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Abstract In this work, we study the famous fixed point result named Caristi-Kirk’s fixed point theorem

(CK-FPT, for short) in partial metric spaces and merge such a theorem with the theory of ball spaces.

We begin our work with new results in the framework of partial metric spaces concerning Caristi-Kirk ball

spaces. At the final section, our results are applied to provide a short and luxurious proof for CK-FPT

on partial metric spaces.
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1. Introduction and Fundamental Results

Based on the fact that a fixed point theorem is a good choice for solving many math-
ematics problems, fixed point results have many applications in real-world phenomena.
For example, some fixed point theorem is used to confirm the existence and uniqueness
of solutions for several equations such as di↵erential equations, integral equations, sto-
chastic equations, etc. Next, we quote one of the famous fixed point theorems called
Caristi-Kirk’s fixed point theorem (C-K FPT, for short) as follows:

Theorem 1.1 ([1]). Let ' be a lower semicontinuous function (LSF, for short) from a

complete metric space (X, d) into [0,1) and T be a self mapping on X. If the following

condition holds:

d(x, Tx)  '(x)� '(Tx) (1.1)

for all x 2 X, then the fixed point of T exists.

This theorem was first introduced by Caristi [1] in 1976, and it is applied to nonconvex
minimization problems three years later (see mention 6). Furthermore, Theorem 1.1 can
also be used for other mathematical problems and various problems in several branches of
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science. Based on various applications of Theorem 1.1, there are a lot of generalizations
of this result in several directions. One of theses directions is to investigate this result in
new spaces.

Next, we give a definition of one of the extensions of metric spaces, which is the
motivation of the focussed results in this paper. This space was presented by Matthews
[2] in 1994, and its definition is shown below.

Definition 1.2 ([2]). The pair (X, p) is called a partial metric space (PMS, for short) if
X 6= ; and p is a partial metric (PM, for short), that is, p is a nonnegative valued-real
function from X ⇥X satisfyingthe the following conditions for all x, y, z 2 X:

(PM1) p(x, y) = p(y, x);
(PM2) p(x, x) = p(x, y) = p(y, y) if and only if x = y;
(PM3) p(x, x)  p(x, y);
(PM4) p(x, z) + p(y, y)  p(x, y) + p(y, z).

For the conciseness of this paper, we omit the other definitions in PMS such as a
convergence sequence, a Cauchy sequence and a completeness in a PMS. The reader can
see more details in [2]

In [3], Theorem 1.1 is extended from the framework of matric spaces to partial matric
spaces as follows:

Theorem 1.3 ([3]). Let  be a LSF from a complete PMS (X, p) into [0,1) and T be a

self mapping on X. If the following condition holds:

(CC) p(a, Ta)   (a)�  (Ta) for all a 2 X,

then the fixed point of T exists.

In 2015, Kuhlmann [4] firstly introduced a concept of a ball space and many ideas
related to a ball space as follows:

Definition 1.4 ([4]). Let X be a nonempty set.

(1) The pair (X,B) is called a ball space if B is a nonempty set of subsets of X.
(2) A set in a ball space is called a ball.
(3) A nonempty set of balls in a ball space is called a nest if it is totally orderd by
inclusion.

Definition 1.5 ([4]). The ball space (X,B) is said to be spherical complete if and only
if for every nest N of balls in B, we have

T
N 6= ;.

Definition 1.6 ([4]). A function f is called a self-contractive function on a ball space
(X,B) if there is a function B : X ! B satisfying the following conditions for all x 2 X:

(S1) x 2 B

x

;
(S2) B

f(x)

✓ B

x

and if x is not a fixed point of f , then B

f(x)

( B

x

;
(S3) if N is a nest of balls such that every ball B

x

2 N contains B
f(x)

and z 2
T

N ,
then B

z

✓
T

N ,

where B

a

represents B(a) for all a 2 X.

Based on Zorn’s lemma, the next fixed point result in ball spaces is proved in [4].

Theorem 1.7 ([4]). Every self-contractive function on a spherically complete ball space

admits a fixed point.
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In [5], Kuhlmann et al. also gave a new short proof of Theorem 1.1 using the above
result in ball spaces.

Inspired by the above literature, this paper aims to investigate the connection between
Theorem 1.7 and ball spaces in the framework of PMSs. Our main results provide a short
and luxurious proof of Caristi Kirk’s fixed point theorem on PMSs in the last section.

