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Abstract In this paper, we will study research by the following process. First, we introduce Suzuki-
square-a-nonexpansive mappings in CAT(0) spaces by using the concept of a Suzuki condition and
a-nonexpansive mappings. Second, we create results with respect to approximation of common fixed
points of Suzuki-square-a-nonexpansive mappings in CAT(0) spaces by the concept of iterative process
of Muangchoo-in et al. Finally, We obtain the approximation of common fixed point of Suzuki-square-

a-nonexpansive mappings in CAT(0) spaces and prove that results.
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1. INTRODUCTION AND PRELIMINARIES

In 2008, Suzuki [!] introduced the condition C as follows. S is said to satisfy
condition C if

sd(z, Sz) < d(z,y) = d(Sz, Sy) < d(z,y),
for all z,y in metric spaces X.
In 2008, Kikkawa and Suzuki [2] generalized the Kannan mapping resulting in the

following condition. Let S be a mapping on complete metric space (X, d) and let ¢ be a
non-increasing function from [0, 1) into (3, 1] defined by

*Corresponding author. Published by The Mathematical Association of
Thailand. Copyright © 2022 by TJM. All rights reserved.



114 Thai J. Math. Special Issue : AMM2021 /T. Bantaojai et al.

1 : 1 1
T4r 1fﬁ§7‘<§

Let a € [0, 1) and put r = ;% € [0,1). Suppose that
p(r)d(z, Sz) < d(z,y) = d(Sz, Sy) < ad(z, Sz) + ad(y, Sy),
for all z,y € X.

In 2011, Karapinar and Tas [3] stated some new conditions which are modifications of

Suzuki’s condition C, as follows. S is said to satisfy condition SCC' if
sd(x, Sz) < d(z,y) = d(Sz, Sy) < M(z,y),

where M (z,y) = {d(x,y),d(z, Sz),d(y, Sy), d(x, Sy),d(y, Sx)}, for all z, y in metric spaces
X.

In the same way, in 2021, Aoyama and Kohsaka [1] introduced the class of a-nonexpansive
mapping in Banach spaces.

Let E be a Banach space, let C be a nonempty subset of F, and let « be a real number
such that o < 1. A mapping S : C — F is said to be a-nonexpansive if

1Sz — Syl* < af|Sz —y[|* + allz — Sy + (1 - 2a) ||z — y||?,
for all x,y € C. Now, we give an example for a square a-nonexpansive mapping as follows

1 if 0<r< -1,
@(T)Z{ V2

Example 1.1. Let M be a nonempty closed and convex subset of a complete CAT(0)
space X, and let S1,S2 : M — M be firmly nonexpansive mappings such that Sy (M)
and So(M) are contained by rBjs for some positive real number . Let o and § be real
numbers such that 0 < o < 1 and § > (1 + 2//a)r. Then the mapping U : M — M is
defined by

Uz — { Sz (.%' € 5BM), (1.1)

Sex (otherwise),
U is a square a-nonexpansive (See [1]).

Next, we extend definitions of a-nonexpansive mappings in Banach spaces to
a-nonexpansive mappings in metric spaces.

Let (X, d) be a metric space and C' be a nonempty subset. Then S : C' — C said to be
a square a-nonexpansive mapping (or a-noexpansive mapping) [5—7], if & < 1 such that

d*(Sz, Sy) < ad?(Sz,y) + ad?(z, Sy) + (1 — 2a)d?(z,y)
for all z,y € C.

On the other hand, we recall definitions of CAT(0) spaces, let (X, d) be a metric space
and z,y € X with [ = d(z,y). A geodesic path from z to y is an isometry ¢ : [0,]] = X
such that ¢(0) =z, ((I) =y, and d({(s1),{(s2)) = |s1 — s2| for any s1, 52 € [0,1]. We will
say that (X, d) is a (uniquely) geodesic metric space if any two points are connected by a
(unique) geodesic. In this case, we denote such geodesic by [z, y]. In general, geodesic is
not uniquely determined by its endpoints. For a point z € [z, y], we will use the notation
ZE?;;, ggz;g assuming x # y. Let (X, d) be a geodesic
metric space. A geodesic triangle consists of three points p,q,r € X and three geodesics
[p,ql, g, 7], [r,p] denoted A([p,ql,[q,7],[r,p]). For such a triangle, there is a comparison

triangle A(p,q,7) — E? : d(p,q) = d(p,7), d(g,r) = d(q,7), d(r,p) = d(F,p).

z = (1—s)z® sy, where s = l-s=
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Definition 1.2. A geodesic space is said to be a CAT(0) space if all geodesic triangles
of appropriate size satisfy the following comparison axiom.

