

R(r)2 −R(r)−3 d
dr (R(r)2R(r)′ζ(r))

Buchdahl coordinates V (r) = l(l+1)
ζ(r)2R(r)2 −R(r)−1ζ(r)−

7
2

d
dr (

ζ(r)′R(r)
2ζ(r) −R(r)′)

Synge isothermal coordinates V (r) = l(l+1)
R(r)3 − ζ(r)−2 d

dr (2
ζ(r)′R(r)

ζ(r) −R(r)′)

Exponential coordinates V (r) = l(l+1)
R(r)2 +R(r)−1eR

2 d
dr (B(r)

1
2R(r)′e−R2

(1 + 2R2))

Table 1. General potentials of perfect fluid spheres in various coordinates

General potentials of perfect fluid spheres in various coordinates as shown in Table 1
are functions that depend on the radius of perfect fluid spheres, where r is the radius of
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perfect fluid sphere and l is the angular momentum. After that, we will use these general
potentials to obtain the transmission and reflection probabilities of perfect fluid spheres
in various coordinates.

(a) (b)

Figure 1. Plotting of the general potentials of perfect fluid spheres in
various coordinates, (a) general diagonal coordinates and (b) Gaussian
polar coordinates. In these two subfigures of the general potentials, the
results show that the potentials depend on r and tend to decrease when
r increases.

(a) (b)

Figure 2. Plotting of the general potentials of perfect fluid spheres in
various coordinates, (a) Buchdahl coordinates and (b) Synge isothermal
coordinates. In subfigure (a), the results show that the potentials de-
pend on r and tend to decrease when r increases, while the potential of
subfigure (b) tend to increase.

Figure 3. Plotting of the general potentials of perfect fluid spheres in
exponential coordinates; the results show that the potentials depend on
r and tend to increase when r increases.
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4. Transmission and Reflection Probabilities of Perfect fluid
spheres

The transmission and reflection probabilities can be calculated using the bogoliubov
coefficients [6] which is highly accurate in obtaining the lower and upper bounds on
the transmission and reflection probabilities, respectively. The rigorous bound of the
transmission and reflection probabilities are given by [7]

T ≥ sech2
1

2ω

∫ ∞

−∞
|V (r)|dr∗, (4.1)

and

R ≤ tanh2
1

2ω

∫ ∞

−∞
|V (r)|dr∗. (4.2)

We obtained the transmission and reflection probabilities of perfect fluid spheres in various
coordinates as shown in Tables 2 and 3, respectively. In addition, these parameters were

also obtained; p =
√

(−2m+R−r1)2

(R−r1)2
, q = 1 − 2m

R−r4
, s =

√
exp(+2(R− r5))l(l + 1), t =

2+4m2+2m(R−r5−1)−2(R−r5)+(R−r5)2, u = Eiz(2R−2r5) and v = Eiz(R−r5−2m).

Perfect fluid spheres Transmission probabilities

General diagonal coordinates T ≥ sech2
[

1
2ω

3l(l+1)(R−r1)
2−8m2√p+6m(R−r1)

(
−l−l2+

√
p
)

3(R−r1)3
√
p

]

Gaussian polar coordinates T ≥ sech2
[

1
2ω

l(l+1)
(
1− 2m

R−r2

)3/2

3m − m
(R−r2)2

]

Buchdahl coordinates T ≥ sech2
[

1
2ω

∫∞
−∞

2l(l+1)+ζ(r)4/5ζ′(r)R(r)
2ζ(r)2R(r)2 dr

]

Synge isothermal coordinates T ≥ sech2
[

1
2ω

1
m

l(l+1)
4 q2 + q5/2

5 − q3/2

3

]

Exponential coordinates T ≥ sech2
[
st+ 2u+ 8 exp(2m−R+ r5)sm3v

]

Table 2. Transmission probabilities of perfect fluid spheres in various coordinates.

Perfect fluid spheres Reflection probabilities

General diagonal coordinates R ≤ tanh2
[

1
2ω

3l(l+1)(R−r1)
2−8m2√p+6m(R−r1)

(
−l−l2+

√
p
)

3(R−r1)3
√
p

]

Gaussian polar coordinates R ≤ tanh2
[

1
2ω

l(l+1)
(
1− 2m

R−r2

)3/2

3m − m
(R−r2)2

]

Buchdahl coordinates R ≤ tanh2
[

1
2ω

∫∞
−∞

2l(l+1)+ζ(r)4/5ζ′(r)R(r)
2ζ(r)2R(r)2 dr

]

Synge isothermal coordinates R ≤ tanh2
[

1
2ω

1
m

l(l+1)
4 q2 + q5/2

5 − q3/2

3

]

Exponential coordinates R ≤ tanh2
[
st+ 2u+ 8 exp(2m−R− r5)sm3v

]

Table 3. Reflection probabilities of perfect fluid spheres in various coordinates.
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(a) (b)

Figure 4. Transmission and reflection probabilities of perfect fluid
spheres in various coordinates, (a) general diagonal coordinates and (b)
Gaussian polar coordinates.

