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Abstract Given a restroom with n urinals aligned in a straight line. Kranakis and Krizanc investigated

the problem of determining the optimal position that would maintain one’s privacy for the longest time,

using different models for the behavior of men in a restroom. We further extend that problem by defining

the privacy that takes into account the distance between one and the nearest person. The average privacy

along the time is considered. We explicitly obtain the formula of expected average privacy for each position

which is a function of the Harmonic series, the maximum of which approaches logn asymptotically. From

the formulae, one will obtain the most privacy if one chooses the first or the furthest urinals. The privacy

will decrease when the chosen position is closer to the middle position. Moreover, we perform numerical

simulations to confirm and illustrate the results.
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1. Introduction

In 2010, Kranakis and Krizanc proposed the question about the privacy of a man in a
public restroom [1]. The problem was stated that the restroom containing several urinals
aligned along the wall with neighboring positions could easily see each other. To obtain
privacy, one may choose not to pick the one whose neighboring positions are unoccupied.
The problem is if the first person arrives at the restroom, which urinal should he pick.
This leads us to the optimisation problem by choosing the choice that minimizes the
chance someone will pick his neighbor and destroy his privacy. That paper considered a
variety of behavior and gave us the best strategy to maintain privacy. This problem is
similar to many problems that state about placing objects and leave some space between
them, such as, Solution to An Unfriendly Seating Arrangement Problem [2] and Random
Maximal Independent Sets and the Unfriendly Theater Arrangement Problem [3].

The mentioned problems consider the concept of privacy as a binary state, that is, only
have and not have privacy. For the Urinal Problem, one will have privacy if no person
is taking one’s neighbor’s position. In practice, however, even if there is no person next
to one, if some person occupies a urinal close to one, one would feel a little discomfort.
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Additionally, the feeling of insecurity will increase if the closest person is more close to
one. In this paper, we model this feeling by extend the definition of privacy from a
binary state as in [1] to a multi-state according to the distance from one to the closest
person. This problem is similar to the Obnoxious Facility Location Problem, mentioned
in [4], which focus on placing object furthest from all other used positions. We consider
the random behavior of the other people, find the average privacy of each urinal, and
give an optimal strategy for choosing the best position. At last, we perform numerical
experiments to illustrate our results.

2. Problem Statement

Consider a restroom with n urinals arranged in a straight line from the door to the
back. Each urinal is labelled with an integer between 1 and n according to its proximity
to the door, with 1 being the closest and n the furthest. Each person sequentially enter
the restroom a choose their own urinal and stay there for an arbitrarily long time.

For 1 ≤ i ≤ n, denote the ith person to enter the restroom by Ai. Then we say that
they enter the restroom at the time t = i. Let pi be the position of the urinal that Ai

takes. Obviously, (p1, p2, p3, . . . , pn) is a permutation of the set {1, 2, 3, . . . , n}. We will
introduce the newly-defined concept of privacy of Ai.

Definition 2.1. The privacy of the ith person to enter the restroom with n urinals at
the time t by

P (i, t) = min
j ̸=i;j≤t

di,j

for t = max(2, i), . . . , n, where di,j = |pi − pj | is the distance between Ai and Aj .

Intuitively, the privacy P (i, t) is the distance between Ai and their closest neighbour
at the time t. The value of P (1, 1) is not defined, since there is no neighbour of the first
person at time t = 1. The function P (i, t) is a decreasing function over t. Note that when
the value of i is clear, we may simply write dj to refer to the distance.

Furthermore, we are going to define the average privacy of the person Ai, which is the
average of P (i, t) from the time t = i until t = n, except for A1, which we start calculating
the privacy at the time t = 2.

Definition 2.2. Define the average privacy of the ith person to enter the restroom by

Pavg(i) =

⎧
⎪⎨

⎪⎩

∑n
k=2 P (i, k)

n− 1
, if i = 1

∑n
k=i P (i, k)

n− t+ 1
, otherwise.

Proposition 2.3. We have that P (i, t) ≤ n− t+ 1.

Proof. Suppose that there are some i and t such that P (i, t) > n − t + 1. This implies
that there is a gap in the restroom of length at least n − t + 1. However, by the time t,
there are t urinals that are filled, only n − t remain vacant. Therefore, it is not possible
to have a gap of length greater than n− t. Thus, P (i, t) ≤ n− t+ 1.

Corollary 2.4. We have that 1 ≤ Pavg(i) ≤ n
2 .

