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Abstract Let S be a semigroup and let G be a subset of S. A set GG is a generating set of S which
is denoted by (G) = S. The rank of S is the minimal size or cardinality of a generating set of S, i.e.
rank(S) := min{|G| : G C S,(G) = S}. Then the idea of rank leads to a new definition of rank is
called the relative rank of S modulo U is the minimal size of a subset G such that G U U generates
S, ie. rank(S : U) := min{|G| : G C S,(GUU) = S}. Aset G C S with (GUU) = S is called a
generating set of S modulo U. Let X be a finite chain and let Y be a subchain of X. Denote by 7(X,Y")
the set of all full transformations from X to Y which is so-called the full transformation semigroup
with restricted range Y and it was firstly introduced and studied by Symons in 1975. In this work, we
determine the relative rank of the semigroup OPR(X,Y) of all orientation-preserving or orientation-
reversing transformations with restricted range modulo the semigroup O(X,Y’) of all order-preserving
transformations with restricted range. In addition, we also determine the relative rank of the semigroup
OD(X,Y) of all order-preserving or order-reversing transformations with restricted range modulo the
semigroup O(X,Y) of all order-preserving transformations with restricted range. Furthermore, we obtain
that O(X,Y) C OD(X,Y) C OPR(X,Y) and they are subsemigroups of 7(X,Y).
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1. INTRODUCTION AND PRELIMINARIES

Let X = {1 <2 < --- < n} be a finite chain with | X| = n where n € N. We denote
by 7 (X) the semigroup of all full transformations under the composition of functions. In
this paper, we will compose functions from the left to the right, i.e. z(af) = (za)p for all
x € X. Let a € T(X). We denote by im(a) the image of a, i.e. im(a) :={za:z € X}
and denote by rank(«) the cardinality of im(«), i.e. rank(«) := |im(«)|. The kernel of
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« is the set ker(a) := {(z,y) € X x X : zao = ya}. It is an equivalence relation on X and
it is called ker(a)-classes or ker(a)-blocks. A set T' C X is called a transversal of ker(a)
if |[BNT| =1 for all ker(a)-classes B. For subsets By, By of X, By < By means 7 < T2
for all 1 € By and for all x5 € Bs. For a subset A of X, a|4 is a mapping from A to X
with z(a|4) := za for all x € A. Then «|4 is so-called the mapping « restricted to A.

Let G be a subset of a semigroup S. Then a generating set G of S is denoted by (G) = S.
The rank of S is the minimal size of a generating set G, i.e. rank(S) := min{|G|: G C
S,(G) = S}. The relative rank of S modulo U is the minimal size of a subset G C S
such that G U U generates S, i.e. rank(S : U) := min{|G| : G C S,(GUU) = S}.
Therefore, we obtain immediately that rank(S : 0) = rank(S), rank(S : S) = 0,
rank(S : A) = rank(S : (A)) and rank(S : A) = 0 if and only if (A) = S. In addi-
tion, a set G C S with (GUU) = S is called a generating set of S modulo U. The
relative rank generalizes the rank of a semigroup which was introduced by Howie, Ruskuc
and Higgins [10].

A transformation a € 7(X) is called orientation-preserving (orientation-reversing, re-
spectively) if there is a decomposition X = [a]; U [a]s with [a]; < [a]2, y1a0 > yoa
(y1a0 < yoav, respectively) for all y; € [a]; and y2 € [a]2, and za < ya (za > ya,
respectively) for all z < y € [a]; or z < y € [a]z2. If [a]a = 0 then « is called order-
preserving. Moreover, if [a]; = 0 with za > ya for all z < y € [a]y then « is called
order-reversing. Notice that the product of two orientation-preserving transformations
is an orientation-preserving and the product of two orientation-reversing transforma-
tions is also an orientation-preserving. We denote by O(X), OD(X), OP(X), OR(X)
and OPR(X) the semigroup of all order-preserving transformations, the semigroup of
all order-preserving or order-reversing transformations, the semigroup of all orientation-
preserving transformations, the set of all orientation-reversing transformations and the
semigroup of all orientation-preserving or orientation-reversing transformations, respec-
tively. It is clear that O(X) is a proper subsemigroup of OD(X), OP(X) and OPR(X).
In addition, we also know that OD(X) is a proper subsemigroup of OPR(X). The semi-
group OP(X) has been widely studied (see in [1], [2], [3], [4], [6] and [13]). The rank
of OP(X), O(X) and T(X) are equal 2,n and 3, respectively (see [I], [1] and [10]).
Moreover, we obtain that rank(OP(X) : O(X)) = 1, rank(T(X) : O(X)) = 2, and
rank(T(X) : OP(X)) =1 ( see in [2] and [10]).

