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On Generalized Distinguished Prime Submodules
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Abstract : Distinguished prime submodules of a module over a commutative ring
with non-zero identity have been investigated in [1]. Here we study generalized dis-
tinguished prime submodules of modules and we will give a condition which allow
us to determine whether the radical of submodules of a module are a generalized
distinguished prime submodule.
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1 Introduction

In this paper all rings are commutative rings with non-zero identity and all modules
are unital. Assume that N is a proper submodule of any R-module M and let
P be a prime ideal of a ring R. We recall from [7, 1] the subset M(P ) of M
defined by {m ∈ M : cm ∈ PM for some c ∈ R − P}. Then it is clear that
M(P ) is a submodule of M containing PM , P ⊆ (PM : M) ⊆ (M(P ) : M) and
M(P ) is then called distinguished submodule. Now we shall denote the subset
M(N, P ) of M by {m ∈ M : cm ∈ PM + N for some c ∈ R− P}. It is clear that
M(N, P ) is a submodule of M and N + PM ⊆ M(N, P ). In this case we also say
that M(N,P ) is a generalized distinguished submodule of M . Recently extensive
research has been done on prime submodules (see, for example [7,8,1]). Here we
study some properties of generalized distinguished submodules of a module. In
general, the radical of a primary submodule is not prime and the radical does
not split intersections of submodules, as is valid in the ideal case. We study
conditions for which these properties hold in the some module setting. Although a
characterrization of the elements of the radical of a submodule of a free R-module
is given in [9], no method for finding a generating set of the radical of a submodule
appears in the literature. The aim of this paperis to present a method for finding
the internal structure of the radical of submodules of a module. A number of
results concerning of these concepts are given (see sections 2, 3 and 4).

For the sake of completeness, we state some definitions and notations used
throughout. A proper submodule N of a module M over a ring R is said to be
prime (respect. primary) if for any r ∈ R and m ∈ M such that rm ∈ N , either
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m ∈ N or r ∈ (N : M) = {a ∈ R : aM ⊆ N} (resp. rnM ⊆ N for some positive
integer n). It is easy to show that if N is a prime (resp. primary) submodule of M
then the annihilator P of the module M/N (resp. the radical annihilator P ′ of the
module M/N) is a prime ideal of R, and N is said to be P -prime submodule (resp.
P ′-primary submodule) of M . The radical of N in M , denoted by radM (N), is
defined to be the intersection of all prime submodules of M containing N . Should
there be no prime submodule of M containing N , then we put radM (N) = M [7,
8].

An R-module M is said to be secondary (resp. co-primary) if M 6= 0 and for
each r ∈ R the R-endomorphism of M produced by multiplication by r is either
surjective (resp. injective) or nilpotent, so nilrad(M) = P is a prime ideal of R,
and M is said to be P -secondary (resp. P -co-primary). A module M is said to
be representable if it can be written as a sum M1 + ...,Mk of secondary modules;
such a sum is called a secondary representation of M . if this representation is
irredundant, we say that the attached primes of M are AttR(M) = {P1, ..., Pk},
where nilrad(Mi) = Pi [6]. Let N be an R-submodule of M . Then N is pure in
M if rN = N ∩ rM for every element r ∈ R.

Given a maximal ideal P of R. An R-module M will be called P -special if for
each a ∈ P , m ∈ M , there exists a positive integer n and an element c ∈ R − P
such that canm = 0. Moreover, the R-module M is called special if M is P -
special for every maximal ideal P of R [8]. Recall that an R-module M is called
a multiplication module if for each submodule N of M , N = IM for some ideal I
of R [3].

2 The radical of submodules

In this section we list some basic properties concerning generalized distinguished
submodules.

Remark 2.1. Let P, Q be prime ideals of a ring R and let N1, N2 be proper
submodules of an R-module M . Then:

(i) If N1 ⊆ PM , then M(N1, P ) = M(0, P ) = M(P ). Moreover, if N1, N2 ⊆
PM , then M(N1, P ) = M(N2, P ).

(ii) If M(N1, P ) ⊆ M(N1, Q) 6= M , then P ⊆ Q.
(ii) If R is a domain and M is an R-torsion module, then 0M = 0 and

M(N, 0) = M = T (M), where T (M) is the torsion submodule of M . Moreover,
T (M/N) = {m + N ∈ M/N : rm ∈ N for some 0 6= r ∈ R} = M(N, 0)/N . In
particular, if M is a torsion module, then M/N is torsion.

The following Proposition is used widely in the sequel.