Cat(0): Let A = (21,29, 73) be a geodesic triangle in b-metric space X and let A € E?2
be a comparison triangle for A. Then A is said to satisfy the CAT(0) inequality if for all
z,y € A and all comparison points 7,y € A := (77, T3, Z3) such that d(z,y) < dz(Z,7).

It is easy to see that a CAT(0) space is uniquely geodesic.

It is well known that any complete, simply connected Riemannian manifold having
nonpositive sectional curvature is a CAT(0) space. Other examples include inner product
spaces, R-trees (see, for example, [¢]), Euclidean building (see, for example, [9]), and the
complex Hilbert ball with a hyperbolic metric (see, for example, [10]). For a thorough dis-
cussion on other spaces in geometry, see, for example, [¢]-[19]. We collect some properties
of CAT(0) spaces. For more details, we refer the readers to [11]-[21].

Lemma 1.3. [7]] Let (X,d) be a CAT(0) space. Then the following assertions hold.
(i) For x,y in X and s in [0, 1], there exists a unique point z € [x,y] such that

d(z,z) = sd(z,y) and d(y,z) = (1 —s)d(x,y). (1.2)

We use the notation (1 — s)x @ sy for the unique point z satisfying (1.2)
(@) For z,y in X and s in [0,1], we have

d((1=s)z® sy, z) < (1 —s)d(z,z) + sd(y, ). (1.3)

Example 1.4. (I). Let X :=[,(R) where [,(R) := {{z,} CR:> 7, |;] < oo}. Define
d: X x X —[0,00) as
= (Z i — yil)
i=1

where © = {z,},y = {yn}. Then d is a metric space, see([22] -[21]). And, define a con-
tinuous mapping ¢ : [0,d(z,y)] = X by ((2) = (1 — s)x + sy for all s € [0,d(z,y)] and all
z € X. Then (X, d) is a CAT(0) space.

(I1). Let X := L,[0,1] be the space of all real functions z(s), s € [0, 1] such that
fo |z(s)|ds < co. Define d : X x X — [0, 00) as:

2] = / 2(s)|ds)

where x = z(s). Then d is a metric space, see([22] -[24]). And, define a continuous
mapping ¢ : [0,d(z,y)] = X by ((2) = (1 — s)x + sy for all s € [0,d(z,y)] and all z € X.
Then (X, d) is a CAT(0) space.

Let {x,} be a bounded sequence in a CAT(0) space X. For x € X, we set
r(z,{z,}) = limsupd(z, z,).

n—0o0

The asymptotic radius r({z,}) of {z,} is given by

r({zn}) = inf{r(z,{z,}) 1z € X},

and the asymptotic center A ({z,}) of {z,} is the set

A({zn}) ={z € X :r(z, {zn}) = r({z.})}
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A sequence {x,} in X is said to A-converge to x € X if z is the unique asymptotic
center of {u,} for every subsequence {u,} of {z,}. In this case we write A —lim, x,, = =
and call z the A-limit of {z,}, see [25].

Lemma 1.5. [20] Every bounded sequence in a complete CAT(0) space X has a A-
convergent subsequence.

Lemma 1.6. [27] Let C be a closed and convex subset of a complete CAT(0) space X. If
{zn} is a bounded sequence in C, then the asymptotic center of {xy} is in C.

Lemma 1.7. [28] Let X be a complete CAT(0) space and let © € X. Suppose that
0<b<s,<c<0andz,,y, € X forn=1,2,.... If for some r > 0 we have

limsup d(x,,x) <r, limsupd(y,,z) <7,

n—o00 n—o0
and limy, o0 d(8pZn ® (1 — 8p)yn,x) =1, then lim, o0 d(2p, yn) = 0.

Lemma 1.8. [29] Let C' be a nonempty closed and convex subset of a complete CAT(0)
space X and let S : C — C be an a-nonexpansive mapping for some o < 1. If {z,} is a
sequence in C such that d(Sz,,x,) — 0 and A — limy,—, o T, = 2 for some z € X, then
z€C and Sz = z.

