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Abstract While Lagrange multipliers are widely used to solve constrained optimization problems, their

introduction in mathematical analysis is at a fairly advanced level coupled with the implicit function

theorem, and then only for equality constraints. The case with inequality constraints tends to be left to

the study of convex optimization, in which context the only allowed equality conditions are linear (called

affine when there is a constant term). To gain rigor, one can lean on the equality constrained case treated

in math courses, by use of slack variables. In both cases above, usually multivariate calculus and linear

algebra are prerequisites, but then in practical applications it is recognized (with some exceptions) that

the various assumptions and conditions cannot be checked ahead of just trying out to see if it works.

We pursue the practical results here with minimal demands on background, and in particular the text

includes no mention of a gradient and no differentiability is required – this is a zeroth-order approach.

For this, we begin with inequality constraints, and then use the results to address equality constraints.

The statements here take a simple form: If you can minimize the Lagrangian, then, and it is this fact

that helps avoid complications with assumptions and conditions (that were unverifiable anyway, before

trying out if it works). The proposed approach allows introducing the Lagrange multipliers in a rigorous

manner at an early stage to mathematics, physics, or engineering students, or to non-mathematicians not

eager to study advanced multivariate calculus.
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1. Introduction

In the following we follow a derivative-free zeroth-order approach to Lagrange mul-
tipliers for inequality constrained problems, effectively duplicating some of the results
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published by Everett in the 1960s [1], although not following that reference faithfully but
only using its approach. That prior work seems to have been forgotten, and has not in-
fluenced teaching or textbooks much as regards the presentation of Lagrange multipliers.
We then deviate further from that work and address the equality constrained case, also in
a derivative-free manner. This approach makes it possible to introduce some constrained
optimization tools with minimal demands on mathematical background. For convenience
and clarity we name the problems as follows:

P1: Minimize f(x) + g(x).
P2: Minimize f(x) subject to g(x) ≤ gmax.
P3: Minimize f(x) subject to gi(x) ≤ gi(x∗) for all i = 1, . . . ,m.
P4: Minimize f(x) subject to

gi(x) ≤ gi(x
∗) for ui > 0; and gj(x) ≥ gj(x

∗) for uj < 0.

P5: Minimize f(x) subject to gi(x) ≤ ci for all i = 1, . . . ,m.
P6: Minimize f(x) subject to hk(x) = ck for all k.
P7: Minimize f(x) subject to gi(x) ≤ 0 for all i = 1, . . . ,m.

2. The approach

2.1. On minimizing sums of functions

Given real valued functions f and g defined in a shared domain that can be anything,
even discrete, consider minimizing their sum f(x) + g(x), and assume the least value is
achieved at x∗. Then the two functions cannot at the same time get values less than those
at x∗ – otherwise their sum would also be less than the minimum found.

Let us visualize what is happening. For the sake of discussion, let the minimum of the
sum equal c. Then all (f, g) value pairs are above and to the right of the f + g = c line in
a plot with axes for f and g, with x∗ giving a point on this line of slope −1. Restricting
g to values only up to this point, g(x) ≤ g(x∗), makes sure that points above and to right
of the line will not come below f(x∗). In other words

x∗ minimizes f(x) subject to g(x) ≤ g(x∗).

Alternatively, appealing to symmetry, we get the reciprocal statement (a case of
Tikhonov reciprocity) that

x∗ minimizes g(x) subject to f(x) ≤ f(x∗).

So we have the following Lemma.

Lemma 2.1. If x∗ minimizes f(x) + g(x), then it also minimizes f(x) among those x
satisfying g(x) ≤ g(x∗).

Proof. Assume that x∗ solves P1 so for all x

f(x) + g(x) ≥ f(x∗) + g(x∗).

Then by using the constraint on g we have

f(x) ≥ f(x∗) + g(x∗)− g(x) ≥ f(x∗)

proving the assertion.
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This means that if we can solve the unconstrained problem P1, we also gain a solution
to the constrained problem P2, for the specific case gmax := g(x∗). This is significant
because P1 is typically easier to solve than P2.

However, the reverse does not hold: solutions to P2 need not be solutions to P1, as
demonstrated in this example.