2. Main Results on Partial Caristi-Kirk Ball Spaces

In this section, for a PMS (X, p), a given point x 2 X, a given LSF  : X ! [0,1),
the symbol B 

x

is defined by the following set:

B

 

x

:= {a 2 X : p(x, a)   (x)�  (a) + max{p(x, x), p(a, a)}}. (2.1)

The collection B
 

:= {B 

x

: x 2 X} is called a partial Caristi-Kirk ball space. If p is a
metric, then a partial Caristi-Kirk ball space reduces to the idea of a classical Caristi-Kirk
ball space.

Next, we give main theoretical results related on partial Caristi-Kirk ball spaces.

Theorem 2.1. Let  be a LSF from a complete PMS (X, p) into [0,1). Suppose that

there is M ✓ X such that p is continuous and

lim
n!1

p(x
n

, x

n

) = 0 (2.2)

for {x
n

} ✓ M with lim
n!1

 (x
n

) = inf
x2M

 (x). Then a partial Caristi-Kirk ball space (X,B
 

)

is spherically complete.

Proof. Take a nest N = {B 

x

: x 2 M} in B
 

. For each x 2 X, we have

p(x, x)   (x)�  (x) + p(x, x), (2.3)

that is, x 2 B

 

x

. This implies that for every x, y 2 M , we get x 2 B

 

y

or y 2 B

 

x

since N
is a nest. It yields that

p(x, y)  | (x)�  (y)|+max{p(x, x), p(y, y)} (2.4)

for all x, y 2 M . Consider {x
n

} in M such that

lim
n!1

 (x
n

) = r := inf
x2M

 (x).

Since { (x
n

)} is a Cauchy sequence in R, from (2.4) together with (PM1), (PM2) and
(2.2), we obtain {x

n

} is a Cauchy sequence in (X, p). It follows from the completeness of
(X, p) that {x

n

} converges to some z 2 X.
Finally, for each x 2 M , we have

p(x, z) = lim
n!1

p(x, x
n

)

 lim
n!1

[| (x)�  (x
n

)|+max{p(x, x), p(x
n

, x

n

)}]

  (x)�  (z) + max{p(x, x), p(z, z)}.
Hence, z 2 B

 

x

for every x 2 M . It yields that
T

N 6= ;.

Theorem 2.2. Let  be a LSF from a complete PMS (X, p) into [0,1) and T be a self

mapping on X. Suppose that

p(a, Ta)   (a)�  (Ta) (2.5)

for all a 2 X. Then T is a self-contractive on (X,B
 

).
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Proof. The proof of Theorem 2.1 shows that x 2 B

 

x

for all x 2 X. It implies that (S1)
holds.

To prove (S2), we will show that B 

Tx

✓ B

 

x

for all x 2 X. For each y 2 B

 

Tx

, we get

p(x, y)  p(x, Tx) + p(Tx, y)� p(Tx, Tx)

  (x)�  (Tx) +  (Tx)�  (y) + max{p(Tx, Tx), p(y, y)}� p(Tx, Tx)

  (x)�  (Tx) +  (Tx)�  (y) + p(y, y)

  (x)�  (y) + max{p(x, x), p(y, y)}.

Therefore, y 2 B

 

x

and so B

 

Tx

✓ B

 

x

. Next, we will show that B

 

Tx

( B

 

x

whenever

Tx 6= x. It is easy to see that if Tx 2 B

 

x

and x 2 B

 

Tx

, then  (x) =  (Tx). From (2.5),
we get p(x, Tx) = 0. This implies that Tx and x are identical. Therefore, if x 6= Tx, then
Tx /2 B

 

x

or x /2 B

 

Tx

. So B

 

Tx

( B

 

x

.

Finally, for (S3), we consider a nest N such that every ball B 

x

2 N contains B 

Tx

and

z 2
T

N . This implies z 2 B

 

Tx

for every B

 

Tx

2 N . For each y 2 B

 

z

we have y 2 B

 

x

.
Hence, B 

z

✓ B

 

x

for all B 

x

2 N . Therefore, B 

z

2
T
N .

Theorem 2.3. If (X, p) is a PMS and (X,B
#

:= {B#

x

: x 2 X}) is a spherical complete

partial Caristi-Kirk ball space for all continuous functions # : X ! [0,1) and

lim
n!1

p(x
n

, x

n

) = 0, (2.6)

for every Cauchy sequence {x
n

} ✓ X, then X is complete.

