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Abstract Let S be a semigroup and let G be a subset of S. A set G is a generating set of S which

is denoted by ⟨G⟩ = S. The rank of S is the minimal size or cardinality of a generating set of S, i.e.

rank(S) := min{|G| : G ⊆ S, ⟨G⟩ = S}. Then the idea of rank leads to a new definition of rank is

called the relative rank of S modulo U is the minimal size of a subset G such that G ∪ U generates

S, i.e. rank(S : U) := min{|G| : G ⊆ S, ⟨G ∪ U⟩ = S}. A set G ⊆ S with ⟨G ∪ U⟩ = S is called a

generating set of S modulo U . Let X be a finite chain and let Y be a subchain of X. Denote by T (X,Y )

the set of all full transformations from X to Y which is so-called the full transformation semigroup

with restricted range Y and it was firstly introduced and studied by Symons in 1975. In this work, we

determine the relative rank of the semigroup OPR(X,Y ) of all orientation-preserving or orientation-

reversing transformations with restricted range modulo the semigroup O(X,Y ) of all order-preserving

transformations with restricted range. In addition, we also determine the relative rank of the semigroup

OD(X,Y ) of all order-preserving or order-reversing transformations with restricted range modulo the

semigroup O(X,Y ) of all order-preserving transformations with restricted range. Furthermore, we obtain

that O(X,Y ) ⊆ OD(X,Y ) ⊆ OPR(X,Y ) and they are subsemigroups of T (X,Y ).
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1. Introduction and Preliminaries

Let X = {1 < 2 < · · · < n} be a finite chain with |X| = n where n ∈ N. We denote
by T (X) the semigroup of all full transformations under the composition of functions. In
this paper, we will compose functions from the left to the right, i.e. x(αβ) = (xα)β for all
x ∈ X. Let α ∈ T (X). We denote by im(α) the image of α, i.e. im(α) := {xα : x ∈ X}
and denote by rank(α) the cardinality of im(α), i.e. rank(α) := |im(α)|. The kernel of
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α is the set ker(α) := {(x, y) ∈ X ×X : xα = yα}. It is an equivalence relation on X and
it is called ker(α)-classes or ker(α)-blocks. A set T ⊆ X is called a transversal of ker(α)
if |B ∩ T | = 1 for all ker(α)-classes B. For subsets B1, B2 of X, B1 < B2 means x1 < x2

for all x1 ∈ B1 and for all x2 ∈ B2. For a subset A of X, α|A is a mapping from A to X
with x(α|A) := xα for all x ∈ A. Then α|A is so-called the mapping α restricted to A.

LetG be a subset of a semigroup S. Then a generating setG of S is denoted by ⟨G⟩ = S.
The rank of S is the minimal size of a generating set G, i.e. rank(S) := min{|G| : G ⊆
S, ⟨G⟩ = S}. The relative rank of S modulo U is the minimal size of a subset G ⊆ S
such that G ∪ U generates S, i.e. rank(S : U) := min{|G| : G ⊆ S, ⟨G ∪ U⟩ = S}.
Therefore, we obtain immediately that rank(S : ∅) = rank(S), rank(S : S) = 0,
rank(S : A) = rank(S : ⟨A⟩) and rank(S : A) = 0 if and only if ⟨A⟩ = S. In addi-
tion, a set G ⊆ S with ⟨G ∪ U⟩ = S is called a generating set of S modulo U . The
relative rank generalizes the rank of a semigroup which was introduced by Howie, Ruškuc
and Higgins [10].