Proposition 2.2. Let N be a proper submodule of an R-module M and P a prime
ideal of R such that M 6= M(N, P ). Then M(N,P ) is a P -prime submodule of M
and M(N, P ) is the intersection of all P -prime submodules of M containing N .
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Proof. Let rx ∈ M(N,P ), for r /∈ (M(N, P ) : M) and x ∈ M . Then r /∈ P
and crx ∈ PM + N for some c ∈ R − P . Since cr /∈ P , we must have x ∈
M(N, P ). This shows that M(N, P ) is a prime submodule of M . Clearly, P ⊆
(M(N,P ) : M). Now suppose that s ∈ (M(N, P ) : M) such that s /∈ P . Then
sM ⊆ M(N, P ). Consequently, for each m ∈ M , we get sam ∈ M(N, P ) for some
a ∈ R − P . As as /∈ P , we must have m ∈ M(N, P ); hence M = M(N, P ) which
is a contradiction. So we have (M(N, P ) : M) = P and M(N, P ) is a P -prime
submodule of M .

Next, let K be a P -prime submodule of M containing N and suppose that
z ∈ M(N,P ). Then tz ∈ PM + N for some t /∈ P . Since (K : M) = P , we
must have tz ∈ N + K = K and t /∈ (K : M). Then K prime gives z ∈ K. Since
M(N, P ) is a P -prime submodules of M containing N , we have M(N, P ) =

⋂{K :
K is a prime submodule of M containing N}.

Theorem 2.3. Let N be a proper submodule of an R-module M . Then

radM (N) =
⋂
{M(N, P ) : P is a prime ideal of R}.

Proof. Assume that m ∈ ⋂{M(N,P ) : P is a pime ideal of R} = T and let K be
a prime submodule of M containing N . Since (K : M) is a prime ideal of R, we
must have m ∈ M(N, (K : M)), so rm ∈ (K : M)M + N for some r /∈ (K : M);
hence rm ∈ K. Then K prime gives m ∈ K. Thus T ⊆ radM (N). Now let
x ∈ radM (N), and let M(N,P ) ∈ T . By Proposition 2.2, we must have either
M = M(N, P ) or M(N,P ) is a P -prime submodule of M containing N . In any
case m ∈ M(N, P ). Thus radM (N) ⊆ T , so we have equality.

Theorem 2.4. Let N be a P -primary submodule of a module M over a zero-
dimential ring R. Then radM (N) = M(N, P ).

Proof. The inclusion radM (N) ⊆ M(N,P ) follows from Proposition 2.2. For the
other containment, let m ∈ M(N, P ). Then rm ∈ PM + N for some r /∈ P . Let
K be a prime submodule of M containing N . By assumption, it is easy to see that
P = (K : M). So rm ∈ K. Then K prime gives m ∈ K; hence M(N, P ) ⊆ K,
and the proof is complete.

Lemma 2.5. Let M be an R-module, N a proper R-submodule of M and P a
maximal ideal of R such that M 6= PM + N . Then PM + N is a P -prime
submodule of M .

Proof. First, we show that (PM + N : M) = P . If r ∈ P , then rM ⊆ PM + N ,
so P ⊆ (PM + N : M); hence we have equality since P is maximal. Next, since
M/(PM + N) is a torsion-free R/P -module, we must have PM +N is prime.

Theorem 2.6. Let R be a one-dimensional domain, M an R-module and N a
proper submodule of M . Then radM (N) = M(N, 0)∩(

⋂{PM+N : P is a maximal ideal of R}).
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Proof. By Lemma 2.5, it is clear that radM (N) ⊆ M(N, 0) ∩ (
⋂{PM + N :

P is a maximal ideal of R}) = H. Assume that L is a prime submodule of M
containing N and let (L : M) = P . By hypothesis, if P 6= 0, then P is a maximal
ideal of R and PM + N ⊆ L. If P = 0, then M(N, 0) ⊆ L. In any case, we must
have H ⊆ radM (N), as required.

Proposition 2.7. Let M be an R-module, N a proper R-submodule of M and
P a prime ideal of R. Then N is a P -prime submodule of M if and only if
N = M(N,P ).

Proof. Suppose that N is a P -prime submodule of M . It suffices to show that
M(N, P ) ⊆ N . Let x ∈ M(N, P ). Then cx ∈ PM + N = N for some c /∈ P ;
hence x ∈ N , so we have equality. The other implication follows from Proposition
2.2.

Let M be an R-module. m ∈ M is said to be torsion-free element if rm = 0
implies that r = 0 for every r ∈ R.

Theorem 2.8. Let R be a domain, M a co-primary R-module such that M has a
torsion-free element t and N a proper pure R-submodule of M . Then radM (N) =
M(N, 0) = N .