Example 2.2. Suppose f gets the constant value 1, while g gets values from 0 to 10.
Then the minimum of their sum is 1, and this requires that g(x∗) = 0. In contrast,
f(x) = 1 is constantly at its minimum, and ANY x with 0 ≤ g(x) ≤ 10 would minimize
f , so we clearly can have solutions to P2 not found by solving P1.

Now we note that if, in 2.1, we substitute for g(·) its scaled version ag(·) with a > 0,
this should affect the solution x∗ and through it the constraint, but the scaling cancels
out from the latter. In other words, gmax := g(x∗) can be manipulated by adjusting the
coefficient a.

Let us now examine the effects of such scaling. The monotonic effects of the weight,
and its role as a ‘shadow price’ in terminology used by economists, are the topics of the
following theorem.

Theorem 2.3. (Shadow prices) Let 0 ≤ a < b and let x∗ minimize f(x) + ag(x) while
y∗ minimizes f(y) + bg(y). Then g(y∗) ≤ g(x∗) , f(x∗) ≤ f(y∗) , and

0 ≤ a[g(x∗)− g(y∗)] ≤ f(y∗)− f(x∗) ≤ b[g(x∗)− g(y∗)].

Proof. We use the fact that x∗ and y∗ are minimizers, put on the left sides of these
inequalities:

f(x∗) + ag(x∗) ≤ f(y∗) + ag(y∗)

and
f(y∗) + bg(y∗) ≤ f(x∗) + bg(x∗).

Adding these, canceling terms, and moving everything on one side gives

(a− b)[g(x∗)− g(y∗)] ≤ 0.

Noting the a−b < 0 immediately gives the monotonic response of g-value at the optimum.
Rearranging the two inequalities and then joining them gives

a[g(x∗)− g(y∗)] ≤ f(y∗)− f(x∗) ≤ b[g(x∗)− g(y∗)]

This also shows the monotonic response claimed for f , since the bounds on left and right
are both nonnegative.

In Theorem 2.3, the first two inequalities are intuitively easy to accept and can be
perceived in a practical way: b gives more weight on g than a does, so g gets better
minimized with b than with a. Conversely minimizing f suffers more when g is given
more weight. These results show that the value component responses to minimizing a
weighted sum behave monotonically with relative weighing of two summands. However,
these component responses are in opposite directions, so we have no result on whether
the minimum of the weighted sum increases or decreases except if we know that g has
a fixed sign at these optima. For example, if g ≤ 0, then the weighted sum decreases
as multiplier a is changed to the larger b. Its minimum must also decrease (perhaps not
strictly, but it certainly does not increase). This is among the reasons to put an inequality
constrained problem to the form P7, with all bounds at zero.
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The more complicated last inequality shows that the two weights are prices paid for
change in g, to obtain a change in f in other words, conversion factors. Note that each
quantity in brackets is nonnegative. If there is no change in g from one optimal point to
the other, then there is no change in f either. When there are changes we can divide to
get

a ≤ [f(y∗)− f(x∗)]/[g(x∗)− g(y∗)] ≤ b.

In the limit this difference quotient could turn into a derivative, as a and b converge to
a single Lagrange multiplier representing a sharp price that f should pay for unit change
in g provided that the assumed optima exist.

Obviously Lemma 2.1 holds for longer sums with more terms. We rephrase (omitting
multipliers to begin with) a theorem given by Everett in 1963 [1] as follows.

Theorem 2.4. (Everett, 1963) Let x∗ minimize the sum L(x) = f(x) +
∑

i gi(x)
Then x∗ also solves P3.

In the proof of 2.1 one only needs to substitute for g the sum term above, and express
the difference of sums as the sum of (positive) differences.

The strength of this fairly elementary observation is in the fact that it is amazingly
general. We need not specify what kind of creatures the x are, or what types of functions
we have this theorem is easy to recall precisely because it places no assumptions. Actu-
ally, the assumption is hidden, requiring that you can minimize L(x), which in the next
corollary takes the common form of a Lagrangian this is why we denote it with L.

An engineer would want the units to match before taking a sum and is familiar with
conversion factors, while an economist tends to look at costs and uses prices to compare
items on an equal footing. So now we get to the multipliers.

Corollary 2.5. Let ui be real numbers and let x∗ minimize the weighted sum L(x) =
f(x) +

∑
i uigi(x). Then x∗ also solves P4.

