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Abstract It is known that the independence of two categorical variables can be analyzed by using the

Chi-squared test. However, when some information in the original data was incomplete, it is not clear

how to adjust it in the calculation. Rather than throwing away those uncertain data, it is recommended

to include such observations. This issue has been classically addressed by using the Expectation and

Maximization (EM) algorithm. In this paper, we proposed two alternative ways to tackle this problem.

The first method, adapting the E-step in the EM algorithm, was derived from relaxing some restrictions

in the original approach. The second method was obtained from the fact that in some cases the true level

of uncertain data should be completely random and not depend on available data, therefore uncertain

observations are taken into the calculation by the discrete uniform distribution. Finally, we investigated

the performance of all methods through simulations. The simulations for the case of 2 × 2 contingency

table were performed. The real data examples, such as general social survey and victimization status,

were also presented to illustrates pros and cons of each method.
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1. Introduction

The two-way contingency table is the most basic way to summarize results from two
categorical variables obtained from a survey. The summarized data in the table is called
complete or certain if there is no missing answer in the survey, i.e., respondents answer
all questions without skipping them. If the data is complete, the independence of those
two categorical variables can be checked by using the Chi-squared test. However, it is
possible that people who answered the survey could leave some questions blank due to
the uncomfortableness of answering some questions or it is the case that the unanswered
questions are not applicable. This leads to the incomplete or uncertain contingency table
where information obtained on one or more of the categorical variables is missing. The
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Chi-squared test of independence cannot be applied until the missing data problem is
solved.

Including missing or uncertain observations in the analysis is quite challenging. In
general, researchers can throw away incomplete data but it is not recommended on some
types of data since it may cause the losing of information. If the ratio between missing
and complete data is high, deleting all uncertain observations will not be appropriate. It
was mentioned in [1] that if both categorical variables are missing 30% of their observa-
tions and missingness happens independently for variables, then about half (51%) of the
sample is likely to be lost. Rather than throwing away such incomplete data, statisticians
have developed tools to deal with incomplete data, including how to keep them in the
analysis. In 2005, the maximum likelihood estimation procedures for an incomplete two-
way contingency table were revised and written formally in Ehlers dissertation [2]. Three
years later, Takai and Kano extended original results to the case of a 2 × 2 contingency
table with nonignorable responses [3]. Later in 2010, Petitrenaud introduced an idea to
adjust uncertain data in a 2 × 2 contingency table by using a frequentist method and his
belief function [4]. These pieces of evidence indicate that there were many attempts for
improving the imputation of incomplete two-way contingency tables.

A classical way to get around the uncertain data problem in the contingency table is
using the Expectation and Maximization (EM) algorithm. One drawback of this classical
EM algorithm is that, for the process of replacing missing data, it only uses the observed
data that is restricted to one level that the observation belongs to. For example, suppose
we have two questions on the survey. The first one is whether the respondent has a cat
and the second question asks if he or she favors the death penalty. For those people who
answered that they have a cat but didn’t respond to their decisions on the death penalty,
their decisions on the death penalty will be imputed back in the calculation by using a
ratio from a group of respondents that have a cat. Such a restriction does not make sense
if we believe that opinions on the death penalty do not depend on having a cat.

Based on the simple idea on the previous paragraph, we propose two different ways
to impute the incomplete data in the contingency table and compare it to the classical
EM method. In section 2, we will first discuss the EM algorithm and how it applies to
the context of independence tests of two categorical variables. Then section 3 defines
the two proposed methods. The simulations for the case of 2 × 2 contingency table
were performed and the result will be presented in section 4. Real data examples will be
discussed in section 5 and the conclusion and discussion will be mentioned in section 6.

2. The EM Algorithm on the Chi-Squared Test of Independence

The EM (Expectation and Maximization) algorithm was introduced in a classic 1977
paper by Arthur Dempster, Nan Laird and Donald Rubin [5]. Basically, it is the algorithm
that is used to estimate parameters when the data is incomplete or has missing values
due to limitations of the observation process. One motivation of the algorithm is to fix an
issue of intractable equations when using the maximum-likelihood estimation approach.