Proof. By Proposition 2.7, it suffices to show that N = M(N, 0) is a 0-prime
submodule of M . First, we show that N = M(N, 0). Since the inclusion N ⊆
M(N, 0) is trivial, we will prove the reverse inclusion. Let m ∈ M(N, 0). Then
there is an element 0 6= c ∈ R such that cm ∈ N ∩ cM = cN , so cm = cn for som
n ∈ N ; hence M co-primary gives either n = m ∈ N or ckM = 0 for some positive
integer k. Therefore, ckt = 0 which is a contradiction, so we have equality, as
needed.

Theorem 2.9. Let N be a proper submodule of a especial module M over a local
ring (R, P ). Then radM (N) = M(N,P ).

Proof. First, we show that if L is a prime submodule of M , then (L : M) = P .
Suppose not. So there is an element a ∈ P such that a /∈ (L : M). Let m ∈ M .
Then M especial gives there exists a positive integer s and c /∈ P such that
casm = 0. As c is a unit element of R, we must have asm = 0 ∈ L, so m ∈ L
which is a contradiction. Thus (L : M) = P .

Next, by Proposition 2.2, it suffices to show that M(N, P ) ⊆ radM (N). Let
x ∈ M(N,P ). Then cx ∈ PM + N for some c /∈ P . Let L be a prime submodule
of M containing N . Since (L : M) = P , we must have cx ∈ L, so x ∈ L; hence
M(N, P ) ⊆ L. This proves that M(N, P ) ⊆ radM (N), as required.

Theorem 2.10. Let N be a proper submodule of a Noetherian module M over
a ring R. Then There exist prime ideals P1, ..., Pn of R such that radM (N) =⋂n

i=1 M(N, Pi).
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Proof. By [7, Theorem 4.2], there are only finite number of minimal prime submod-
ules L1, ..., Ln of M containing N , so radM (N) =

⋂n
i=1 Li. For each i, i = 1, ..., n,

let (Li : M) = Pi. Since the inclusion radM (N) ⊆ ⋂n
i=1 M(N, Pi) is trivial, we

will prove the reverse inclusion. Let x ∈ ⋂n
i=1 M(N,Pi). Then there exists ci /∈ Pi

such that cix ∈ PiM + N for every i, so cix ∈ Li; hence x ∈ Li for every i.
Therefore, x ∈ radM (N), as needed.

3 Representable modules

. Let N be an R-submodule of M . In this section, we study relation between
Att(M/N and the prime submodules of M containing N .

Lemma 3.1. Let P be an ideal of R, M an R-module and N a proper submodule
of M . Then there exists a proper submodule K of M containing N such that
P = (K : M) if and only if PM + N 6= M and P = (PM + N : M).

Proof. Let K be a proper submodule of M containing N such that P = (K : M).
Then PM + N ⊆ K 6= M . Since P ⊆ (PM + N : M), it suffices to show that
(PM + N : M) ⊆ P . Let r ∈ (PM + N : M). Then rM ⊆ PM + N ⊆ K; hence
r ∈ P . The other implication is clear.

Theorem 3.2. Let N be a proper submodule of an Artinian module M over a ring
R. Also suppose that M/PM is a finitely generated for some P ∈ AttR(M/N).
Then M(N,P ) is a prime submodule of M with P = (M(N, P ) : M).

Proof. By [12, Corollary 2.6], there exists a proper submodule K of M such that
P = (K : M). Then Lemma 3.1 gives PM +N 6= M and P = (PM +N : M). By
assumption, let M/PM = R(x1+N)+...+R(xn+N), so M = Rx1+...+Rxn+PM .
Now we claim that M 6= M(N, P ). Otherwise, for each i, there is an element
ci ∈ R−P such that cixi ∈ PM +N . If we put c = c1c2...cn, then cM ⊆ PM +N
which is a contradiction. Now the assertion follows from Proposition 2.2.

Theorem 3.3. Let N be a proper submodule of an Artinian module M over a ring
R and M =

∑n
i=1 Mi a minimal secondary representation of M with Att(M) =

{P1, ..., Pn}. Then

radM (N) =
⋂
{M(N,P ) : P ∈ Att(M) and (N : M) ⊆ P}.

Proof. It is enough to show that

H =
⋂
{M(N,P ) : P ∈ Att(M) and (N : M) ⊆ P} ⊆ radM (N).

Let x ∈ H. Then x ∈ M(N, P ) for every P ∈ Att(M) with (N : M) ⊆ P . Suppose
that L is a prime submodule of M containing N . Then by [12, Lemma 2.6], there
exists Q ∈ Att(M/N) ⊆ Att(M) such that Q = (L : M). As (N : M) ⊆ Q, we
must have x ∈ M(N, Q) ⊆ L, as required.
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Lemma 3.4. Let N be a proper submodule of an Artinian module M over a ring
R and P a prime ideal of R. Then PM + N 6= M and P = (PM + N : M) if and
only if P ∈ Att(M).

Proof. This follows from Lemma 3.1 and [12, Corollary 2.6].