Proof. Direct result from Proposition 2.3.
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3. Results

We assume that people have random behavior, that is, the probability of each person
except Ai choosing the vacant positions is uniformly distributed. One can think of Ai as
being oneself, having the liberty to choose any available position at the time i.

The following lemma is going to be useful in our computation later. A similar statement
involving the size of the set containing the permutations of the set {1, 2, . . . , n} with x as
the largest element in the cycle containing 1 is presented in [5] by Jerrold W. Grossman.
Indeed, this result follows from [5], and vice versa.

Lemma 3.1. The number of permutations of the set {1, 2, . . . , n} with x as the smallest
element in the cycle containing n is n!

x(x+1) .

Proof. Let A denotes the number of permutations of the set {1, 2, . . . , n} with x as the
smallest element in the cycle containing n. Let C be the cycle containing n. Consider
C with length k + 2, with 2 elements that are fixed that are x and n. Then there are(n−x−1

k

)
(k + 1)! permutations of C. Obviously, there are (n − k − 2)! permutations for

the remaining n− k − 2 elements. So,

|A| =
n−x−1∑

k=0

(
n− x− 1

k

)
(k + 1)!(n− k − 2)!. (3.1)

Solving equation 3.1 yields

|A| = n!

x(x+ 1)
, (3.2)

as desired.

We first investigate the case that we are the first person to enter the restroom and can
choose any position.

Theorem 3.2. If the first person takes the outermost position, that is p1 = 1 or p1 = n,
then

E(Pavg(1)) =
n

n− 1
(Hn − 1)

where Hn is the nth harmonic number, defined by Hn =
∑n

k=1
1
k .

Proof. Obviously when p1 = 1 and p1 = n, the results would be the same. So, we
may assume that p1 = 1. Then, (p2, p3, . . . , pn) is a permutation of {2, 3, . . . , n}. Since
there is no urinal to the left of p1, (d2, d3, . . . , dn) is a permutation of {1, 2, . . . , n−1}. By
definition of P (1, t), it is equal to the minimum of {d2, d3, . . . , dt}. Although d2, d3, . . . , dt
is not necessarily decreasing, P (1, t) is decreasing.

Let Sk be the set of all permutations of {1, 2, . . . , k}, and ck ∈ Sk. Now, we define
f : Sn−1×{2, 3, . . . , n} → {1, 2, . . . , n} which maps (cn−1, t) to P (1, t) when the sequence
of the distance of the remaining n− 1 people is cn−1. Denote the sum of average privacy
of all permutations by S. Then,

S =
∑

cn−1∈Sn−1

1

n− 1

n∑

k=2

f(cn−1, k). (3.3)
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That is, S is the summation of all possible f(cn−1, t) divided by n − 1. Then, by
definition of expected value,

E(Pavg(1)) =
S

(n− 1)!
. (3.4)

Let Ax denotes the set of the all ordered pairs (cn−1, t) which satisfies the relation
f(cn−1, t) = x. Then, S can be alternatively written as

S =
1

n− 1

n−1∑

x=1

x|Ax|. (3.5)

Additionally, we let Bx be the set of all permutation of {1, 2, . . . , n} that has x as the
least element in the cycle containing n, and let cn−1 = (d2, d3, . . . , dn). We define gx as
a map from Ax × {2, 3, . . . , n} to Sn by

gx(cn−1, t) = (r1, r2, . . . , rn)

= [ ]n, d2, d3, . . . , dt

(
b1 b2 . . . bn−t

dt+1 dt+2 . . . dn

)
(3.6)

where (b1, b2, . . . , bt−1) is a permutation of {dt+1, dt+2, . . . , dn} such that b1 < b2 < · · · <
bt−1. Note that the matrix notation implies that rb1 = dt+1, rb2 = dt+2, . . . , rbn−t = dn.
Obviously, since the product of permutations is unique, (r1, r2, . . . , rn) is unique, gx is a
function.

Next, we will prove that gx is bijection from Ax onto Bx. Recall that (cn−1, t) ∈ Ax if
f(cn−1, t) = x, in other words, if x = min2≤j≤t dj . So the cycle [ ]n, d2, d3, . . . , dt has x
as its least element. Thus, gx(cn−1, t) ∈ Bx.

Let a1, a2 ∈ Sn−1 and t1, t2 ∈ {2, 3, . . . , n} such that gx(a1, t1) = gx(a2, t2). Let
gx(a1, t1) = (r11, r12, r13, . . . , r1n) and gx(a2, t2) = (r21, r22, r23, . . . , r2n). Since gx(a1, t1) =
gx(a2, t2), we have r1y = r2y for all 1 ≤ y ≤ n.