Let Y ={l; <ls < --- <y} be a subchain of X with |Y| =m and 1 < m < n. Then
we consider the following sets:

T(X,)Y):={aecT(X):im(a) CY},
OX,)Y) ={aecOX):im(a) CY},
OD(X,Y) :={a € OD(X) :im(a) C Y},
OP(X,Y):={a € OP(X) :im(a) C Y},
OPR(X,Y) :={a € OPR(X) :im(a) C Y}

Then they are subsemigroups of 7(X,Y) and 7(X) under the composition of funtions.
The semigroup 7 (X,Y) is defined by Symons and it is called the full transformation
semigroup with restricted range [12]. The other semigroups are introduced by Fernan-
des et al. in [5] and [6]. Moreover, the transformation semigroups with restricted range
have been widely investigated (see in [5], [7] and [I1]). The rank of 7(X,Y) is equal
to S(n,m) which is the stirling number of second kind [9]. In [5] and [6], the authors
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—1
proved that rank(O(X,Y)) = (n 1) + ’Yﬁ‘ where Y* is the set of captive elements
m —_

and rank(OP(X,Y)) = ") m [13], we obtained that rank(T(X,Y) : O(X,Y)) is
m

-1
equal to S(n,m) — < ) or S(n,m) — (n 1> + 1 depends on set Y.
m j—

m—1

In this paper, we determine the relative rank of some subsemigroups of 7(X,Y). In
section 2.1, we calculate the relative rank OD(X,Y) modulo O(X,Y’). In section 2.2, we
describe the relative rank OP(X,Y’) modulo O(X,Y). Finally, we determine the relative
rank OPR(X,Y) modulo O(X,Y) in section 2.3.

2. MAIN RESULTS

2.1. RELETIVE RANK OF OD(X,Y) MobpurLo O(X,Y)

In this section, we determine the relative rank of OD(X,Y) modulo O(X,Y). First,
we define a mapping * : X — Y by

lm ife<ly
.TB* = lm—i+1 ifl; <z< li—l—la 1<i<m
ll if x Z lm .

It is clear that §* is order-reversing, i.e. f* € OD(X,Y).
Proposition 2.1. OD(X,Y) = (O(X,Y), 5%).

Proof. Let a« € OD(X,Y) \ O(X,Y). Define a mapping 0 : X — Y by z6 = z(af”)
for all x € X. Then we observe that § € O(X,Y) because the product of two order-
reversing transformations is an order-preserving transformation. Let z € X. Therefore,
z(06*) = z(af*)p* = za(B*B*) = za(id|ly) = za, i.e. a = 0*. Hence, OD(X,Y) =
(O(X,Y),8%). .

Proposition 2.2. rank(OD(X,Y): O(X,Y)) = 1.

Proof. By Proposition 2.1, we obtain that rank(OD(X,Y) : O(X,Y)) < 1. Since
O(X,Y) is a proper subsemigroup of OD(X,Y), we obtain that rank(OD(X,Y) : O(X,Y)) >
1. Altogether, we can conclude that rank(OD(X,Y) : O(X,Y)) = 1. n

2.2. RELETIVE RANK OF OP(X,Y) Mobpuro O(X,Y)

In this section, we study and describe the relative rank of OP(X,Y’) modulo O(X,Y)
[3]. Define the set P’ by
P = {ker(a) : a € OP(X,Y),rank(a) = m} \ {ker(a) : « € O(X,Y), rank(a) = m}.
Therefore, P’ is the set of all partitions of X into m — 1 intervals and one block, which
is the union of two intervals By and B,, such that 1 € By and n € B,,. For each P’ € P/,
we fix an apr € OP(X,Y)\ O(X,Y) with ker(ap/) = P’. Then we can compute the
cardinality of P’ as the following lemma.