2.1. Maximum-Likelihood

The method of maximum likelihood is, by far, the most popular technique for deriving
estimators [6]. Suppose we have an iid sample X1, X2, . . . , Xn from a population with
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pdf or pmf f(x; θ), the likelihood function L(θ;x) is defined by

L(θ;x) = f(x; θ) =
n∏

i=1

f(xi; θ).

It can be thought of as a function of parameters θ where the data is fixed. The parame
ter that maximizes L(θ;x) is called the maximum likelihood estimator (MLE), denoted

by θ̂MLE. Mathematically,

θ̂MLE = argmax
θ

L(θ;x).

In most cases, especially when differentiation is to be used for optimization, it is easier
to work with the logarithm of likelihood than it is to work with the likelihood. Using
log-likelihood function is valid because the logarithmic function is increasing on (0,∞).
Depending on the form of the log-likelihood, this optimization problem can be easy or
difficult. For example, if there is a sum of terms inside the logarithm function, then
deriving the explicit form of MLE would be intractable. The EM algorithm was developed
to deal with this issue under some certain assumptions.

2.2. Mathematical Framework for the EM Algorithm

Assume the data X = (X1, . . . , Xn) is observed and generated by some distribution.
Our goal is estimating parameter θ given the data. Suppose there is a missing or hidden
dataY so that we callX incomplete data. Assume Z = (X,Y) is a complete data set. The
EM-algorithm is useful when the incomplete likelihood function L(θ;x) is intractable and
working with the complete likelihood function L(θ; z) is much easier. By the conditional
probability, the complete data density function is

f(z; θ) = f(x, y; θ) = f(x; θ) · f(y | x; θ).
Taking logarithm on both sides yields

log f(z; θ) = log [f(x; θ) · f(y | x; θ)] = log f(x; θ) + log f(y | x; θ)
which means

logL(θ; z) = logL(θ;x) + log f(y | x; θ)
and therefore

logL(θ;x) = logL(θ; z)− log f(y | x; θ).
Now suppose that maximizing logL(θ;x) is difficult or does not have a closed form.
Instead, we work with logL(θ; z). Since Y is unknown or hidden, the complete log-
likelihood function logL(θ; z) can be thought as a random variable where the random
part is Y and constant terms are X and θ. Taking expectation over Y given the observed
data X and the current parameter estimates θ(t) yields

E
[
logL(θ;x) | x, θ(t)

]
= E

[
logL(θ; z) | x, θ(t)

]
− E

[
log f(y | x; θ) | x, θ(t)

]
.

The left handed side is the incomplete log-likelihood function which does not depend on
Y so we have

logL(θ;x) = E
[
logL(θ; z) | x, θ(t)

]
− E

[
log f(y | x; θ) | x, θ(t)

]
.

The previous equation holds for any value of θ so

logL(θ(t);x) = E
[
logL(θ(t); z) | x, θ(t)

]
− E

[
log f(y | x; θ(t)) | x, θ(t)

]
.
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Gibb’s inequality [7] guarantees that

E
[
log f(y | x; θ) | x, θ(t)

]
≥ E

[
log f(y | x; θ(t)) | x, θ(t)

]

which means

logL(θ;x)− logL(θ(t);x) ≥ E
[
logL(θ; z) | x, θ(t)

]
− E

[
logL(θ(t); z) | x, θ(t)

]

The last inequality indicates that choosing θ to improve E
[
logL(θ; z) | x, θ(t)

]
beyond

E
[
logL(θ(t); z) | x, θ(t)

]
will result in increasing the incomplete log-likelihood function

as well and that is why the EM algorithm works. Note that the main part of the EM
algorithm is evaluating and maximizing E

[
logL(θ; z) | x, θ(t)

]
. Define

Q(θ, θ(t)) := E
[
logL(θ; z) | x, θ(t)

]
.