Let C1, C2 be cycles that contains n in gx(a1, t1), and gx(a2, t2), respectively. Clearly,
C1 and M1 are disjoint, as well as C2 and M2. Let M1,M2 be permutation matrices of
the remaining element of gx(a1, t1), and gx(a2, t2), respectively. If C1 ̸= C2, then there
must be maps n '→ r1n '→ · · · '→ r1y '→ m1 and n '→ r1n '→ · · · '→ r2y '→ m2 for which
m1 ̸= m2. This implies that r1r1y ̸= r2r2y . But since r1y = r2y, this implies that there is
some z such that r1z ̸= r2z, which is a contradiction. Therefore, C1 = C2, which implies
that the first t1 = t2 entries of the permutations a1 and a2 are the same.

Since C1 = C2, the set of elements of M1 must be equal to the set of elements of M2

as well. Similarly, if M1 ̸= M2, then there is some r1y ̸= r2y, which contradicts r1z = r2z
for all 1 ≤ y ≤ n. Thus, M1 = M2, and the last n − t1 entries of a1 is the same as that
of a2. We can then conclude that (a1, t1) = (a2, t2). Therefore, gx is one-to-one.

Lastly, let gx(α,β) = γ. Let C be the cycle containing n of γ, and since gx(α,β) is
defined, x is the least element in C, and C consists of t element. And let M be the
permutation matrix of the remaining n− t numbers of γ.

Let C = [ ]n, d2, d3, . . . , dt and M =

(
b1 b2 . . . bn−t

dt+1 dt+2 . . . dn

)
, for b1 < b2 < · · · <

bn−t. We can then see that α = (d2, d3, . . . , dn) and β = t. It is easy to see that
gx(α,β) = γ. Therefore, gx is an onto function, and therefore is a bijection.
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Since gx is a bijection, we get |Ax| = |Bx|. From Lemma 3.1, |Bx| = n!
x(x+1) , which we

can substitute into equation 3.5,

S =
1

n− 1

n−1∑

k=1

n!

k + 1
=

n!

n− 1
(Hn − 1). (3.7)

Combining equation 3.4 with equation 3.7, we finally arrive at

E(Pavg(1)) =
n

n− 1
(Hn − 1), (3.8)

when p1 = 1 or p1 = n.

From Theorem 3.2, we can see that as n → ∞, E(Pavg(1)) → log n. Next, we will
extend the result to the case that first person takes the m position.

Theorem 3.3. For 2 ≤ m ≤ n
2 , if the first person take the position m, that is p1 = m,

then

E(Pavg(1)) =
n

n− 1

(
Hn−1 −

1

2
Hm−1 −

n−m

n

)
.

Proof. The proof of this has similar approach to that of Theorem 3.2, but instead of
considering the distance d1,j , we consider the value vj , which is defined by

vj =

⎧
⎪⎨

⎪⎩

2dj − 1 ; pj < p1
2dj ; p1 < pj ≤ 2p1 − 1

pj − 1 ; otherwise.

(3.9)

For example, when p1 = 3 and n = 8, the value vj assigned to each position is as in
the following table.

pj 1 2 3 4 5 6 7 8
vj 3 1 2 4 5 6 7

We assign smaller numbers to the position with lower privacy. But because some values
of privacy can be achieved in two positions, we have to alternate that value vj from left
to right, in order to implement Lemma 3.1.

Let cn−1 = (v2, v3, . . . , vn), so cn−1 is a permutation of {1, 2, . . . , n− 1}. Let t be the
time, so 2 ≤ t ≤ n. In an analogous manner to Theorem 3.2, we can define a bijection
from the set of all (cn−1, t) that results in P (1, t) = x to the set of the permutations of
{1, 2, . . . , n} with x as its smallest element in the cycle containing n, which we denote by
Ax.

For privacy p = P (1, t) < m, there are two sets of Ax that correspond to the permu-
tation that gives that privacy, which are A2p−1 and A2p. For privacy p = P (1, t) ≥ m,
there is only one set of Ax that corresponds, i.e. Ap+m−1.

By Lemma 3.1, it holds that

|A2p−1|+ |A2p| =
n!

(2p− 1)(2p)
+

n!

(2p)(2p+ 1)
=

2 · n!
(2p− 1)(2p+ 1)

. (3.10)

And also,

|Ap+m−1| =
n!

