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Abstract This work proposes a method for image reconstruction based on the least-squares (LS) method
that uses adaptive basis generated from the remaining image data with Euclidean-distance-based simi-
larity metric. To approximate missing image components, the LS problem is used with a low-dimensional
basis that optimally captures the main features of the image. This basis can be constructed based on the
singular value decomposition (SVD). The efficiency of this low-rank basis from SVD depends mainly on
the selected remaining image data used in the basis construction. In this work, an image is divided into
many 2-dimensional patches. Each incomplete patch is approximated by the LS method with the optimal
basis constructed from some available patches that are selected by similarity metric based on Euclidean
distance. As a result, different incomplete image patches can adaptively use different appropriate patches
to construct a more accurate optimal basis when compared to the one constructed from all available
patches. This work also considers the randomized SVD (rSVD) to accelerate the computation of the
optimal basis used in the approximation. The efficiency of the the proposed reconstruction technique is
shown through the numerical experiments on images with different features. The computational time of
the proposed method is compared for the cases when the low-dimensional bases are computed from SVD
and rSVD.
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1. INTRODUCTION

Let X be an image in gray-scale level. The basic principle of linear image representation
X can be written as

N
X:Zaigbi, (1.1)
i=1

where ¢; are the basis functions and a; are the representation coefficients of the image X
fori=1,2,...,N.
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The basis {¢;}Y; is an essential ingredient in the image representation and has been
investigated by many works. The basis used for image representation can be separated
into two categories. One is directional basis, such as curvelet basis, wavelet basis, and
contourlet basis. Another is adaptive basis, which is constructed by adapting its content
to fit or represent all characteristic of an images then it has better performance than the
other. One of the most important methods for image representation with optimal basis
selection is the singular value decomposition (SVD).

SVD is a standard techniques that has been used extensively for matrix decomposition
[1-9]. It is an efficient method for extracting a set of orthonormal basis, which is optimal
in the least-squares sense that it packs the maximum signal energy as few coefficients

as possible [8]. SVD is very useful in many real-world applications such as low-rank
matrix approximations [7, 8], image processing [10—13], image compression [I1, 12], face
recognition [12] and missing data image reconstruction [13-10].

It is well known that computing the full SVD may suffer from a heavy computational
cost and storage requirement when the dimension of matrices grows larger which in turn
limits their scalability. To deal with the high dimension matrix factorization, the methods
for decreasing the computational work have been developed. Randomized singular value
decomposition (rSVD) has been introduced by researchers from a wide range of areas,
such as T. Sarlos [17] , E. Liberty et. al. [18] and N. Halko et al. [19], which obtained
the rSVD algorithm in low-rank matrix approximations. The rSVD algorithm has been
shown to extract low-rank approximations while still preserving the accuracy.

In the application of image reconstruction, S. Intawichai et. al [21, 22] aimed to
reconstruct an image with missing pixels by extending the notion of least-squares (LS)
approximation. Proper orthogonal decomposition (POD) can be used to generate an
optimal low-dimensional basis, called POD basis, in Euclidean norm, which is essential
in the LS method for applying to approximate the missing data. This approach also
used the rSVD method to build the POD basis to decrease the computational times
and reduce the reconstruction errors when compared to the SVD method. S. Intawichai
et. al [23] introduced an image reconstruction approach by clipping a target image into
many 2-dimensional patches, which would be separated into the sets of complete and
corrupted patches. All complete patches were used to construct the POD basis, which
would be later used with the LS approximation. The known pixels in the neighborhood
around the missing components were used to reconstruct each incomplete patch. This
approach also efficiently applied the rSVD method to generate the POD basis,which could
further decrease the computation time with equivalent accuracy In this paper, we modify
the image reconstruction approach in [23] by combining patch grouping to construct the
adaptive basis. The patch grouping step specifies similar patches for each corrupted
patch by using the Euclidean-distance-based similarity metric. The set of similar patches
is then used to compute the adaptive basis using POD. In addition, we use SVD and
rSVD methods to build this basis. This step can improve the performance of POD basis
computation used in reconstruction approach.