(a) (b)

Figure 5. Transmission and reflection probabilities of perfect fluid
spheres in various coordinates, (a) Buchdahl coordinates and (b) Synge
isothermal coordinates.

Figure 6. Transmission and reflection probabilities of perfect fluid
spheres in exponential coordinates.

Figures 4, 5 and 6 represent the relation between the transmission and the reflection
probabilities. The results show that the transmission probabilities of perfect fluid spheres
in various coordinates as shown in Figures 4, 5 and 6 tend to increase when ω increases,
while the reflection probabilities decrease.
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5. Quasinormal frequencies of Perfect fluid spheres

Quasinormal frequencies explain the perturbation of perfect fluid spheres that contain
the real and imaginary parts of the frequencies, which can be calculated using the WKB
method [8] that is known in many cases to be more accurate than what we might expect
and can approximate the solution of the one-dimensional Schrodinger equation. The
Quasinormal frequencies of the perfect fluid spheres are defined by [8]

ω2 = V (r0) + i

√
2d2Q

dr2∗

(
n+

1

2

)
, (5.1)

where r0 is the peak of −Q(r) and Q is frequency dependent.
The Quasinormal frequency of the general diagonal coordinates is defined by [8]

ω2 = V (r0) +
√
−2iζ(r0)B(r0)

(
n+

1

2

)

√
ζ(r0)2V ′′(r0) +B(r0)−1V ′(r0)(ζ(r0)2B(r0))′, (5.2)

where dr∗
dr = 1√

ζ(r)2B(r)
, r0 is the peak of −Q(r) and Q is frequency dependent.

The Quasinormal frequency of the Guassian polar coordinates is defined by [8]

ω2 = V (r0) +
√
−2iζ(r0)

√
V ′′(r0) + ζ(r0)−1V ′(r0)ζ(r0)′

(
n+

1

2

)
, (5.3)

where dr∗
dr = 1

ζ(r) , r0 is the peak of −Q(r) and Q is frequency dependent.

The Quasinormal frequency of the Buchdahl coordinates is defined by [8]

ω2 = V (r0) +
√
−2i

√
ζ(r0)V ′′(r0) +

1

2
V ′(r0)ζ(r0)′

(
n+

1

2

)
, (5.4)

where dr∗
dr = 1√

ζ(r)
, r0 is the peak of −Q(r) and Q is frequency dependent.

The Quasinormal frequency of the Synge isothermal coordinates is defined by [8]

ω2 = V (r0) +
√
−2iζ(r0)

2
√
V ′′(r0) + 2V ′(r0)ζ(r0)−1ζ(r0)′

(
n+

1

2

)
, (5.5)

where dr∗
dr = 1

ζ(r)2 , r0 is the peak of −Q(r) and Q is frequency dependent.

The Quasinormal frequency of the exponential coordinates is defined by [8]

ω2 = V (r0) +

√
−2i

exp(+4r)

√

B(r0)V ′′(r0) + V ′(r0)

(
1

2
B(r)′ − 4B(r)

)(
n+

1

2

)
,

(5.6)

where dr∗
dr = exp(+4r)√

B(r)
, r0 is the peak of −Q(r) and Q is frequency dependent.

The Quasinormal frequencies of the perfect fluid spheres in various coordinates are
the frequencies that include the real part, which is the general potentials of perfect fluid
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spheres that are a function that depends on the peak frequency, and the imaginary part,
which depends on the second derivative of the frequency.

6. Conclusion

In this paper, we were interested in perfect fluid spheres in general diagonal coordi-
nates, Gaussian polar coordinates, Buchdahl coordinates, Synge isothermal coordinates,
and exponential coordinates. First, we calculated the general potentials of perfect fluid
spheres in various coordinates and the results show that the general potentials are a
function that depends on the radius, which is the same as the results from the previous
research and from plotting the graphs of the general potentials in various coordinates.
We then obtained the transmission and reflection probabilities of perfect fluid spheres in
various coordinates, while the plotted graphs show the relation between transmission and
reflection probabilities. In various coordinates, the transmission probabilities increase
and the reflection probabilities decrease when the wave’s energy increases. Pertaining
to physics, the results are independent of the coordinates. Finally, we calculated the
quasinormal frequencies of perfect fluid spheres in various coordinates using the WKB
approximation method, where the frequencies are in the form of complex numbers.
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