(p+m− 1)(p+m)
. (3.11)
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Summing the privacy from all possible (cn−1, t), and divided by the number of all
possible variations, as

E(Pavg(1)) =

m−1∑

k=1

k(|A2k−1|+ |A2k|) +
n−m∑

k=m

k|Ak+m−1|

(n− 1)(n− 1)!
. (3.12)

We can rewrite the first term as a telescopic sum, and then add each term up as follow:

n!
m−1∑

k=1

(
k

2k − 1
− k

2k + 1

)
= n!

(
H2m−2 −

1

2
Hm−1 −

m− 1

2m− 1

)
. (3.13)

In a similar way, the second term is found to be equivalent to

n!
n−m∑

k=m

(
k

k +m− 1
− k

k +m

)
= n!

(
m

2m− 1
+Hn−1−H2m−1−

n−m

n

)
. (3.14)

Adding up equation 3.13 and equation 3.14, and divide it by (n− 1)(n− 1)!, we have
a nice result, that is

E(Pavg(1)) =
n

n− 1

(
Hn−1 −

1

2
Hm−1 −

n−m

n

)
. (3.15)

This concludes the proof.

By symmetry, we can find the expected privacy of p1 = m > n
2 simply by substituting

m with n+ 1−m.

Corollary 3.4. For n
2 ≤ m ≤ n− 1. If p1 = m, then

E(Pavg(1)) =
n

n− 1

(
Hn−1 −

1

2
Hn−m − m− 1

n

)
.

We can see that the value of E(Pavg(1)) reaches the maximum when m = 1 of m = n.
The function decreasing when m is close to n

2 . It is intuitive that as we got closer to the
middle urinal, our expected privacy would be reduced. This is proven as a consequence
of Theorem 3.3, in the case of the first person to enter the restroom. Next, we will show
that in the case that pt = 1, the value E(Pavg(t)) will decrease as t goes from 1 to n.

Lemma 3.5. The number of permutations of the set {1, 2, . . . , n} whose cycle containing

n has length ℓ and smallest element x is

(
n− x− 1

ℓ− 2

)
(ℓ− 1)!(n− ℓ)!.

Proof. See the proof of Lemma 3.1, particularly, equation 3.1. Substitute k with ℓ− 2.

Theorem 3.6. For t ≥ 2, if pt = 1 or pt = n, then

E(Pavg(t)) =
(n− t)!

(n− 1)!

n−t+1∑

x=1

(n+ tx− 2x)(n− x− 1)!

(x+ 1)(n− t− x+ 1)!
.
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Proof. The proof takes a similar approach to that of Theorem 3.2. We define an ordered
pair (cn−1, k), when cn−1 is the (n− 1)-tuple of the distances from the position pt = 1 or
pt = n to p1, p2, . . . , pk−1, pk+1, . . . , pn, which is a permutation of {1, 2, . . . , n − 1}, and
k ≥ t is the time at which we consider the privacy of At.

Let f(cn−1, k) be the minimum of the first k numbers in cn−1, i.e. the privacy at the
time k if order of the positions is described by cn−1. Let Ax denotes the set of (cn−1, k)
such that f(cn−1, k) = x, and Bx denotes the set of permutations of {1, 2, . . . , n} whose
cycle containing n has length of at least t + 1 and smallest element x. Then, there is a
bijection from Ax to Bx.

Consequently,

E(Pavg(t)) =
1

(n− t+ 1)(n− 1)!

n−t+1∑

x=1

(x|Bx|). (3.16)

By Lemma 3.5, we have
n−t+1∑

x=1

(x|Bx|) =
n−t+1∑

x=1

[
x

n−x+1∑

ℓ=t

(
n− x− 1

ℓ− 2

)
(ℓ− 1)!(n− ℓ)!

]
, (3.17)

which can be simplified to
n−t+1∑

x=1

(x|Bx|) =
n−t+1∑

x=1

(n+ tx− 2x)(n− t+ 1)(n− t)!(n− x− 1)!

(x+ 1)(n− t− x+ 1)!
. (3.18)

Thus, the expected average privacy of At is

E(Pavg(t)) =
(n− t)!

(n− 1)!

n−t+1∑

x=1

(n+ tx− 2x)(n− x− 1)!

(x+ 1)(n− t− x+ 1)!
, (3.19)

which completes the proof.

Obviously, the function in Theorem 3.6 is a decreasing function of t.

4. Numerical Simulations

The purpose of this section is to perform experiments and demonstrate our results
numerically. First, we simulate the situation in Theorem 3.2 by making the first person
pick urinal position 1 from n urinals. Then let other n− 1 people who afterwards arrive
after him randomly take any empty position until all the urinals are full. When each
person arrives, the privacy of the first person is calculated. After the last person arrives,
we calculate the average privacy of the first person. We repeat this simulation T times
and compute the empirical mean of the average privacy.