Definition 1.9. [30] Let (X,d) be a metric space and C' be nonempty subset. Then
S : C — C said to be a quasi-nonexpansive if F(S) # 0; and d(Sz,p) < d(z,p) for all
p€ F(S);={x € X|z = Sz}, and z € C.

Lemma 1.10. [30] Let C be a nonempty subset of a CAT(0) space X. Let S : C — C be
a square a-nonexpansive mapping and F(S) # 0, then S is quasi-nonexpansive.

In this paper, we will study research by the following process. First, we introduce
Suzuki-square-a-nonexpansive mappings in CAT(0) spaces by using the concept of a
Suzuki condition and a-nonexpansive mappings. Second, we create results with respect
to approximation of common fixed points of Suzuki-square-a-nonexpansive mappings in
CAT(0) spaces by the concept of iterative process of Muangchoo-in et al. [31]. Finally,
We obtain the approximation of common fixed point of Suzuki-square-a-nonexpansive
mappings in CAT(0) spaces and prove that results.

2. MAIN RESULTS

In this section, we state some useful lemmas as follows. Next, we introduce defi-
nitions of Suzuki-square-a-nonexpansive mappings in metric spaces.

Definition 2.1. Let (X,d) be a metric space and C' be a nonempty subset. Then S :
C — C said to be a Suzuki-square-a-nonexpansive mapping (or Suzuki-a-noexpansive
mapping), if @ < 1 such that

1d(z, Sz) < d(z,y) = d*(Sz, Sy) < ad*(Sz,y) + ad?(z, Sy) + (1 — 2a)d*(z, y)
for all z,y € C.

Remark 2.2. A Suzuki condition and square-a-nonexpansive mapping are a Suzuki-
square-a-nonexpansive mappings.
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Example 2.3. By conditions of an example 1.1, the mapping U : M — M is defined by

— { Sz (z € 6Bu); 1)

Sox  (otherwise),

where %d(x,Six) < d(z,y), for x,y € M, i = 1,2. Then, we see that U is a Suzuki-

square-a-nonexpansive mapping.

Lemma 2.4. Let C be a nonempty subset of a CAT(0) space X. Let S : C — C be a
Suzuki-square-a-nonexpansive mapping and F(S) # 0, then S is quasi-nonezpansive.

Proof. Since F(S) # (), we get that %d(m,Sp) < d(z,p). By using lemma 1.10, we can
prove S is quasi-nonexpansive. m

Next, we recall that iterations in CAT(0) spaces. We begin the Ishikawa iteration in
CAT(0) spaces is described as follows: For any initial point € C, we define the iterates

{zn} by

yn:ﬂnsxn@(l_ﬁn)xn neN, '

where {#,} and {v,} are in (0, 1), see [32]. In 2018, Muangchoo-in et al. [31] introduced

and approximated common fixed points of two alpha-nonexpansive mappings through

weak and strong convergence of an iterative sequence in a uniformly convex Babach

space. For any initial point 2 € C, we define the iterates {z, } by
Tnt1 = YnSYn ® (1 — 1n)Ty (2.3)
Yn = BnSTn ® (1 - Bn)xn n €N,

where {3, } and {v,} are in (0, 1).
Next, we would like to introduce lemma for approximation of sequence by using the
concept of Suzuki-square-a-nonexpansive mappings.

Lemma 2.5. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X,d). Suppose that S1,S52 : C — C are Suzuki-square-a-nonexpansive mappings and
F(S1) N F(S2) be a set of all common fized points of two nonexpansive mappings S1 and
Sy of C. Assume there exists p € F(S1)NF(Sz). Suppose that {z,} is defined by iteration,
for any initial point © € C, we define the iterates {x,} by

2.4
Yn = BnSan 52 (1 - ﬂn)wn n e Na ( )

{ Tn1 = IVnSlyn 5] (1 - ’Vn)xn
where {Bn} and {y,} are in (0,1) and d(x,, S1yn) < 2d(zn,yn) for alln € N. Then

lim d(S1zp,z,) = lim d(Sex,,z,) = 0.