Proof. We consider a Cauchy sequence {x
n

} ✓ X, and construct a function # : X !
[0,1) by

#(x) = lim
n!1

d

p

(x, x
n

)

for all x 2 X, where d

p

is defined as

d

p

(x, y) = 2p(x, y)� p(x, x)� p(y, y)

for all x, y 2 X. It is well-known that (X, d

p

) is a metric space and # is continuous. Now,
we consider a subsequence {y

k

} of {x
n

}, where y
k

= x

nk . Then there exists some m > n

k

satisfying #(y
k

) � #(x
m

), which yields that

1

2
d

p

(y
k

, x

m

)  #(y
k

)� #(x
m

). (2.7)

Here, we can pick up one of such m and let n

k�1

:= m. Next, we use the spherical
completeness of the partial Caristi-Kirk ball space. By construction and the inequality
(2.7), it yields that

2p(y
k

, y

k+1

)  2#(y
k

)� 2#(y
k+1

) + p(y
k

, y

k

) + p(y
k+1

, y

k+1

)

p(y
k

, y

k+1

)  #(y
k

)� #(y
k+1

) + max{p(y
k

, y

k

), p(y
k+1

, y

k+1

)}

that impiles y
k+1

2 B

#

yk
. Consider the set N := {B#

yk
: k 2 N}. By the proof of Theorem

2.2, it shows that B

#

yk+1
✓ B

#

yk
and hence N is a nest. Since (X,B

#

) is a spherical
complete partial Caristi-Kirk ball space, there is z 2

T
N . It follows that

d

p

(y
k

, z)  #(y
k

)� #(y
k+1

).

This shows that a Cauchy sequence {x
n

} converges to z 2 X. Hence, X is complete.
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Corollary 2.4 ([5]). Let  be a LSF from a complete metric space (X, d) into [0,1).
Then a Caristi-Kirk ball space (X,B

 

) is spherically complete.

Corollary 2.5 ([5]). Let  be a LSF from a complete metric space (X, d) into [0,1) and
T be a self mapping on X. Suppose that

p(x, Tx)   (x)�  (Tx) (2.8)

for all x 2 X. Then T is a self-contractive on a ball space (X,B
 

).

Corollary 2.6 ([5]). If (X, d) is a metric space and (X,B
#

) is a spherical complete

Caristi-Kirk ball spaces for all continuous functions # : X ! [0,1), then (X, d) is com-

plete.

3. Application on Partial Caristi-Kirk Fixed Point Results

This section presents a short proof of Theorem 1.3 whenever p is continuous and it
satisfies (2.2) by using results in the previous section.

Theorem 3.1. Theorem 1.3 holds provided that p is continuous and satisfies (2.2).

Proof. By Theorem 2.1, we conclude that a partial Caristi-Kirk ball space (X,B
 

) is
spherically complete. Hence, the conclusion of Theorem 2.2 shows that T is a self-
contractive on a ball space (X,B

 

). Therefore, Theorem 1.7 yields that T has a fixed
point.

Theorem 3.2. Let (X, p) be a PMS such that p is continuous and every Cauchy sequence

satisfies (2.6). Suppose that (X,B
#

) is a spherical complete partial Caristi-Kirk ball space

for every continuous function # : X ! [0,1) and T : X ! X be a mapping. If there is

k 2 [0, 1) and the following conditions hold for all a, b 2 X:

(T1) p(Ta, T b)  p(a, b);
(T2) p(Ta, T 2

a)  kp(a, Ta),

then the fixed point of T exists.

Proof. Define a function # : X ! [0,1) by

#(a) :=
p(a, Ta)

1� k

for all a 2 X. We obtain

#(Ta) =
p(Ta, T 2

a)

1� k

 kp(a, Ta)

1� k

,

for all a 2 X. Hence,

#(a)� #(Ta) � p(a, Ta)

for all a 2 X. This implies that T satisfies (CC).
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To show the continuity of #, we consider a, b 2 X and assume without loss of generality
that #(a)� #(b) � 0. Then

#(a)� #(y) =
1

1� k

(p(a, Ta)� p(b, T b))

 1

1� k

(p(a, b) + p(b, Ta)� p(b, b)� p(b, T b))

 1

1� k

(p(a, b) + p(Ta, Tb)� 2p(b, b))

 2

1� k

p(a, b).

This implies # is continuous. Theorem 2.3 tells us X is complete. Finally, Theorem 2.2
and Theorem 1.7 make the conclusion that T has a fixed point.
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