All one needs to note is that a negative multiplier turns an inequality around, while of
course zero multipliers can be ignored. The coefficients ui in L(x) can be called Lagrange
multipliers.

We also note that Everett claims generalized Lagrange multipliers, and interpret this as
a reference to having a zeroth-order theory that does not require existence of derivatives
(or gradients), while the conventional explanations or derivations of the multipliers do
require them.

2.2. The difficulty with inactive constraints

Commonly we would have several given resource constraints, like availability of some
raw materials, or labor, or quality requirements on product that is made. These are
naturally posed as inequalities.

The constrained problem would then look like P5: Minimize f(x) subject to gi(x) ≤ ci
for all i, where the constraints can be reshaped to g̃i(x) := gi(x) − ci ≤ 0 to get exactly
zero bounds.

To use the above connection with a weighted sum, we note that if x∗ is the solution
to P5, then some of the constraints are active or binding so that we are at the allowed
limit, as in g̃1(x∗) = 0, while some other constraints may remain inactive at the solution
and could be entirely ignored. Of course the constraints that can be ignored should not
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participate in a sum that is minimized either in this sum they should have zero multiplier
or weight.

The difficulty now is that we cannot know in advance which ones are active constraints
at the eventual optimum, and partly it is this generic problem that makes inequality
constrained optimization (or ‘programming’) difficult even when the constraints are linear
(with a shift) so their combinations can be solved: typically there are far too many such
potential combinations. This difficulty is why we pursue unconstrained formulations
where the Lagrangian is minimized, to possibly find a solution of the original constrained
problem.

Now we note that the zero-bounded constraints allow extending our shadow price
result as follows. In the Lagrangian, the non-binding terms are dropped out, since those
constraints are ignorable. The rest that are binding contribute only zeroes. Therefore
f(x∗) = L(x∗). Now changing one multiplier as in Theorem 2.3 will affect the rest of the
Lagrangian, but in it only f(x∗) remains – therefore Theorem 2.3 remains valid despite
having multiple constraints.

An alternative way to view this is to have the other constraints implemented by re-
stricting the allowed domain of x, so those inequalities can thereafter be forgotten. Since
our zeroth-order derivations assume nothing about the domain, this approach is allowed
and reduces the number of inequality constraints to one – and again the shadow price
effect is valid based on Theorem 2.3.

2.3. The equality constrained case

We now revert our attention to the equality constrained case, for some easy progress.
The equality constrained problem is here defined as P6: minimize f(x) subject to hk(x) =
ck for all k in a finite index set. Every one of the equality conditions is required at an
acceptable solution. A straightforward approach would be to eliminate one component of
x vector per equality constraint, then optimize f over only the remaining free variables.
However, this is seldom possible even in principle, since we lack analytic solutions to
even simple appearing equations. It is much easier to form a weighted sum and seek its
minimum.

Let us recall Corollary 2.5 to Everetts theorem, in which zero weights are ignored as
meaningless.

Let uk be real numbers and let x∗ minimize the weighted sum

L(x) = f(x) +
∑

k

ukhk(x).

Then x∗ also minimizes f(x) subject to

hk(x) ≤ hk(x
∗) for uk > 0 and hj(x) ≥ hj(x

∗) for uj < 0.

If we now require that hk(x∗) = ck for all k, then x∗ satisfies the equality conditions,
and the corollary ensures it is optimal in the set allowed by the inequalities, therefore
certainly optimal in the smaller set allowed by only equalities. We have reached a slightly
unusual form of the Lagrange multiplier theorem, namely:

Theorem 2.6. If for some choice of real multipliers ui, the minimizer x∗ of the La-
grangian

L(x) = f(x) +
∑

i

uihi(x)
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satisfies the equality conditions hi(x∗) = ci for all i, then it is also a solution to the
equality constrained problem P6 above.

Please note that the multipliers need not be nonnegative, they can be any real numbers.
Also note that we have not needed any assumptions about existence of derivatives, or even
about the type of domain in which x lives. In case both equality and inequality constraints
are given, the multipliers for inequalities have a sign restriction as seen in Corollary 2.5,
while those for equalities are not restricted as seen above.