Table 1 presents the empirical means from simulations when T = 100, 500, 1000 and
5000, and compare it with the theoretical expected value from Theorem 3.2 for four
numbers of urinals n which are 10, 50, 100 and 500. We illustrate the result in the case
where n = 10 in Figure 1.

The experiment shows that empirical means approach the theoretically expected value
of average privacy when the number of iterations T increases. This confirms the result of
Theorem 3.2.

For Theorem 3.3, we consider the effect of the choice of the first person. Now, we
perform a similar simulation for each choice of the first person 1000 times, then compute
the empirical mean and the standard deviation of average privacy. As we expect, Table 2
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Table 1. Theoretical expected value and empirical mean of the average
privacy of A1 when p1 = 1.

Number of urinals (n) Empirical Theoretical
100 500 1000 5000

10 2.00 2.13 2.12 2.16 2.14
50 3.71 3.47 3.61 3.60 3.57
100 4.24 4.26 4.13 4.20 4.23
500 5.80 5.84 5.77 5.83 5.80

Figure 1. Theoretical expected value and empirical mean of the average
privacy in the case that n = 10 and p1 = 1.

and Figure 2 show that the empirical mean of privacy agrees to the one in Theorem 3.3.
We can conclude that the average privacy reaches the maximum when one chooses the
outermost urinal. Furthermore, this value will decrease when the choice is closer to the
middle one.

Ultimately, for Theorem 3.6, since the expected average privacy of the first and the last
person are the same, we simulate by fixing the position of At to be position 1, and then
randomise the positions of the other n − 1 people. After that, we calculate the privacy
of At at the time t, t+ 1, . . . , n, in order to compute the average privacy. We repeat the
simulation 1000 times for each time, and then compute empirical mean and the standard
deviation of average privacy as shown in Table 3 and Figure 3, along with theoretical
average privacy which can be computed by Theorem 3.6.
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Table 2. Theoretical expected value and empirical mean also with stan-
dard deviation of the average privacy for each choice of p1 in the case
that n = 10.

Urinal that the
first person took

Empirical SD Theoretical

1 2.13 0.78 2.14
2 1.69 0.60 1.70
3 1.55 0.46 1.53
4 1.45 0.39 1.46
5 1.45 0.36 1.43
6 1.42 0.35 1.43
7 1.46 0.39 1.46
8 1.5 0.45 1.53
9 1.71 0.60 1.70
10 2.17 0.77 2.14

Figure 2. Theoretical expected value and empirical mean of the average
privacy for each choice of p1 in the case that n = 10.

The result is as anticipated, the average privacy of the person who pick the first urinal
decreases as the time increases; so, the person who get into the restroom before tend to
have more privacy, on average, than the later ones.



Thai J. Math. Special Issue (2022) /T. Trakulthongchai et al.

Table 3. Theoretical expected value and empirical mean also with stan-
dard deviation of the average privacy for each time t when the first urinal
was picked in the case that n = 10.

Time that the first
urinal was picked (t)

Empirical SD Theoretical

2 2.16 0.78 2.14
3 1.79 0.67 1.79
4 1.54 0.57 1.57
5 1.38 0.46 1.41
6 1.28 0.4 1.29
7 1.2 0.32 1.2
8 1.14 0.25 1.12
9 1.06 0.16 1.06

Figure 3. Theoretical expected value and empirical mean also with
standard deviation of the average privacy for each time t when the first
urinal was picked in the case that n = 10.

5. Conclusion

The paper extends the urinal problem from considering privacy as a binary state to a
multi-state value. For the classic urinal problem, the expected time until the privacy was
disturbed was considered. In practice, privacy is not binary, one can feel more insecure
when the more people stand closer to him. So, instead of computing the expected time
until the privacy was disturbed, we focus on the expected average privacy of his choice
of position. We found that the most sided urinals are the best choice. Position 1 and
n create the maximum expected average privacy. We obtained the explicit formula of
the expected average privacy, which is a function of the Harmonic series. The formula
shows that the expected average privacy decreases when the chosen position approaches
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the center. So we suggest one to choose the position of one’s urinal as far from the center
as much as possible for the sake of privacy. Our suggestion agrees with the result of [1].

Many variations and generalisations are left to be studied regarding this problem. For
instance, it would be interesting to find the solution and convergence of the analogue
of this problem in the nth-dimensional space. We also conjecture that E(Pavg(t)) is
optimised in the sides and decresing as we get closer to the center regardless of the
distance function d.
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