Lemma 2.3. [7] |P'| = (n B 1).
m
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Next, we define a mapping n* : X — Y by

—— ligp ifl; <x<lip, 1<i<m
= I ifl,, <zorz<l.

It is easy to see that n* € OP(X,Y). Then we can state the main result as the following
theorem.

Theorem 2.4. [7] OP(X,Y) =(O(X,Y),{ap : P € P'},n").
Therefore, we get the relative rank of OP(X,Y) modulo O(X,Y) as follows:
-1
Proposition 2.5. [/ If1¢Y orn &Y, then rank(OP(X,Y): O(X,Y)) = (n >

m

Proposition 2.6. [7] If {1,n} C Y, then rank(OP(X,Y): O(X,Y)) =1+ (nn_l 1)'

2.3. RELETIVE RANK OF OPR(X,Y) MobpuLo O(X,Y)

In this section, we determine the relative rank of OPR(X,Y) modulo O(X,Y). For
Y| = 2, we obtain that the semigroup OPR(X,Y) and the semigroup OP(X,Y) are
coincide. Then we obtain immediately the following propositions.

Proposition 2.7. If Y| =2 and 1 ¢Y orn ¢Y, then rank(OPR(X,Y) : O(X,Y)) =
n—1
(")
Proposition 2.8. If |Y| = 2 and {1,n} C Y, then rank(OPR(X,Y) : O(X,Y)) =
n—1
1 .
(%)
So, the rest of this section will consider a set Y is a subchain of X with |Y'| > 3. Notice
that
{ker(a) : @« € OP(X,Y), rank(a) = m} = {ker(a) : « € OPR(X,Y), rank(a) = m}.
Define the set P by
P = {ker(a) : « € OPR(X,Y),rank(a) = m} \ {ker(a) : « € O(X,Y), rank(a)) = m}.
For each P € P, we fix an op € OPR(X,Y) \ OP(X,Y) with ker(pp) = P. Then we
-1
obtain that [P| = |P’|, i.e. |P|= <n ) Next, we define a mapping 7 : X — Y with
m
ker(f7) = ker(n”) by

l1 ifly <z <ly
ZL'BT = lm—i+1 if li+1 <z < li+2, 1<i<m-—1
lo ifl,,, <zorx<l.

It is easy to see that ker(87) = ker(n*) and 7 € OPR(X,Y)\ OP(X,Y). Next, we
define a mapping 55 : X — Y by

Iy ifly <z <ly

I ifls<z<ls

l—iv1 flipe <2 <lips, 1<i<m—2
I3 ifl,,, <zorxz<l.

2f5 =
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It is clear that 55 € OPR(X,Y)\ OP(X,Y). Since ker(g7) = ker(n*) and im(57) is a
transversal of ker(/3;), we can compute that 8755 = n*.
Then we can state the main proposition of this section to show that OPR(X,Y) =

<O(X7 Y)v{SOP P e /P}aﬂik76>2k>
Proposition 2.9. OPR(X,Y) = (O(X,Y),{¢p: P € P}, 57,53).

Proof. Let f € OPR(X,Y). Then we will consider two cases.