The first θ in Q(θ, θ(t)) refers to the parameters that will be optimized to maximize the
log-likelihood while the second θ(t) refers to the parameters that we use to evaluate the
expectation. The EM algorithm consists of an Expectation step (E-step) followed by a
Maximization step (M-step) as follows:

E-step : Compute Q(θ, θ(t)) where

Q(θ, θ(t)) = E
[
logL(θ; z) | x, θ(t)

]

M-step : Find θ(t+1) such that

θ(t+1) = argmax
θ

Q(θ, θ(t))

The two steps are repeated as necessary. Each iteration is guarantee to increase the
log-likelihood and the algorithm is guaranteed to converge to a local maximum of the
likelihood function.

Note that, in the case of the exponential family, The E-step reduces to computing the
conditional expectations of the complete data sufficient statistics given the observed data.
After that, the conditional expectations of the sufficient statistics computed in the E-step
can be directly substituted in the M-step to obtain the next iteration [8].

2.3. Applying the EM Algorithm to the Chi-Squared Test

Consider two categorical variables, A and B, where A consists of m levels and B has
n levels. For each i ∈ {1, 2, 3, . . . ,m} and j ∈ {1, 2, 3, . . . , n}, we define the parameter
of interest πij , the probability that an observation falls in cell (i, j) in the corresponding
m× n contingency table. Observe that

∑∑
πij = 1.

In the classical test of independence with complete data, we draw a sample of size
N and count the number of observations falling in each cell. Let Yij be the count in
the cell (i, j). Then the vector Y = (Y11, Y12, . . . , Ymn) is multinomially distributed with
parameter n and π = (π11,π12, . . . ,πmn). Our target parameter πij can be estimated by
using the ratio of the number of observed objects in the cell (i, j) and the total count.
That is, if the observed count is (y11, y12, . . . , ymn) where y11 + y12 + . . .+ ymn = N then

π̂ij =
yij
N

.

For the complete data, this estimator is a MLE of πij . Without any incomplete value,
a test of independence of two variables A and B is utilized in the standard procedure,
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i.e., calculating the chi-squared statistic from the m× n contingency table and making a
conclusion based on the corresponding p-value.

For the analysis with the existence of incomplete data, we partition the sample into
three parts denoted byM0,MA andMB respectively. TheM0 part stands for observations
having both A and B fully observed, i.e., the data is complete on part M0. We define

Y M0 := (Y11, Y12, . . . , Ymn).

On the other hand, the MA part includes those having only B observed but not A so the
level of B is known and the level of A is unknown. Similarly, MB part refers to those
having only A observed but not B. For the MA part, we define the marginal total Y+j =∑m

i=1 Yij and, similarly for the MB part, we define the marginal totals Yi+ =
∑n

j=1 Yij .
The random vectors representing the counts for parts MA and MB are

Y MA := (Y+1, Y+2, . . . , Y+n) and Y MB := (Y1+, Y2+, . . . , Ym+).

The uncertain part in the data is Y MA and Y MB . Note that the elements having both A
and B unobserved are excluded in the analysis.

The idea of the EM algorithm is to impute the incomplete data from parts MA and
MB back into part M0 and reestimate the parameter πij many times. We first set up the

parameter π(r)
ij , an estimate of πij in the r-step of the algorithm. To start the algorithm,

we first give the initial value of πij called π(0)
ij and then, in the E-step, we calculate the

expectation of the count of the cell (i, j) by

E(Yij | π(r)
ij ) = yij︸︷︷︸

complete part

+ y+j

(
π(r)
ij

π(r)
+j

)

︸ ︷︷ ︸
incomplete part (MA)

+ yi+

(
π(r)
ij

π(r)
i+

)

︸ ︷︷ ︸
incomplete part (MB)

Observe that, in the formula above, the yij is a count from the complete part. The second
piece comes from multiplying the total number of incomplete observations in the MA part,

called y+j , with the proportion π(r)
ij /π(r)