A transformation α ∈ T (X) is called orientation-preserving (orientation-reversing, re-
spectively) if there is a decomposition X = [α]1 ∪ [α]2 with [α]1 < [α]2, y1α ≥ y2α
(y1α ≤ y2α, respectively) for all y1 ∈ [α]1 and y2 ∈ [α]2, and xα ≤ yα (xα ≥ yα,
respectively) for all x ≤ y ∈ [α]1 or x ≤ y ∈ [α]2. If [α]2 = ∅ then α is called order-
preserving. Moreover, if [α]1 = ∅ with xα ≥ yα for all x ≤ y ∈ [α]2 then α is called
order-reversing. Notice that the product of two orientation-preserving transformations
is an orientation-preserving and the product of two orientation-reversing transforma-
tions is also an orientation-preserving. We denote by O(X), OD(X), OP(X), OR(X)
and OPR(X) the semigroup of all order-preserving transformations, the semigroup of
all order-preserving or order-reversing transformations, the semigroup of all orientation-
preserving transformations, the set of all orientation-reversing transformations and the
semigroup of all orientation-preserving or orientation-reversing transformations, respec-
tively. It is clear that O(X) is a proper subsemigroup of OD(X), OP(X) and OPR(X).
In addition, we also know that OD(X) is a proper subsemigroup of OPR(X). The semi-
group OP(X) has been widely studied (see in [1], [2], [3], [4], [6] and [13]). The rank
of OP(X), O(X) and T (X) are equal 2, n and 3, respectively (see [1], [4] and [10]).
Moreover, we obtain that rank(OP(X) : O(X)) = 1, rank(T (X) : O(X)) = 2, and
rank(T (X) : OP(X)) = 1 ( see in [2] and [10]).

Let Y = {l1 < l2 < · · · < lm} be a subchain of X with |Y | = m and 1 < m < n. Then
we consider the following sets:

T (X,Y ) := {α ∈ T (X) : im(α) ⊆ Y },
O(X,Y ) := {α ∈ O(X) : im(α) ⊆ Y },

OD(X,Y ) := {α ∈ OD(X) : im(α) ⊆ Y },
OP(X,Y ) := {α ∈ OP(X) : im(α) ⊆ Y },

OPR(X,Y ) := {α ∈ OPR(X) : im(α) ⊆ Y }.

Then they are subsemigroups of T (X,Y ) and T (X) under the composition of funtions.
The semigroup T (X,Y ) is defined by Symons and it is called the full transformation
semigroup with restricted range [12]. The other semigroups are introduced by Fernan-
des et al. in [5] and [6]. Moreover, the transformation semigroups with restricted range
have been widely investigated (see in [5], [7] and [11]). The rank of T (X,Y ) is equal
to S(n,m) which is the stirling number of second kind [9]. In [5] and [6], the authors
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proved that rank(O(X,Y )) =

(
n− 1

m− 1

)
+

∣∣Y ♯
∣∣ where Y ♯ is the set of captive elements

and rank(OP(X,Y )) =

(
n

m

)
. In [13], we obtained that rank(T (X,Y ) : O(X,Y )) is

equal to S(n,m)−
(
n− 1

m− 1

)
or S(n,m)−

(
n− 1

m− 1

)
+ 1 depends on set Y .

In this paper, we determine the relative rank of some subsemigroups of T (X,Y ). In
section 2.1, we calculate the relative rank OD(X,Y ) modulo O(X,Y ). In section 2.2, we
describe the relative rank OP(X,Y ) modulo O(X,Y ). Finally, we determine the relative
rank OPR(X,Y ) modulo O(X,Y ) in section 2.3.

2. Main Results

2.1. Reletive Rank of OD(X,Y ) Modulo O(X,Y )

In this section, we determine the relative rank of OD(X,Y ) modulo O(X,Y ). First,
we define a mapping β∗ : X → Y by

xβ∗ :=

⎧
⎨

⎩

lm if x < l1
lm−i+1 if li ≤ x < li+1, 1 ≤ i < m
l1 if x ≥ lm .

It is clear that β∗ is order-reversing, i.e. β∗ ∈ OD(X,Y ).

Proposition 2.1. OD(X,Y ) = ⟨O(X,Y ),β∗⟩.

Proof. Let α ∈ OD(X,Y ) \ O(X,Y ). Define a mapping θ : X → Y by xθ := x(αβ∗)
for all x ∈ X. Then we observe that θ ∈ O(X,Y ) because the product of two order-
reversing transformations is an order-preserving transformation. Let x ∈ X. Therefore,
x(θβ∗) = x(αβ∗)β∗ = xα(β∗β∗) = xα(id|Y ) = xα, i.e. α = θβ∗. Hence, OD(X,Y ) =
⟨O(X,Y ),β∗⟩.

Proposition 2.2. rank(OD(X,Y ) : O(X,Y )) = 1.