n—oo n—oo
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Proof. Let p € F(S1) N F(S2). Then, we see that %d(a:,Sip) < d(z,p), for i = 1,2. By

lemma 2.4 we get

d(Zny1,p) = d((1 = Yn)Zn © ¥ S1Yn, P)

< (1 = y)d(@n,p) + ¥nd(S1Yn, p)

< (1 = y)d(zn,p) + d(Yn,p)

= (1 = w)d(@n,p) + 1d((1 = Bn)zn © BnS22n, p)

< (1 =m)d(@n, p) + (1 = Bn)d(zn, p) + Y Bnd(S2n, p)
< (1 =m)d(@n,p) + 0 (1 = Br)d(@n, p) + YnBrd(zn, p)

< (1 - ’Yn)d(xnap) + ’Yn( - ﬂn)d(xmp + YnBnd (ngn,p)
= d(S2xp,p)

Hence lim,,—, o0 d(x,, p) exists. Let lim, oo d(x,,p) = 7 where r is a real number. By S

is quasi-nonexpansive mapping then we have d(Ssxy,,p) < d(x,,p) for alln =1,2, ...

limsup,,_, . d(Sexy,,p) = limsup,,_, ., d(zn,,p) = r. Also,

A(Yn.p) = d((1 = Bp)zn ® BnS22n,p)
< (1 - ﬁn)d(xmp) + ﬁnd(S?'Emp)
< (1 = Bn)d(@n,p) + Bnd(xn, p)
= d(zn,p),
and by S; is a quasi-nonexpansive mapping then we obtain that

lim sup d(S1yy,p) < limsup d(yy,,p) < 7.

n—oo n—oo

Moreover, lim,, o d(z,+1,p) = r means that
Jim d(ynS1yn © (1 = )2, p) = 7.
By Lemma 1.7 , we get that
nh_}llgo d(S1yn,xn) = 0.

So

(2.5)

(2.6)

(2.7)

(2.8)

Since d(xy,p) < d(xyn, S1yn) + d(S1Yn,p) < d(zn, S1yn) + d(yn,p), then we obtain that

r < liminf d(y,,p)
n—o0
By inequality (2.6) and (2.9), we obtain that
By Lemma 1.7 , we get that
lim d(Sazy,z,) = 0.
n—oo
Noe, we consider

d(52$n7 yn) = d(San’/BnSan S2) (1 - Bn)xn)
< (1 - ﬁn)d(SQme San) + Bnd(52$na xn)
= 5nd(32xnywn)a

(2.9)

(2.10)

(2.11)

(2.12)
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then by inequality (2.11), we have
nh_}n;O d(Sazy,yn) = 0. (2.13)
By definition 2.1 and the hypothesis %d(wn, S1Yn) < d(xp,Yn), we get that
d(S12n,70)* <(d(S12n, S1yn) + d(S1Yn, 1))
=d(S1%n, S19n)? + 2d(S12n, S1Yn)d(S1Yn, Tn)) + d(S1Yn, Tn))?
<ad(S12n, Yyn)? + ad(xy, S1yn)* + (1 — 2a)d(zn, yn)?
+ 2d(S12n, S19n)d(S1Yn, Tn)) + d(S1Yn, T0))?
<a(d(S1n, Tn) + d(@n, yn))? + (1 = 2a)d (20, yn)?
+2d(S12n, S19n)d(S1Yn, 7)) + (1 + @)d(S1yn, 7))
<ad(S12n, 2n)? + a2d(S120, T0)d(Tp, Yn) + d(Tn, yn)?
+ (1 = 20)d(2n, yn)? + 2d(S121, S19n)d(S1Yn, 1))
+ (14 @)d(S1yn, 2a))%, (2.14)
S0
(1 — a)d(S1n, xp)? <(1 — @)d(Tn,yn)* + a2d(S1 20, 1) d (T, Yn)
+2d(S1n, $19n)d(S1Yn, Tn)) + (1 + @)d(S1yn, 24))?
<(1 = a)(d(zn, San) + d(S2wn, yn))”
+ 20d(S120, Ty ) (d(2p, S20) + d(S2Tn, Yn))
+ 2d(S1%n, S1Yn)d(S1Yn, Tn))
+(1+ a)d(Siyn, Tn))” (2.15)
By inequality (2.8), (2.11) and (2.13), we conclude that
nhﬂngo d(S1%n, xn) = HILII;O d(Sexp,x,) = 0.
]

Next, we would like to introduce a main theorem using the concept of Suzuki-square-
a-nonexpansive mappings and the iterates 2.4.