The remaining parts of this work are organized as follows. Section 2 provides some
background on SVD and rSVD. The proposed method for recovery the missing data is
discussed in Section 3. In section 4, we perform numerical experiments that compare the
proposed method with the method in [23], as well as investigate the effects of using SVD
and rSVD for constructing POD basis. The conclusion is finally discussed in Section 5.
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2. SINGULAR VALUE DECOMPOSITION AND RANDOMIZED SINGULAR VALUE
DECOMPOSITION

Let X = [z1,22,...,2,] € R™ " be a full rank matrix, then suppose rank(X) = r
with 7 = min{m, n}.

Definition 2.1. The singular value decomposition (SVD) of X is
X=Usv" =Y oun], (2.1)
i=1

where U € IR™*™ and V € IR™*"™ are matrices which the column vectors are orthonormal.
The matrix ¥ = diag(oy, ...,0,) € R™ " r = min{m, n} where 01 > 09 > ... > 7, > 0.

The vectors u; and v;, which are the column vectors of U and V', respectively, are called
left and right singular vectors of X. It can be shown that u; and v; are eigenvectors of
XXT and XTX, respectively. In addition, oy, 09, ...,0, are known as singular values.
Note that, computing SVD of X directly can be time consuming, especially for large m
and n. In this case, if m > n, it is more efficient to compute SVD by applying the
method of snapshots, which is based on computing the eigenvalue decomposition of a
smaller matrix X7 X as shown in Algorithm 1.

Algorithm 1: The SVD algorithm
Input : A data matrix X € R™*".

Step 1. Set B=XTX
Step 2. Find the eigendecomposition of B, B = WDWT
Step 3. Sort D in descending order, D1 = sort(D)
Set V' by the vectors correspoding to D1, V' = cor(W)
Step 4. Calculating ¥ = /D1
Step 5. Computing U = XV¥~!
Output : The SVD of X: U, %,V

In many applications, we can reduce computational cost by dealing with a low-rank
matrix approximation of a data matrix X, which can be obtained from the truncated
SVD. Truncated SVD is constructed from the full SVD by choosing the top k£ dominant
singular values and their corresponding singular vectors as described in the following
definition.

Definition 2.2. Truncated SVD of X is

k
Xp = UeSp Vil =D oy, (2.2)
=1
where k < r is the numerical rank, U, € R™** and V,, € R™* are matrices with
orthonormal columns ¥ = diag(oy, ..., 0%) € R*** where o1 > 09 > ... > a1, > 0.

The minimum errors in the Frobinius norm and 2-norm of the optimal k-rank approx-
imation X to the matrix X given in the above definition are provided in the following
lemma.
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Lemma 2.3. A low-rank matriz Xy, = [T1,Ta,...,Ty| is the best rank k approximation
for the matriz X with the low-rank matriz approximation error measured by 2-norm:
IX = Xkll5 = 07pr, and  ||X = Xpl[p =D llm—Tll5= Y of. (23)
i=1 (=k+1

Next, we will define the randomized singular value decomposition (rSVD). The rSVD
of X can be formed as .

X = Ui Vi, (2.4)
where k < 7, U, € R™* and V, € R™** are matrices with orthonormal columns.
E e RF** is a diagonal matrix whose dlagonal entries are the singular values o1 > 05 >

. > 0 > 0. Note that, the matrices Uk, Ek, and Vk from rSVD are obtained from

Algorithm 2 and generally different from the standard SVD.
To construct rSVD, define the random projection of a matrix X as

A= XQ, (2.5)

where € is a random matrix of dimension n-by-(k+ p), k is the target low rank and p is a
small positive integer used as an oversampling parameter that can be chosen arbitrarily.
The rSVD method was introduced in [19] to reduce the computational time in approxi-
mating matrix factorizations by using random projections. The procedure for computing
rSVD is separated into two stages. First, the random sampling matrix is applied to the
data matrix X for generating a reduced matrix whose range still approximates the range
of this original data matrix. Next, the resulting reduced matrix is factorized using SVD.
Algorithm 2 provides details of the procedure for constructing the rSVD of a given data
matrix.