+j obtained from a current estimate restricted on
the information that observations belong in the level j. The third piece is defined in the

same fashion. In the M-step, π(r+1)
ij is computed by substituting the results from the

E-step. With the help from MLE, we have

π(r+1)
ij =

1

N

(
E(Yij | π(r)

ij )
)

Then we repeat the process of the E-step and M-step until the parameters πij converge.
The chart of the algorithm is illustrated in Figure 1. If we multiply the final estimate
of πij to the total number of observations, including complete and incomplete data, we
will get the estimated number of observations in each cell. These values are carried to
the Chi-squared test. The independence of two categorical is then concluded from the
p-value of the Chi-squared test.

3. Proposed Methods

In this section, we propose two alternative ways to estimate the target parameter πij .
Section 3.1 describes the method which is done by adapting a formula in the E-step
in the EM algorithm while section 3.2 explains the method that avoids the iteration or



Algorithms for the Test of Independence of Two Categorical Variables over Uncertain Data

Figure 1. Classical EM Algorithm for the Chi-squared Test of Independence

repeating algorithm, i.e., uncertain observations are taken into the calculation by the
discrete uniform distribution.

3.1. Adapted EM Algorithm

Recall that in the classical EM algorithm, we calculate E(Yij | π(r)
ij ) in the E-step by

splitting into three parts. Our goal is to fix the derivation in last two parts MA and MB .
When the observations level is unknown in A but known in another categorical variable
B, the original EM algorithm is utilized by using the estimated ratio from complete
data restricted to the level of variable B that the observation belongs. That is why the

proportion is of the form π(r)
ij /π(r)

+j . Here, we remove such a restriction so the estimated
ratio is basically computed from the entire complete data, not just the level of variable
B that the observation belongs. Repeating this idea on the MA and MB parts yields the
formula in the E-step as follows:

E(Yij | π(r)
ij ) = yij︸︷︷︸

complete part

+ y+j

(∑n
j=1 π

(r)
ij

∑n
j=1 π

(r)
+j

)

︸ ︷︷ ︸
incomplete part (MA)

+ yi+

(∑m
i=1 π

(r)
ij

∑m
i=1 π

(r)
i+

)

︸ ︷︷ ︸
incomplete part (MB)

= yij + y+j

n∑

j=1

π(r)
ij + yi+

m∑

i=1

π(r)
ij

= yij + y+jπ
(r)
i+ + yi+π

(r)
+j

Now, in the M-step, π(r+1)
ij is computed by substituting the results from the E-step.

With the help from MLE, we have

π(r+1)
ij =

1

N

(
E(Yij | π(r)

ij )
)

Figure 2 shows the flowchart of the process. We repeat the process of the E-step and
M-step multiple times until the parameters πij are convergent. The Chi-squared test of
independence can be applied after the adapted EM algorithm is done.
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Figure 2. Adapted EM Algorithm for the Chi-squared Test of Independence

3.2. Using the Discrete Uniform Distribution

The second proposed method was obtained from the fact that in some cases the true
level of uncertain data should be completely random and not depend on available data,
therefore uncertain observations are taken into the calculation by the discrete uniform
distribution. For example, consider two questions on the survey. The first question asks
if the answerer has a congenital disease. The second question asks on the religion that the
respondent believes. Now suppose that there is an incomplete data because the respondent
is not comfortable enough to answer what religion she belongs to but she answered that
she doesn’t have a congenital disease. If we use the EM algorithm, such an observation
will be imputed back to the analysis by guessing the religion based on the proportion
of congenital disease from the survey. This doesn’t make sense in practice because the
religion shouldn’t be assumed to be proportional with other categorical variable. We then
fix this issue by assigning such an observation back in the analysis by using the discrete
uniform distribution. That is, we compute the updated total count by

Yij = yij︸︷︷︸
complete part

+ y+j

(
1

m

)

︸ ︷︷ ︸
incomplete part (MA)

+ yi+

(
1

n

)

︸ ︷︷ ︸
incomplete part (MB)

Recall that m and n are numbers of levels so this is actually not the repeating algorithm.
Once we obtain the updated Yij , the parameter of interest is calculated by π̂ij = yij/N
as in the classical approach using the MLE.