Case 1. B € OP(X,Y). For each P € P, we put ap := ¢pfi, where pp €
OPR(X,Y)\ OP(X,Y). Then ap € OP(X,Y)\ O(X,Y) with rank(ap/) = m and
ker(ap:) = ker(pp). Let B :={ap/ : P’ € P'}. By Theorem 2.4, we get that OP(X,Y) =
(O(X,Y),{ap : P' € P'},n*). Therefore, f € OP(X,Y) = (O(X,Y),{ap : P' €
Phi) = {O(X, V), {apr : P € P}, i 65) € (O(X,Y), {op : P € P}, 55, B

Case 2. f € OPR(X,Y)\ OP(X,Y). Put 6 := B;. Then § € OP(X,Y) be-
cause the product of two orientation-reversing transformations is orientation-preserving.
From Case 1, we have § € OP(X,Y) C (O(X,Y),{¢p : P € P},51,5;5). Let z € X.
Therefore, x(057) = z(6B76T) = xB(Bi6T) = zp(id|ly) = xB, i.e. f = 05F. Hence,
B (O(X,Y),{pp: P €P},BL55).

Altogerther, we obtain that OPR(X,Y) = (O(X,Y),{¢p : P € P}, 55, 33). =

Lemma 2.10. Let A C OPR(X,Y)\ O(X,Y) such that (O(X,Y),A) = OPR(X,Y).
Then there is a set A" C A with {ker(a) : € A’} =P.

Proof. Assume that there is P € P with P ¢ {ker(a) : « € A}. Since pp € OPR(X,Y) =
(O(X,Y)U A), there are 6, € O(X,Y)U A and 0y € OPR(X,Y) sucht that pp = 6165.
Since rank(pp) = m, we obtain that ker(pp) = ker(6;), i.e. ker(f;) = P. Hence, 6; ¢ A
and 01 ¢ O(X,Y) because P ¢ {ker(«) : « € O(X,Y)} that is a contradiction. Therefore,
there is a set A’ C A with {ker(a): € A’} =P. n

To obtain the main results of section we will consider two possibilities. First, we
1-1
consider the case | X \Y|=1,1ie. |X|=m+1. So, |P| = <m+ ) = 1 that means
m
P = {P}. Then we obtain the following results.

Theorem 2.11. If | X \Y|=1and1¢Y orn ¢ Y, then we have rank(OPR(X,Y) :
O(X,Y)) =2.

Proof. Since 1 ¢ Y or n ¢ Y, we can assume without loss of generaltity that 87 = pp.
By Proposition 2.9, we have OPR(X,Y) = (O(X,Y),pp,33), i.e. rank(OPR(X,Y) :
O(X,Y)) < 2.

Let A C OPR(X,Y)\ O(X,Y) such that (O(X,Y),A4) = OPR(X,Y). By Lemma
2.10, there is a set A’ C A with {ker(a) : « € A’} = P, ie. rank(OPR(X,Y) :
O(X,Y)) > |A'| > |P| > 1. Assume that (O(X,Y),op) = OPR(X,Y). We define a
mapping B : X — Y by

12 1f£L’§l1
. l1 ifl2§$<13
.’EB ' lm7i+1 ile,l <z < li+2, 1<i<m—2

So, we can verify that § € OPR(X,Y) \ O(X,Y) and (1,n) ¢ ker(5). Since g €
OPR(X,Y)\O(X,Y) COPR(X,Y) = (O(X,Y),pp), there are 01,60, ...,0, € O(X,Y)U
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{¢p} such that 8 = 601605 --- 0. Since rank(S) = m and (1,n) € ker(pp), we obtain that
(1,n) ¢ ker(6;) for all i € {2,3,...,1} that implies 05 ---0; € O(X,Y). Since rank() =
m, we get that ker(f) = ker(6,). If 6 € O(X,Y), then we have 6,16,---0;, € O(X,Y)
that is a contradiction. If §; = @p, then we have (1,n) € ker(f) that contradicts with
(1I,n) ¢ ker(8). Then rank(OPR(X,Y) : O(X,Y)) > 2. Altogether, we obtain that
rank(OPR(X,Y): O(X,Y)) = 2. n

Theorem 2.12. If | X \Y| =1 and {1,n} CY, then rank(OPR(X,Y): O(X,Y)) = 3.

Proof. By Proposition 2.9, we obtain that OPR(X,Y) = (O(X,Y),pp,B7,53), ie
rank(OPR(X,Y): O(X,Y)) < 3.