Proof. By Proposition 2.1, we obtain that rank(OD(X,Y ) : O(X,Y )) ≤ 1. Since
O(X,Y ) is a proper subsemigroup ofOD(X,Y ), we obtain that rank(OD(X,Y ) : O(X,Y )) ≥
1. Altogether, we can conclude that rank(OD(X,Y ) : O(X,Y )) = 1.

2.2. Reletive Rank of OP(X,Y ) Modulo O(X,Y )

In this section, we study and describe the relative rank of OP(X,Y ) modulo O(X,Y )
[3]. Define the set P ′ by

P ′ := {ker(α) : α ∈ OP(X,Y ), rank(α) = m} \ {ker(α) : α ∈ O(X,Y ), rank(α) = m}.
Therefore, P ′ is the set of all partitions of X into m − 1 intervals and one block, which
is the union of two intervals B1 and Bn such that 1 ∈ B1 and n ∈ Bn. For each P ′ ∈ P ′,
we fix an αP ′ ∈ OP(X,Y ) \ O(X,Y ) with ker(αP ′) = P ′. Then we can compute the
cardinality of P ′ as the following lemma.

Lemma 2.3. [3] |P ′| =
(
n− 1

m

)
.
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Next, we define a mapping η∗ : X → Y by

xη∗ :=

{
li+1 if li ≤ x < li+1, 1 ≤ i < m
l1 if lm ≤ x or x < l1.

It is easy to see that η∗ ∈ OP(X,Y ). Then we can state the main result as the following
theorem.

Theorem 2.4. [3] OP(X,Y ) = ⟨O(X,Y ), {αP ′ : P ′ ∈ P ′}, η∗⟩.

Therefore, we get the relative rank of OP(X,Y ) modulo O(X,Y ) as follows:

Proposition 2.5. [3] If 1 /∈ Y or n /∈ Y , then rank(OP(X,Y ) : O(X,Y )) =

(
n− 1

m

)
.

Proposition 2.6. [3] If {1, n} ⊆ Y , then rank(OP(X,Y ) : O(X,Y )) = 1 +

(
n− 1

m

)
.

2.3. Reletive Rank of OPR(X,Y ) Modulo O(X,Y )

In this section, we determine the relative rank of OPR(X,Y ) modulo O(X,Y ). For
|Y | = 2, we obtain that the semigroup OPR(X,Y ) and the semigroup OP(X,Y ) are
coincide. Then we obtain immediately the following propositions.

Proposition 2.7. If |Y | = 2 and 1 /∈ Y or n /∈ Y , then rank(OPR(X,Y ) : O(X,Y )) =(
n− 1

2

)
.

Proposition 2.8. If |Y | = 2 and {1, n} ⊆ Y , then rank(OPR(X,Y ) : O(X,Y )) =

1 +

(
n− 1

2

)
.

So, the rest of this section will consider a set Y is a subchain of X with |Y | ≥ 3. Notice
that

{ker(α) : α ∈ OP(X,Y ), rank(α) = m} = {ker(α) : α ∈ OPR(X,Y ), rank(α) = m}.
Define the set P by

P := {ker(α) : α ∈ OPR(X,Y ), rank(α) = m} \ {ker(α) : α ∈ O(X,Y ), rank(α) = m}.
For each P ∈ P , we fix an ϕP ∈ OPR(X,Y ) \ OP(X,Y ) with ker(ϕP ) = P . Then we

obtain that |P| = |P ′|, i.e. |P| =
(
n− 1

m

)
. Next, we define a mapping β∗

1 : X → Y with

ker(β∗
1) = ker(η∗) by

xβ∗
1 :=

⎧
⎨

⎩

l1 if l1 ≤ x < l2
lm−i+1 if li+1 ≤ x < li+2, 1 ≤ i < m− 1
l2 if lm ≤ x or x < l1.

It is easy to see that ker(β∗
1) = ker(η∗) and β∗

1 ∈ OPR(X,Y ) \ OP(X,Y ). Next, we
define a mapping β∗

2 : X → Y by

xβ∗
2 :=

⎧
⎪⎪⎨

⎪⎪⎩

l2 if l1 ≤ x < l2
l1 if l2 ≤ x < l3
lm−i+1 if li+2 ≤ x < li+3, 1 ≤ i < m− 2
l3 if lm ≤ x or x < l1.
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It is clear that β∗
2 ∈ OPR(X,Y ) \ OP(X,Y ). Since ker(β∗

1) = ker(η∗) and im(β∗
1) is a

transversal of ker(β∗
2), we can compute that β∗

1β
∗
2 = η∗.