4. Simulations

In this section, we use a simulation study to compare the performance of proposed
two methods and the classical EM Algorithm. We consider nine models with different
parameters as shown in Table 1. For each model, the ratio between the complete and
incomplete data (C:I) is given. Models 1, 2 and 3 represent the cases of having more
complete observations while models 4, 5 and 6 represent the cases of having complete
and incomplete data on a par. The cases of having more incomplete data are demon-
strated in models 7, 8 and 9. Another input of the simulation is the target parameter
πij . We run a simulation study when m = 2 and n = 2 so there are four parameters
in total which are π11,π12,π21 and π22. Three variations of parameters are evaluated.
First, models 1, 4 and 7 use (π11,π12,π21,π22) = (0.25, 0.25, 0.25, 0.25), indicating the
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cases of equal parameters. The slight and strong distinctions in parameters are illus-
trated in the remaining six models by using (π11,π12,π21,π22) = (0.10, 0.20, 0.30, 0.40)
and (π11,π12,π21,π22) = (0.05, 0.40, 0.05, 0.50), respectively.

Table 1. Parameters Setting on Nine Models.

Ratio C:I Parameters

Model 1 75 : 25 (π11,π12,π21,π22) = (0.25, 0.25, 0.25, 0.25)

Model 2 75 : 25 (π11,π12,π21,π22) = (0.10, 0.20, 0.30, 0.40)

Model 3 75 : 25 (π11,π12,π21,π22) = (0.05, 0.40, 0.05, 0.50)

Model 4 50 : 50 (π11,π12,π21,π22) = (0.25, 0.25, 0.25, 0.25)

Model 5 50 : 50 (π11,π12,π21,π22) = (0.10, 0.20, 0.30, 0.40)

Model 6 50 : 50 (π11,π12,π21,π22) = (0.05, 0.40, 0.05, 0.50)

Model 7 25 : 75 (π11,π12,π21,π22) = (0.25, 0.25, 0.25, 0.25)

Model 8 25 : 75 (π11,π12,π21,π22) = (0.10, 0.20, 0.30, 0.40)

Model 9 25 : 75 (π11,π12,π21,π22) = (0.05, 0.40, 0.05, 0.50)

For each model we first generate dataset of sample size 1,000. If the observation is
complete, it will be taken into the cell (i, j) with probability πij . If the observation is not
complete, it will be taken into either MA or MB parts with equal probability. Then it
will be assigned to the cell by using the marginal probability distribution obtained from
parameters πij . Once the dataset is created, we apply the classical EM algorithm, the
adapted EM algorithm and the uniform distribution approach as described in section 3.
We then repeat creating dataset and apply three methods 500 times and compare the
performance of each method by using the mean square error (MSE). Table 2 shows MSE
of the parameter estimates from all methods for nine models, respectively. The lowest
MSE of each parameter is marked by the star sign.

5. Real Data Examples

In this section, two scenarios are provided to illustrate the implementation of the
methodology proposed in this article.

5.1. the General Social Survey Data

The General Social Survey (GSS) data is a major survey that has tracked American
demographics, characteristics and views on social and cultural issues since the 1970s.
The dataset contains 2,765 observations on about a dozen variables. The full description
of the dataset can be found in [9]. One of the questions asked whether the respondent
believed that permit is required to buy a gun (GunLaw) and also one question asked to
the participant was whether he or she favored or opposed the death penalty for murder
(DeathPenalty).

There are a lot of incomplete data in this survey. Out of 2,765 observations, we found
that 1,421 respondent did not answer both GunLaw and DeathPenalty questions so those
observations are excluded from the analysis. Out of the remaining observations, 428
participant answered the DeathPenalty question but not on the GunLaw question and
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Table 2. Mean Square Errors for Estimators across Nine Models.