Theorem 3.5. If N is a proper submodule of an Artinian module M over a one-
dimensional domain R, then radM (N) =

⋂{PM + N : P ∈ Att(M/N)}.

Proof. Let P ∈ Att(M/N)}. Then Lemma 3.4 and Lemma 2.5 gives PM +N is a
P -prime submodule of M containing N , so PM +N = M(N, P ; hence radM (N) ⊆⋂{PM + N : P ∈ Att(M/N)} = H. For the other containment, assume thar
m ∈ H. Then m ∈ PM + N for every P ∈ Att(M/N). Let K be a prime
submodule of M containing N and Q = (N : M). Then [12, Lemma 2.6] gives
Q ∈ Att(M/N), so QM + N ⊆ K; hence m ∈ K, as needed.

Theorem 3.6. If N is a P -primary submodule of an Artinian module M over a
one-dimensional domain R, then radM (N) = PM + N .

Proof. This follows from Theorem 3.6 and [5, Theorem 2.2].

Theorem 3.7. Let R be a one-dimensional domain, M an R-module and N a
proper submodule of M with (radM (N) :R M) = P . Then the following hold:

(i) If M is secondary, then radM (N) = M(N, P ).
(ii) If M is a torsion module such that 0 is a prime submodule, then radM (N) =

M(N, P ).

Proof. In any case, radM (N) is a prime submodule of M by [4, Theorem 3.5 and
Corollary 3.7]. Now the assertion follows from Proposition 2.7.

Theorem 3.8. Let R be a Noetherian domain, M a secondary R-module and N
a proper submodule of M with (radM (N) :R M) = P . If every prime submodule
of M contains only finitely many prime submodules, then radM (N) = M(N,P ).

Proof. Since radM (N) is prime by [4, Corollary 3.6], the result follows from Propo-
sition 2.7.

4 Submodules of a finitely generated module

. Recall that the set of supported prime ideals of a given R-module M is defined
as: SuppR(M) = {P ∈ Spec(R) : MP 6= 0}. It is well-known that if M is a finitely
generated, then SuppR(M) is the set of prime ideals of R which contain (0 : M)
(see [11, Lemma 9.20].

Lemma 4.1. Let N be a proper submodule of an R-module M and P a prime
ideal of R such that M 6= M(N, P ). Then P ∈ SuppR(M/N).



On Generalized Distinguished Prime Submodules 375

Proof. Suppose not. So (M/N)P = 0. Let m ∈ M . Then (m+N)/1 = 0, so there
is an element t /∈ P such that tm ∈ N ⊆ N + PM ; hence m ∈ M(N,P ) which is
a contradiction. Thus P ∈ SuppR(M/N).

Proposition 4.2. Let N be a proper submodule of a finitely generated R-module
M and P a prime ideal of R such that P ∈ SuppR(M/N). Then M 6= M(N, P ).

Proof. Suppose not. First, we show that MP = (PRP )MP + NP . It suffices to
show that MP ⊆ (PRP )MP + NP . Let z = m/s ∈ MP for some m ∈ M =
M(N, P ) and s ∈ R − P , so there is an element c /∈ P such that cm ∈ PM +
N ; hence z = (cm)/(cs) ∈ (PM + N)P = (PRP )MP + NP . By hypothesis,
Nakayama’s lemma gives MP = NP . Since P ∈ Supp(M/N), we must have
0 6= u = (a + N)/t ∈ (M/N)P for some x ∈ M and t /∈ P . As a/t ∈ NP , there
exist b ∈ N and w /∈ P such that a/t = b/w. Then aws′ = ts′b ∈ N for some
s′ /∈ P ; thus u = (aws′ + N)/(s′wt) = 0 which is a contradiction. Therefore
M(N, P ) 6= M .

Corollary 4.3. Let N be a proper submodule of a multiplication R-module M and
P a prime ideal of R such that P ∈ SuppR(M/N). Then M 6= M(N,P ).

Proof. By [2, Proposition 1], the proof is similar to the Proposition 4.2.

Theorem 4.4. Let M be a finitely generated module (resp. multiplication mod-
ule) over a ring R. Then every proper submodule of M is contained in a prime
submodule of M .

Proof. Let N be a proper submodule of M . Then there is a maximal ideal P
of R such that (N : M) ⊆ P , so P ∈ SuppR(M/N); hence M 6= M(N, P ) by
Proposition 3.2. Now the assertion follows from Proposition 2.2.

Corollary 4.5. Let R be a commutative ring, M a finitely generated P -secondary
R-module and N a proper submodule of M . Then radM (N) = M(N, P ) = N .

Proof. By Theorem 4.4, radM (N) 6= M . Therefore, radM (N) = M(N,P ) by [10,
Proposition 3] and Proposition 2.7.
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