Then we can state the main proposition of this section to show that OPR(X,Y ) =
⟨O(X,Y ), {ϕP : P ∈ P},β∗

1 ,β
∗
2⟩.

Proposition 2.9. OPR(X,Y ) = ⟨O(X,Y ), {ϕP : P ∈ P},β∗
1 ,β

∗
2⟩.

Proof. Let β ∈ OPR(X,Y ). Then we will consider two cases.
Case 1. β ∈ OP(X,Y ). For each P ∈ P , we put αP ′ := ϕPβ∗

1 , where ϕP ∈
OPR(X,Y ) \ OP(X,Y ). Then αP ′ ∈ OP(X,Y ) \ O(X,Y ) with rank(αP ′) = m and
ker(αP ′) = ker(ϕP ). Let B := {αP ′ : P ′ ∈ P ′}. By Theorem 2.4, we get that OP(X,Y ) =
⟨O(X,Y ), {αP ′ : P ′ ∈ P ′}, η∗⟩. Therefore, β ∈ OP(X,Y ) = ⟨O(X,Y ), {αP ′ : P ′ ∈
P ′}, η∗⟩ = ⟨O(X,Y ), {αP ′ : P ′ ∈ P ′},β∗

1β
∗
2⟩ ⊆ ⟨O(X,Y ), {ϕP : P ∈ P},β∗

1 ,β
∗
2⟩.

Case 2. β ∈ OPR(X,Y ) \ OP(X,Y ). Put θ := ββ∗
1 . Then θ ∈ OP(X,Y ) be-

cause the product of two orientation-reversing transformations is orientation-preserving.
From Case 1, we have θ ∈ OP(X,Y ) ⊆ ⟨O(X,Y ), {ϕP : P ∈ P},β∗

1 ,β
∗
2⟩. Let x ∈ X.

Therefore, x(θβ∗
1) = x(ββ∗

1β
∗
1) = xβ(β∗

1β
∗
1) = xβ(id|Y ) = xβ, i.e. β = θβ∗

1 . Hence,
β ∈ ⟨O(X,Y ), {ϕP : P ∈ P},β∗

1 ,β
∗
2⟩.

Altogerther, we obtain that OPR(X,Y ) = ⟨O(X,Y ), {ϕP : P ∈ P},β∗
1 ,β

∗
2⟩.

Lemma 2.10. Let A ⊆ OPR(X,Y ) \ O(X,Y ) such that ⟨O(X,Y ), A⟩ = OPR(X,Y ).
Then there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = P.

Proof. Assume that there is P ∈ P with P /∈ {ker(α) : α ∈ A}. Since ϕP ∈ OPR(X,Y ) =
⟨O(X,Y ) ∪ A⟩, there are θ1 ∈ O(X,Y ) ∪ A and θ2 ∈ OPR(X,Y ) sucht that ϕP = θ1θ2.
Since rank(ϕP ) = m, we obtain that ker(ϕP ) = ker(θ1), i.e. ker(θ1) = P . Hence, θ1 /∈ A
and θ1 /∈ O(X,Y ) because P /∈ {ker(α) : α ∈ O(X,Y )} that is a contradiction. Therefore,
there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = P.

To obtain the main results of section we will consider two possibilities. First, we

consider the case |X \ Y | = 1, i.e. |X| = m+ 1. So, |P| =
(
m+ 1− 1

m

)
= 1 that means

P = {P}. Then we obtain the following results.

Theorem 2.11. If |X \ Y | = 1 and 1 /∈ Y or n /∈ Y , then we have rank(OPR(X,Y ) :
O(X,Y )) = 2.

Proof. Since 1 /∈ Y or n /∈ Y , we can assume without loss of generaltity that β∗
1 = ϕP .