Algorithm 2: The rSVD algorithm
Input : A data matrix X € R™*" with target rank k

and an oversampling p

Stage A.

Step 1. Define a random matrix Q with dimension n x (k + p)
Step 2. Compute the matrix product A = X2

Step 3.  Construct (Q by computing the QR decomposition of A
Step 4. Set a reduce matrix, B = QT X

Stage B.

Step 5.  Compute the SVD of B, B = UsSvT

Step 6.  Set U= Q(}

Output : The rSVD of X: U, %,V

3. PROPOSED METHOD

We modify an image reconstruction approach in [23] by combining patch grouping
with an adaptive basis based on similarity metric. Figure 1 shows a stage-diagram of
the proposed method. To design the adaptive basis, we begin with the patch grouping
step. This step specifies similar patches of a target patch by the Euclidean-distance-
based similarity metric. This target patch can be a corrupted patch that we want to
reconstruct. In the next step, an adaptive basis is constructed by the SVD or rSVD
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based on the selected patches obtained in the previous step. This basis is then used in
the reconstruction of the corrupted patch.

FI1GURE 1. The stage-diagram of the proposed method for reconstruct
the missing data in a damaged image.

Let X be a gray scale image. We begin with clipping the image X to the v/m x v/m
patches. We then get n small patches with size \/m x \/m pixels and the patches can be
separated to two sets, that is, S. and S;,. Let S. = {s1,82,...,8,.} € R" and §;,, =
{51,52,...,8n,,} € R™ be the sets of the complete and corrupted patches, respectively,
whose the elements in both sets are vectorized from 2D matrices to be vectors in IR".

Suppose that s C IR™ is an incomplete vector which represents the corrupted patch
with n = ny + ny components where ny and n, are the numbers of known and un-
known components respectively. We will estimate the adaptive basis which is suitable for
reconstructing each corrupted patch by combining the patch grouping with POD basis.

PaTcH GROUPING

Based on the patch grouping strategy in [20], for each incomplete vector 5 € R", we
find its similar vectors from S, by the Euclidean-distance-based similarity metric, which
is defined by

Sim(3, s¢) = ||5 — sel2, (3.1)

where ||.||2 denotes the Euclidean-distance and s. € S, is a candidate patch. The smaller
the value of Sim(s, s.) is, the more similar 5 and s, are. The group of its L- most similar
patches denoted by {s.;}%; are chosen to construct the adaptive basis by using SVD or
rSVD methods.

RECONSTRUCTION

Recall that, 5 is the incomplete vector that has n = ny + ny elements. Now, we need
to factorize 5 to the vectors of known and unknown components. Let {f1, fa,..., fu, },
{91,92,--.,9n,} C {1,2,...,n} be the indices of the known and unknown components,
respectively, of 5. Suppose that F' = [ey,,... ez, | € R™™ and G = [eg,,..., ¢4, ] €
IR"*™ are the matrices which the columns ey,, e,, € IR™ are the f;-th, g;-th column of the
identity matrix I,,, respectively. Let 57 := FT5 € R™ and 5, := GT5 € R". Then, the
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known and the unknown components are separately contained in the vectors sy and 5,,
respectively. Note that, when F'7' is pre-multiplied, it extracts the n r rows corresponding
to the indices f1,..., fn,. Similarly, pre-multipying G7T is equivalent to extracting the ng
rows corresponding to the indices g1,..., gn,-