Model Method π11 π12 π21 π22

EM Algorithm 0.00025 0.00023 0.00021 0.00022

1 Adapted EM 0.00020 0.00020 0.00018 0.00019

Uniform Dist 0.00017* 0.00016* 0.00015* 0.00016*

EM Algorithm 0.00011 0.00018* 0.00022* 0.00025*

2 Adapted EM 0.00010* 0.00018 0.00023 0.00026

Uniform Dist 0.00043 0.00016 0.00020 0.00049

EM Algorithm 0.00006 0.00025 0.00006 0.00026

3 Adapted EM 0.00004* 0.00025* 0.00005* 0.00025*

Uniform Dist 0.00053 0.00044 0.00086 0.00135

EM Algorithm 0.00030 0.00031 0.00029 0.00029

4 Adapted EM 0.00020 0.00021 0.00020 0.00021

Uniform Dist 0.00013* 0.00013* 0.00012* 0.00013*

EM Algorithm 0.00016 0.00025 0.00030 0.00036*

5 Adapted EM 0.00019 0.00029 0.00030 0.00037

Uniform Dist 0.00015* 0.00024* 0.00027* 0.00157

EM Algorithm 0.00009 0.00031 0.00008 0.00030

6 Adapted EM 0.00005* 0.00028* 0.00005* 0.00029*

Uniform Dist 0.00194 0.00106 0.00313 0.00484

EM Algorithm 0.00045 0.00044 0.00044 0.00043

7 Adapted EM 0.00022 0.00022 0.00022 0.00022

Uniform Dist 0.00010* 0.00010* 0.00009* 0.00010*

EM Algorithm 0.00028* 0.00034* 0.00044* 0.00052*

8 Adapted EM 0.00032 0.00038 0.00048 0.00053

Uniform Dist 0.00324 0.00043 0.00045 0.00326

EM Algorithm 0.00013 0.00044 0.00013 0.00047

9 Adapted EM 0.00005* 0.00036* 0.00007* 0.00040*

Uniform Dist 0.00443 0.00227 0.00723 0.01099

36 respondent answered the GunLaw question but left the DeathPenalty question empty.
Our goal is to use the classical method and the two proposed methods to this dataset.
First, we tabulate the 2 × 2 contingency table as shown in Table 3. The fully classified
data were used to determine an initial value for the algorithm. That is,

π(0)
ij =

(
494

880
,
130

880
,
212

880
,
44

880

)
= (0.5614, 0.1477, 0.2409, 0.0500)
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Table 3. Contingency Table for GunLaw and DeathPenalty Variables

Favor GunLaw Oppose GunLaw Missing

Favor DeathPenalty 494 130 275

Oppose DeathPenalty 212 44 153

Missing 31 5

We then perform the classical EM algorithm, adapted EM algorithm and discrete
uniform distribution approach. Table 4 shows the estimated parameters and the p-value
from the Chi-squared test after applying each method.

Table 4. Estimated Parameters on GSS Example

Method π11 π12 π21 π22 p-value

Ignore Uncertain Data 0.5614 0.1477 0.2409 0.0500 0.2175

EM Algorithm 0.5456 0.1416 0.2597 0.0530 0.1186

Adapted EM 0.5480 0.1393 0.2565 0.0562 0.3228

Uniform Dist 0.4814 0.2009 0.2262 0.0915 0.8107

5.2. Victimization Status Data

We consider the data obtained through the National Crime Survey conducted by the
United States Bureau of the Census. This is a classic example provided in [10]. In
this study, surveys about victimization status were done twice. At the first time stamp,
housing unit occupants were interviewed to determine if they had been victimized by
crime. Then, six months after, they were asked again on the same question. The result
is shown in Table 5.