By Proposition 2.9, we have OPR(X,Y ) = ⟨O(X,Y ),ϕP ,β∗
2⟩, i.e. rank(OPR(X,Y ) :

O(X,Y )) ≤ 2.
Let A ⊆ OPR(X,Y ) \ O(X,Y ) such that ⟨O(X,Y ), A⟩ = OPR(X,Y ). By Lemma

2.10, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = P, i.e. rank(OPR(X,Y ) :
O(X,Y )) ≥ |A′| ≥ |P| ≥ 1. Assume that ⟨O(X,Y ),ϕP ⟩ = OPR(X,Y ). We define a
mapping β : X → Y by

xβ :=

⎧
⎪⎪⎨

⎪⎪⎩

l2 if x ≤ l1
l1 if l2 ≤ x < l3
lm−i+1 if li+1 ≤ x < li+2, 1 ≤ i < m− 2
l3 if lm ≤ x .

So, we can verify that β ∈ OPR(X,Y ) \ O(X,Y ) and (1, n) /∈ ker(β). Since β ∈
OPR(X,Y )\O(X,Y ) ⊆ OPR(X,Y ) = ⟨O(X,Y ),ϕP ⟩, there are θ1, θ2, . . . , θk ∈ O(X,Y )∪
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{ϕP } such that β = θ1θ2 · · · θk. Since rank(β) = m and (1, n) ∈ ker(ϕP ), we obtain that
(1, n) /∈ ker(θi) for all i ∈ {2, 3, . . . , l} that implies θ2 · · · θl ∈ O(X,Y ). Since rank(β) =
m, we get that ker(β) = ker(θ1). If θ1 ∈ O(X,Y ), then we have θ1θ2 · · · θk ∈ O(X,Y )
that is a contradiction. If θ1 = ϕP , then we have (1, n) ∈ ker(β) that contradicts with
(1, n) /∈ ker(β). Then rank(OPR(X,Y ) : O(X,Y )) ≥ 2. Altogether, we obtain that
rank(OPR(X,Y ) : O(X,Y )) = 2.

Theorem 2.12. If |X \ Y | = 1 and {1, n} ⊆ Y , then rank(OPR(X,Y ) : O(X,Y )) = 3.

Proof. By Proposition 2.9, we obtain that OPR(X,Y ) = ⟨O(X,Y ),ϕP ,β∗
1 ,β

∗
2⟩, i.e.

rank(OPR(X,Y ) : O(X,Y )) ≤ 3.
Let A ⊆ OPR(X,Y ) \ O(X,Y ) such that ⟨O(X,Y ), A⟩ = OPR(X,Y ). By Lemma

2.10, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = P, i.e. rank(OPR(X,Y ) :
O(X,Y )) ≥ |A′| ≥ |P| = 1. Assume that ⟨O(X,Y ),ϕP ⟩ = OPR(X,Y ). By the defini-
tion of η∗, we have η∗ ∈ OP(X,Y ) \O(X,Y ) ⊆ OPR(X,Y ), where ker(η∗) /∈ P because
(1, n) /∈ ker(η∗). Since η∗ ∈ OP(X,Y ) \ O(X,Y ) ⊆ OPR(X,Y ) = ⟨O(X,Y ),ϕP ⟩,
there are θ1, . . . , θl ∈ O(X,Y ) ∪ {ϕP } such that η∗ = θ1 · · · θl. Since rank(η∗) = m
and {1, n} ⊆ Y , we obtain that (1, n) /∈ ker(θi) for all i ∈ {2, 3, . . . , l} that implies
θ2 · · · θl ∈ O(X,Y ). Since rank(η∗) = m, we get ker(η∗) = ker(θ1). If θ1 ∈ O(X,Y ),
then we have θ1θ2 · · · θk ∈ O(X,Y ) that is a contradiction. If θ1 = ϕP , then we have
(1, n) ∈ ker(η∗) that contradicts with (1, n) /∈ ker(η∗). That means η∗ /∈ ⟨O(X,Y ),ϕP ⟩,
i.e. rank(OPR(X,Y ) : O(X,Y )) ≥ 2. Next, we assume that ⟨O(X,Y ),ϕP , η∗⟩ =
OPR(X,Y ). Then we define a mapping β : X → Y by

xβ :=

⎧
⎪⎪⎨

⎪⎪⎩

l2 if x ≤ l1
l1 if l2 ≤ x < l3
lm−i+1 if li+1 ≤ x < li+2, 1 ≤ i < m− 2
l3 if lm ≤ x .