Let A C OPR(X,Y)\ O(X,Y) such that (O(X,Y),A) = OPR(X,Y). By Lemma
2.10, there is a set A’ C A with {ker(a) : « € A’} = P, ie. rank(OPR(X,Y) :
O(X,Y)) > |A'| > |P| = 1. Assume that (O(X,Y),pp) = OPR(X,Y). By the defini-
tion of n*, we have n* € OP(X,Y)\ O(X,Y) C OPR(X,Y), where ker(n*) ¢ P because
(1,n) ¢ ker(n*). Since n* € OP(X,Y)\ O(X,Y) C OPR(X,Y) = (O(X,Y),pp),
there are 6q,...,6; € O(X,Y) U {pp} such that n* = 6,---60;. Since rank(n*) = m
and {1,n} C Y, we obtain that (1,n) ¢ ker(6;) for all « € {2,3,...,1} that implies
O---0, € O(X,Y). Since rank(n*) = m, we get ker(n*) = ker(6y). If 6, € O(X,Y),
then we have 0105 ---0, € O(X,Y) that is a contradiction. If §; = p, then we have
(1,n) € ker(n*) that contradicts with (1,n) ¢ ker(n*). That means n* ¢ (O(X,Y), ¢p),
ie. rank(OPR(X,Y) : O(X,Y)) > 2. Next, we assume that (O(X,Y),pp,n*) =
OPR(X,Y). Then we define a mapping 3 : X — Y by

l2 if x < l1
L l1 iflo <z <ls
.’L‘B T lm—i—i—l if li—i—l <z < li+2, 1<i<m-—2
13 if lm <z

So, we can verify that § € OPR(X,Y) \ OP(X,Y) and (1,n) ¢ ker(). Since g €
OPR(X,Y)\ OP(X,Y) C OPR(X,Y) = (O(X,Y),pp,n*), there are &,&,..., &k €
O(X,Y)U{ep,n*} such that f = &+ &;. Since rank(f) = m and {1,n} C Y, we
obtain that (1,n) ¢ ker&; for alli € {2,3,..., k} that implies &, ...,& € O(X,Y)U{n*}.
Therefore, £3--- &, € OP(X,Y). Since rank(8) = m, we get that ker(f8) = ker(&;). If
& € O(X,Y)U{n*}, then we have § = &€ --- & € OP(X,Y) that is a contradiction
because f € OPR(X,Y)\ OP(X,Y). If & = ¢p, then we have (1,n) € ker 3 that
contradicts with (1,n) ¢ ker(3). Altogether, we obtain that 8 ¢ (O(X,Y),¢p,n*), i.e.
rank(OPR(X,Y) : O(X,Y)) > 3. n

From Theorem 2.11 and Theorem 2.12, we obtain the immediately two corollaries as
show the following:

Corollary 2.13. If | X\Y|=1and1¢Y orn ¢Y, then OPR(X,Y) = (O(X,Y), 57, 55).
Corollary 2.14. If | X\Y| =1 and {1,n} CY, then OPR(X,Y) = (O(X,Y), pp, 55, 53).
Finally, we consider | X'\ Y| > 2 and we can consider two cases as the following theorems.

Theorem 2.15. If | X \Y|>2and1¢Y orn ¢ Y, then we have rank(OPR(X,Y) :
n—1
X,Y)) = .
o= (" ")
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Proof. Since 1 ¢ Y or n ¢ Y, we can assume without loss of generaltity that 57,55 €
{¢p : P € P}. By Proposition 2.9, we have OPR(X,Y) = (O(X,Y),{¢p : P € P}), i.e
n—1

rank(OPR(X,Y): O(X,Y)) < {pp: PP} =

Let A C OPR(X,Y)\ O(X,Y) such that (O(X,Y),A) = (’)PR(X Y). By Lemma
2.10, there is a set A” C A with {ker(a) : a« € A’} = P, rank(OPR(X,Y) :
O(X,Y)) > |A'| > |P].

Altogether, we have rank(OPR(X,Y): O(X,Y)) = |P| = (nﬂ_l 1). n

Theorem 2.16. If |[X \ Y| > 2 and {1,n} C Y, then rank(OPR(X,Y) : O(X,Y)) =

2+(”ﬂ_11>.