To approximate the missing elements contained in s,, we fist project 5 onto the column
span of adaptive basis matrix U with k = rank(U). This basis is constructed from the
set of similar patches of s together with using the SVD or rSVD method. That is,

s~Ua, or sp=Ura and 35,4~ Uya,

where a € R" is a coefficient vector, Up:=FTU € R™** and U, :=GTU € R"o >k,
The coefficient vector a can be specified by considering the known components contained
in 5y through the approximation 55 ~ Uya, in the following least-squares problem:

min ||y — Uyall3. 3.2

Jnin |57 — Uyall3 (3.2)

The solution of the problem (3.2) is given by a = U}gf, where UfJr = (U;;FUC)_lUcT is the
Moore-Penrose psudoinverse. That is,

8y ~ Uga = U,U}5;. (3.3)

Algorithm 3 describes the steps for missing data reconstruction using least-squares ap-
proach with similarity metric.

Algorithm 3: Missing data reconstruction via Least Squares approach

Input : Complete data set S, C IR™ and a target rank k
Incomplete data vector 5 € IR" with known entries in 5y € IR"/
and unknown entries in 5, € IR", where n = ny + n,

Step 1. Find the similar vectors of 5, that is {s;}2, € S, and form
S =[s1,...,50] € R™% and let r = rank(S)
Step 2.  Compute basis U of rank k£ < r by using SVD or rSVD method
Step 3. Solve the coefficient a € R¥ from the least Squares
problem in (3.2): min [[5,, — Usal3
aclRF

Step 4. Compute the approximation 5, ~ Uza

Output : Approximation of s,

THE OPTIMAL BASIS

In this work, the basis is considered by computing the singular value decomposition
(SVD). This basis can be obtained from the left singular vectors as follows.

For a given matrix X = [z1,...,2,] € R™*" and k < r = rank(X). The SVD of X is
X =UxVT where U = [uy,...,u,] € R™" and V = [vy,...,v,] € R™*" are matrices
with orthonormal columns which the column vectors w; and v; are the left and right
singular vectors, respectively. 3 = diag(oy,...,0.) € R™" with oy > 09 > -+ > 0, > 0.
As discussed in Section 2, X; = UkEkaT is the optimal solution of the least- squares
problem

min X — X%, rank(Xy) =k (3.4)
k
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FIGURE 2. (A-D) The original gray-scale test images (E-H) Incomplete
images with 2.06% missing pixels.

with minimum error || X — X}||% = Z o? (by Lemma 2.3). The optimal orthonormal
t=k+1

basis of rank k, which is also called proper orthogonal decomposition (POD) basis of di-

mension k, is the matrix formed by the first k column vectors of U, i.e. Uy = [uq,...,ux] €

R™*, k<.

When dealing with high dimensional images, computing SVD could computational
intensive. To overcome this issue, the rSVD method [17, 19] described in Section 2 can
be used to reduce the complexity for computing this POD basis in the reconstruction
process.

4. EXPERIMENTAL RESULTS

This section demonstrates numerical experiments of the proposed method and inves-
tigates between using SVD and rSVD methods for constructing the adaptive basis. In
addition, we compare this proposed method to the previous method in [23]. We consider
the CPU times and the reconstruction errors which is the relative error in 2-norm. More-
over, the reconstruction performances are considered in term of peak signal-to-noise ratio
(PSNR).

In general, the color (RGB) image is generated from three systems of additive primary
colors, which are red, green, and blue. In computation, each color represents the intensity
value ranging from 0 to 1, which can be represented in gray-scale level. For the purpose
of testing our image reconstruction approaches, we therefore only consider the R-image
component and represent it as a gray-scale image. The same procedure can be applied
to G-image and B-image. Here, we use four standard test images in gray-scale color with
size 512 x 512 : Lena, Fingerprint, Hill, and Peppers as shown in Figure 2.

These images are damaged with 2.06% missing pixels and observed in two cases.