So, we can verify that β ∈ OPR(X,Y ) \ OP(X,Y ) and (1, n) /∈ ker(β). Since β ∈
OPR(X,Y ) \ OP(X,Y ) ⊆ OPR(X,Y ) = ⟨O(X,Y ),ϕP , η∗⟩, there are ξ1, ξ2, . . . , ξk ∈
O(X,Y ) ∪ {ϕP , η∗} such that β = ξ1ξ2 · · · ξk. Since rank(β) = m and {1, n} ⊆ Y , we
obtain that (1, n) /∈ ker ξi for all i ∈ {2, 3, . . . , k} that implies ξ2, . . . , ξk ∈ O(X,Y )∪{η∗}.
Therefore, ξ2 · · · ξk ∈ OP(X,Y ). Since rank(β) = m, we get that ker(β) = ker(ξ1). If
ξ1 ∈ O(X,Y ) ∪ {η∗}, then we have β = ξ1ξ2 · · · ξk ∈ OP(X,Y ) that is a contradiction
because β ∈ OPR(X,Y ) \ OP(X,Y ). If ξ1 = ϕP , then we have (1, n) ∈ kerβ that
contradicts with (1, n) /∈ ker(β). Altogether, we obtain that β /∈ ⟨O(X,Y ),ϕP , η∗⟩, i.e.
rank(OPR(X,Y ) : O(X,Y )) ≥ 3.

From Theorem 2.11 and Theorem 2.12, we obtain the immediately two corollaries as
show the following:

Corollary 2.13. If |X\Y | = 1 and 1 /∈ Y or n /∈ Y , then OPR(X,Y ) = ⟨O(X,Y ),β∗
1 ,β

∗
2⟩.

Corollary 2.14. If |X\Y | = 1 and {1, n} ⊆ Y , then OPR(X,Y ) = ⟨O(X,Y ),ϕP ,β∗
1 ,β

∗
2⟩.

Finally, we consider |X\Y | ≥ 2 and we can consider two cases as the following theorems.

Theorem 2.15. If |X \ Y | ≥ 2 and 1 /∈ Y or n /∈ Y , then we have rank(OPR(X,Y ) :

O(X,Y )) =

(
n− 1

m

)
.
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Proof. Since 1 /∈ Y or n /∈ Y , we can assume without loss of generaltity that β∗
1 ,β

∗
2 ∈

{ϕP : P ∈ P}. By Proposition 2.9, we have OPR(X,Y ) = ⟨O(X,Y ), {ϕP : P ∈ P}⟩, i.e.

rank(OPR(X,Y ) : O(X,Y )) ≤ |{ϕP : P ∈ P}| =
(
n− 1

m

)
.

Let A ⊆ OPR(X,Y ) \ O(X,Y ) such that ⟨O(X,Y ), A⟩ = OPR(X,Y ). By Lemma
2.10, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = P, i.e. rank(OPR(X,Y ) :
O(X,Y )) ≥ |A′| ≥ |P|.

Altogether, we have rank(OPR(X,Y ) : O(X,Y )) = |P| =
(
n− 1

m

)
.

Theorem 2.16. If |X \ Y | ≥ 2 and {1, n} ⊆ Y , then rank(OPR(X,Y ) : O(X,Y )) =

2 +

(
n− 1

m

)
.

Proof. By Proposition 2.9, we have OPR(X,Y ) = ⟨O(X,Y ), {ϕP : P ∈ P},β∗
1 ,β

∗
2⟩, i.e.

rank(OPR(X,Y ) : O(X,Y )) ≤ 2 + |{ϕP : P ∈ P}| = 2 +

(
n− 1

m

)
.

Let A ⊆ OPR(X,Y ) \ O(X,Y ) such that ⟨O(X,Y ), A⟩ = OPR(X,Y ). By Lemma
2.10, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = P, i.e. rank(OPR(X,Y ) :

O(X,Y )) ≥ |A′| ≥ |P| =
(
n− 1

m

)
. Assume that ⟨O(X,Y ), {ϕP : P ∈ P}⟩ = OPR(X,Y ).