Table 5. Contingency Table on Victimization Status

Crime-free on 2nd visit Victims on 2nd visit Missing

Crime-free on 1nd visit 392 55 33

Victims on 1nd visit 76 38 9

Missing 31 7

As described in the previous subsection, the fully classified data were used to determine
an initial value for the algorithm. That is,

π(0)
ij =

(
392

561
,
55

561
,
76

561
,
38

561

)
= (0.6988, 0.0980, 0.1355, 0.0677)

We then perform the classical EM algorithm, adapted EM algorithm and discrete uniform
distribution approach. Table 6 shows the estimated parameters and the p-value from the
Chi-squared test after applying each method.
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Table 6. Estimated Parameters on Victimization Status Example

Method π11 π12 π21 π22 p-value

Ignore Uncertain Data 0.6988 0.0980 0.1355 0.0677 8.36 ×10−9

EM Algorithm 0.6971 0.0986 0.1358 0.0685 7.47 ×10−9

Adapted EM 0.6929 0.1031 0.1401 0.0639 5.94 ×10−7

Uniform Dist 0.6615 0.1170 0.1498 0.0718 3.08 ×10−6

6. Conclusion and Discussion

In this study, we proposed two new methods to impute or return the incomplete data
in the analysis of contingency table. Although these two proposed methods are just minor
changes in the formula of the E-step in the EM algorithm but they give few interesting
insights. Based on our simulation in section 4, the algorithm with the best performance,
in terms of MSE, can be summarized in Table 7.

Table 7. Summary of Best Method for Nine Models

Ratio C:I Variation in Parameters Best Method

Model 1 75 : 25 None Uniform Dist

Model 2 75 : 25 Weak Classical EM

Model 3 75 : 25 Strong Adapted EM

Model 4 50 : 50 None Uniform Dist

Model 5 50 : 50 Weak Uniform Dist

Model 6 50 : 50 Strong Adapted EM

Model 7 25 : 75 None Uniform Dist

Model 8 25 : 75 Weak Classical EM

Model 9 25 : 75 Strong Adapted EM

We can see that the adapted EM algorithm, proposed in section 3.1, performs best when
dealing with the strong variation in parameters, no matter what the ratio of the complete
and incomplete data is. This method should be recommended when working with 2 × 2
contingency tables with an expectation of very distinct parameters. On the other hand,
the uniform distribution approach performs better than others when there is no variation
in parameters. This gives no surprise as it should be from the definition of the discrete
uniform distribution. When there is a weak sign of variation in parameters, the classical
EM algorithm works best, except the case that the ratio of the complete and incomplete
data is 1:1. If there is an approximately equal portion of complete and incomplete data
and weak sign of variation in parameters, the uniform distribution approach is preferred
as shown in the result from model 5.

For the real data examples in section 5, the pattern of the variation in parameters
is strong and the ratio of complete and incomplete data is close to 75 : 25 so model 3
would be the best fit to both datasets. We expect the adapted EM to work better than
other approaches. The p-value obtained from adapted EM is more reliable compared
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to classical EM and uniform distribution approaches. For GSS example, the p-value is
0.3228 so we fail to reject the null hypothesis and conclude that there is no association
between GunLaw and DeathPenalty variables. For the victimization status example, the
p-value is 5.94 × 10−7 which leads to a conclusion of rejecting the null hypothesis. This
means that we conclude the independence between the victimization status on the first
visit and on the second visit.

From these examples, we can conclude clearly that different methods in imputing
missing data could end up with very distinct p-values. This could potentially lead to the
different conclusions, either reject the null hypothesis or fail to reject the null hypothesis.
Thus, researchers should be aware and careful to pick the most appropriate method. Table
7 from the simulation is an initial guideline. Note that there is no limitation in using each
method.

Lastly, we wrap up with an observation from both real data examples. From three
methods, ignoring the missing data, classical EM algorithm and adapted EM algorithm,
a slight difference in the estimate of parameters πij was detected. However, the results for
the uniform distribution approach are very different from others. The uniform distribution
approach seems to be off on these examples which is no surprise as we have an indication
from Table 3 and Table 5 that the population parameters should have at least about
moderate to strong variation.
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