Case I: Splitting the test image to 1024 patches with size 16 x 16 pixels
Case II: Splitting the test image to 256 patches with size 32 x 32 pixels
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For the first case, we have the matrix representing the image with dimension 256 x
1024. The number of complete and incomplete columns in this matrix are 934 and 90,
respectively. In another case, we have the matrix representing the image with dimension
1024 x 256. The number of complete and incomplete columns in this matrix are 186 and
70, respectively. We investigate the computation of the adaptive basis by using SVD and
rSVD.

To test the reconstruction approaches, we considers low dimensional matrix with rank
k = 10,15, 20,25,30. The four examples of reconstruction images with rank k£ = 20 are
shown in Figure 3. The results are quite similar when compare between using SVD and
rSVD methods for each Cases I and II. However, for a selected method for computing
POD basis, the results from Cases I and II are quite different. Some missing pixels in
Case I are not recovered accurately because some patches contain mostly corrupted area
and the known pixels in neighborhood around the incomplete patch are not sufficient to
perform the reconstruction. However, since the patches in Case II are relatively large
when comparing with Case I, the number of the known pixels are generally enough for
the reconstruction.

We compare the performance of different approaches by using the relative error from
the image reconstructions and the computational time for constructing the adaptive basis,
which are shown in Figure 4 and Figure 5, respectively. The results show that the adaptive
basis computed by the rSVD method gives a little better performance than the basis
computed by the SVD method. In Figure 4, the images (A), (B), (D), (E) and (H) show
that the results when using the rSVD method is more accurate than when using the SVD
method, while (C), (F) and (G) are better in some rank k. When we compare Cases I and
II, the reconstructed images of Lena and Peppers are slightly more accurate in Case I,
but Fingerprint, and Hill are more accurate in Case II.

The simulation times for constructing the basis sets in Figure 5 are shown to be slightly
oscillating for different rank &£ when using rSVD, which may result from generating new
random projection every time we perform a reconstruction. Figure 5 also illustrates that
the rSVD method mostly uses less CPU time than SVD.

In addition, the comparisons between the proposed approach and the previous approach
in [23] when using SVD and rSVD for Case I and Case II are shown in Figure 6 and Figure
7. The efficiency of these strategies are measured by the peak signal-to noise ratio (PSNR),
as shown in Figure 6. In Case I, the proposed approach gives the better resulting images
than the previous approach when using SVD method, while using rSVD gives similar
results for both approaches. In Case II, the results of the proposed approach are similarly
to the previous approach. Figure 7 shows the computational time for computing the
adaptive basis which demonstrates that the propose method in both Case I and Case II
uses less CPU times than the previous method when employing SVD, but uses similar
CPU time when employing rSVD. In conclusion, from our numerical tests, the proposed
method is more accurate than the previous method in [23] mainly for Case I when smaller
patches are used, while both methods give the same order of accuracy for Case II when
larger patches are used.

5. CONCLUSION

This work introduced an image reconstruction approach using least-squares (LS) method
with adaptive basis constructed from similarity metric of available image pixels. A given
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FicURrE 3. The reconstructed images when using the proposed method
with rank k& = 20. Case I: (A-D), (E-H) show the reconstructed images
with the SVD and rSVD methods, respectively. Case II: (I-L), (M-P)
show the reconstructed images with the SVD and rSVD methods, re-
spectively.

test image with missing pixels was first divided into many patches. For each incom-
plete patch, some similar patches from the set of complete patches are selected by the
Euclidean-distance-based similarity metric. The set of similar patches is then used to
construct an adaptive basis for forming a low-dimensional subspace, which would be fur-
ther used in the least-squares method to approximate the missing pixels in the incomplete
patch. This work also applied the rSVD method to reduce the computational time of basis
construction when compared with the standard SVD method. In the numerical experi-
ments, we tested the proposed method on four images with different features. The results
were shown to recover the missing pixels of these images accurately when compared with
an existing method that does not use Euclidean-distance-based similarity metric.
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Figure 7. Computational time for computing the adaptive basis used
in the reconstruction of Case I and Case II For Lena, Fingerprint, Hill
and Peppers, respectively, when compare to the previous method.
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