By the definition of η∗, we have η∗ ∈ OP(X,Y ) \ O(X,Y ) ⊆ OPR(X,Y ), where
ker(η∗) /∈ P because (1, n) /∈ ker(η∗). Since η∗ ∈ OP(X,Y ) \ O(X,Y ) ⊆ OPR(X,Y ) =
⟨O(X,Y ), {ϕP : P ∈ P}⟩, there are θ1, . . . , θl ∈ O(X,Y ) ∪ {ϕP : P ∈ P} such that
η∗ = θ1 · · · θl. Since rank(η∗) = m and {1, n} ⊆ Y , we obtain that (1, n) /∈ ker(θi)
for all i ∈ {2, 3, . . . , l} that implies θ2 · · · θl ∈ O(X,Y ). Since rank(η∗) = m, we get
that ker(η∗) = ker(θ1). If θ1 ∈ O(X,Y ), then we have θ1θ2 · · · θk ∈ O(X,Y ) that
is a contradiction. If θ1 = ϕP for some P ∈ P , then we have (1, n) ∈ ker(η∗) that
contradicts with (1, n) /∈ ker(η∗). That means η∗ /∈ ⟨O(X,Y ), {ϕP : P ∈ P}⟩, i.e.

rank(OPR(X,Y ) : O(X,Y )) ≥ 1 +

(
n− 1

m

)
. Next, assume that ⟨O(X,Y ), {ϕP : P ∈

P}, η∗⟩ = OPR(X,Y ). By the definition of β∗
1 , we get that β

∗
1 ∈ OPR(X,Y )\OP(X,Y )

and ker(β∗
1) /∈ P because (1, n) /∈ ker(β∗

1). Since β∗
1 ∈ OPR(X,Y ) \ OP(X,Y ) ⊆

OPR(X,Y ) = ⟨O(X,Y ), {ϕP : P ∈ P}, η∗⟩, there are ξ1, ξ2, . . . , ξk ∈ O(X,Y ) ∪ {ϕP :
P ∈ P}∪ {η∗} such that β∗

1 = ξ1ξ2 · · · ξk. Since rank(β∗
1) = m and {1, n} ⊆ Y , we obtain

that (1, n) /∈ ker(ξi) for all i ∈ {2, 3, . . . , k} that implies ξ2, . . . , ξk ∈ O(X,Y ) ∪ {η∗}.
Therefore, ξ2 · · · ξk ∈ OP(X,Y ). Since rank(β) = m, we get that ker(β∗

1) = ker(ξ1).
If ξ1 ∈ O(X,Y ) ∪ {η∗}, then we have β∗

1 = ξ1ξ2 · · · ξk ∈ OP(X,Y ) that is a contra-
diction because β∗

1 ∈ OPR(X,Y ) \ OP(X,Y ). If ξ1 = ϕP for some P ∈ P, then we
have (1, n) ∈ ker(β∗

1) that contradicts with (1, n) /∈ ker(β∗
1). Altogether, we get that

β∗
1 /∈ ⟨O(X,Y ), {ϕP : P ∈ P}, η∗⟩, i.e. rank(OPR(X,Y ) : O(X,Y )) ≥ 2 +

(
n− 1

m

)
.

Consequently, we obtain that rank(OPR(X,Y ) : O(X,Y )) = 2 +

(
n− 1

m

)
.

3. Conclusion

In this paper, we study transformation semigroup with restricted range T (X,Y ) and
its subsemigroups. We also calculate the relative rank of subsemigroups of T (X,Y ). In
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Section 1, we introduce some notation and some definition of transformation semigroups
to use through this paper. In section 2.1, we obtain the relative rank of OD(X,Y )
modulo O(X,Y ) as shown in Proposition 2.1 and Proposition 2.2. In section 2.2, we
study and describe the relative rank of OP(X,Y ) modulo O(X,Y ) as shown in Theorem
2.4 and Proposition 2.5-2.6. In section 2.3, we calculate the relative rank of OPR(X,Y )
modulo O(X,Y ) as shown in Proposition 2.7-2.8, Theorem 2.11-2.12 and Theorem 2.15-
2.16. In future work, we can study other kind structure of transformation semigroup with
restricted range.
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