2.4. The complementarity in KKT conditions

This optional section takes the derivative of a square.
Let us first rename the functions g̃i back to gi so that we have

P7: Minimize f(x) subject to gi(x) ≤ 0 for all i.
As a reminder, this guarantees monotone response of the Lagrangian to the multipliers,

since now the sign of every gi is fixed at an allowed optimal solution. These inequality
constraints can be modified with ‘slack variables’ si that can be chosen to make every one
of the constraints binding (i.e., the inequality is actually equality) at a suitably chosen
solution. Obviously the modification does not essentially change the problem: solution of
either one generates a corresponding solution of the other.
P7-b: Minimize f(x) subject to hi(x, s) = gi(x) + s2i = 0 for all i.

Appealing to Theorem 2.6, we take multipliers λi and assume that x∗ with s∗ minimize
the Lagrangian

L(x, s) = f(x) +
∑

i

λihi(x, s).

Requiring zero derivative with respect to si gives λis∗i = 0. In other words, either there is
no slack and s∗i = 0, or if there is slack, then the multiplier λi = 0. This is known as the
complementarity condition in the celebrated Karush-Kuhn-Tucker optimality conditions,
typically called KKT conditions. The previous section already discussed this less formally:
inactive constraints should not enter the Lagrangian that is minimized.

3. Discussion

Practical implications

The common presentation (even introduction) of Lagrange multipliers tends to suffer
from complications related to an approach from multivariate calculus. That by itself
makes demands on background of the audience, while the above shows that a very el-
ementary approach could be taken. Of course, on applying the last theorem above, to
seek the minimizer of the Lagrangian one would (in analytical examples) start taking
derivatives, one for each component in x, and setting them to zero. Then one would try
to adjust the multipliers so that x∗ satisfies the equality conditions. Finally, the candi-
date solutions found would have to be inspected. However, it may also be that a fully
numerical approach is pursued, possibly entirely derivative-free. Various conditions could
be listed that ensure existence of the Lagrange multipliers, such that allow finding an x∗

that satisfies the constraints. However, usually such conditions cannot be checked before-
hand anyway, instead one simply performs the same steps as above and perhaps does a
post mortem check of the candidate solutions for such conditions. An exception is convex
optimization [2, 3], on which there is extensive and well developed theory with various
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so-called constraint qualifications that guarantee success with the Lagrangian. However,
in that context equality constraints are limited to only linear ones.

The reciprocal relation that almost automatically presented itself from symmetry of
minimizing a sum has been studied, and relevant literature can be found by searching for
Tikhonovs reciprocity principle.

Obviously a lot has been left out. The existence of Lagrange multipliers is one such
aspect, and in mathematical analysis it can be pursued in connection with the multivari-
ate implicit function theorem, for equality constraints [4]. Mathematical physics makes
extensive use of Lagrange multipliers, and typically presents them without rigor, but with
a multitude of convincing analytical examples [5] where direct elimination of variables is
utterly impossible. We have not bothered to include any such examples here, they are
easily available to teachers or students who want them.

With the emergence of machine learning, ever larger scale problems are tackled compu-
tationally. This has forced a move away from second order methods (that would require
generating an enormous matrix of second derivatives) to first order methods, and to
nonsmooth optimization. A zeroth-order approach to Lagrangian optimization can be
defended and motivated by these trends. However, our motivation has mainly been a
curiosity regarding what understanding of constrained optimization could be reached by
such derivative-free approach, which poses minimal demands on the reader’s background.
It might be surprising that rigorous inequalities, such that also make sense intuitively and
could be recalled with ease, were demonstrated for shadow prices of constraint bounds
with zeroth-order methods.

4. Conclusion

We have walked through an inverted approach to Lagrange multipliers: instead of first
presenting the equality constrained case, and either later or never introducing inequality
constraints, we have started with the latter. It turns out that an elementary approach,
purely algebraic and accessible with very modest background in math, allows reaching
simple but quite powerful results for inequality constrained optimization. This material
dates back to the 1960s but remains not widely known. As a curiosity, we touched also
on reciprocity principles. What appears to be a novelty is to then revert to equality
constraints, reaching a practical theorem very effortlessly. This allows presenting the
Lagrange multipliers also for equality constrained optimization to a much wider audience
than other approaches familiar to these authors, and in a form that is easy to recall since
no list of assumptions or conditions is involved. Granted that, unfortunately, some of the
magic in applying the Lagrange multipliers is lost, if they are given an easily understood
explanation.
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