Proof. By Proposition 2.9, we have OPR(X,Y) = (O(X,Y {gap P c P}, 51, 65), i
rank(OPR(X,Y): O(X,Y)) <2+ |{¢p: PEP}| =2+ (

Let A C OPR(X,Y)\ O(X,Y) such that (O( ), A) = Y). By Lemma
2.10, there is a set A’ C A with {ker(a) : o € A'} 73 . rank’((’)PR(X, Y) :

OX,Y)) > |A| > |P| = (nm 1). Assume that (O(X,Y),{pp: P € P}) = OPR(X,Y).
By the definition of n*, we have n* € (’)P(X, Y)\ OX,Y) € OPR(X,Y), where
ker(n*) ¢ P because (1,n) ¢ ker(n*). Since n* € OP(X,Y) \O(X, Y) COPR(X,Y) =
(O(X,Y),{¢p : P € P}), there are 0y,...,6;, € O(X, Y) U{ep : P € P} such that
n* = 61---60,. Since rank(n*) = m and {1 n} C Y, we obtain that (1,n) ¢ ker(6;)
for all i € {2,3,...,1} that implies 05---6; € O(X, Y). Since rank(n*) = m, we get
that ker(n*) = ker(61). If 61 € O(X,Y), then we have 0105 ---0, € O(X,Y) that
is a contradiction. If §; = ¢p for some P € P, then we have (1,n) € ker(n*) that
contradicts with (1,n) ¢ ker(n*). That means n* ¢ (O(X,Y),{pp : P € P}), ie

rank(OPR(X,Y) : O(X,Y)) > 1+ (nﬂ_’b 1). Next, assume that (O(X,Y),{¢p : P €

P}, n*) = OPR(X,Y). By the definition of 3, we get that 37 € OPR(X,Y)\OP(X,Y)
and ker(8}) ¢ P because (1,n) ¢ ker(57). Since ff € OPR(X,Y)\ OP(X,Y) C
OPR(X,)Y) = (O(X,Y),{ep : P € P},n*), there are &1,&,...,& € O(X,Y) U {pp :
P € P}U{n*} such that B = & & -+ - €. Since rank(f]) = m and {1,n} C Y, we obtain
that (1,n) ¢ ker(§;) for all ¢ € {2,3,...,k} that implies &,...,&§ € O(X,Y) U {n*}.
Therefore, & --- & € OP(X,Y). Since rank(8) = m, we get that ker(87) = ker(&).
If & € O(X,Y)U{n*}, then we have g} = & &+ & € OP(X,Y) that is a contra-
diction because g7 € OPR(X,Y)\ OP(X,Y). If &, = pp for some P € P, then we
have (1,n) € ker(f7) that contradicts with (1,n) ¢ ker(5]). Altogether, we get that

By ¢ (O(X,Y),{pp: P €P},n%), ie rank(OPR(X,Y): O(X,Y)) >2+ (”ﬂ‘l 1)‘

-1
Consequently, we obtain that rank(OPR(X,Y): O(X,Y)) =2+ (n ) n
m
3. CONCLUSION

In this paper, we study transformation semigroup with restricted range 7 (X,Y’) and
its subsemigroups. We also calculate the relative rank of subsemigroups of 7(X,Y). In
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Section 1, we introduce some notation and some definition of transformation semigroups
to use through this paper. In section 2.1, we obtain the relative rank of OD(X,Y)
modulo O(X,Y) as shown in Proposition 2.1 and Proposition 2.2. In section 2.2, we
study and describe the relative rank of OP(X,Y) modulo O(X,Y’) as shown in Theorem
2.4 and Proposition 2.5-2.6. In section 2.3, we calculate the relative rank of OPR(X,Y)
modulo O(X,Y’) as shown in Proposition 2.7-2.8, Theorem 2.11-2.12 and Theorem 2.15-
2.16. In future work, we can study other kind structure of transformation semigroup with
restricted range.
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