Theorem 2.6. Let C' be a nonempty closed convexr subset of a complete CAT(0) space
(X, d). Suppose that S1, S5 : C — C are Suzuki-square-a-nonexpansive mappings. Assume
C satisfies Opial’s condition and the sequence defined be the iteration, for any initial point
x € C, we define the iterates 2./ If F(S1) N F(Sa) # 0 then then {x,} A-converges to a
unique common fized point of S1 and Ss.

Proof. Begin proof by let p be a common fixed point of S; and Sy and lim, s d(Zn, p)
exists. Thus, we have {z,,} is bounded.

Thus, {z,} has a A-convergent subsequence and the asymptotic center of {x,} is in
C, by using lemmas 1.5 and 1.6. We next prove that every A-convergent subsequence
of {z,,} has a unique A-limit in F(S;) N F(S3). Supose that u and v be two A-limits
of the subsequences {a,} and {b,} of {z,}, respectively. By definition A({a,}) = {a}
and A({b,}) = {b}. By lemma 2.5, lim,,_, oo d(S1an,a,) = 0 = lim,,_,~ d(S2an, a,). Now
using the A-convergence of {u,} to u and the Suzuki-square-a-nonexpansive mappings
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of T and S, we obtain a € F(S1) N F(S2) by a repeated application of lemma 1.8 on S
and Ss. Again in the same fashion, we can prove that b € F(S1) N F(S2). Next, we prove
the uniqueness. To this end, if @ and b are distinct then by the uniqueness of asymptotic
centers,

lim d(x,,a) =limsupd(a,,a)

n—00 n—o0o

(
<limsup d(ay,, b)
n—oo
=limsup d(z,,b)
n—oo
=lim sup d(b,, b)
n—oo

(
(

<limsup d(b,,a)

n—oo

=limsup d(zy, a)

n—oo
:nh_)nolo d(xp,a). (2.16)
This is a contradiction, so a = b. [

Next, we would like to introduce a theorem using the concept of Opial’s condition.

Theorem 2.7. Let C' be a nonempty closed convexr subset of a complete CAT(0) space
(X, d). Suppose that Sy, S : C — C be Suzuki-square-a-nonexpansive mappings. Assume
C satisfies Opial’s condition and the sequence defined be the iteration 2.4 . If F\(S1) N
F(S2) # 0 then {x,}converges strongly to a common fized point of S1 and Sy if and
only if iminf, . d(x,, F(S1)NF(S2)) = 0, where d(x, F(S1)NF(S2)) := inf{d(z,p)|p €
F(51) NF(S2)}-

Proof. Necessity is obvious. Conversely, suppose that liminf,_, . d(z,, F'(S1) N F(S2)) =
0. As proved in lemma 2.5, we have

d(xpt1,p) < d(zp,p), for all p € F(S1) N F(S).

This implies that d(z,41, F(S1) N F(S2)) < d(zn, F(S1) N F(S2)), so that d(x,, F(S1) N
F(S5)) exists. Thus by hypothesis lim,,—, oo d(z,, F/(S1) N F(S2)) = 0. Next, we show that
{z,} is a Cauchy sequence in C. Let € > 0 be arbitrarily chosen. Since lim,,—, oo d(z,, F'(S1)N
F(S2)) = 0, there exists a positive integer ng such that d(z,,, F'(S1)NF(S2)) < §,Yn > no.
In particular, inf{d(zn,, p)|p € F(S1) N F(S2)} < {. Thus there must exist p* € F(S1) N
F(S2) such that d(x,,,p*) < 5. Now, for all m,n > ng, we have

d(anrmv xn) < d(l'n+map*) + d(p*, xn) < 2d($no,p*) <€

Hence {z,} is a Cauchy sequence in a closed subset C of a complete CAT (0) space, and
0 it must converge to a point p in C. Now, lim,_, o d(z,, F(S1) N F(S2)) = 0 gives that
d(p, F(S1) N F(S3)) = 0. Since F is closed, so we have p € F(S1) N F(Ss). ]

3. CONCLUSION

The purpose of this paper is to create results with respect to approximation of common
fixed points of Suzuki-square-a-nonexpansive mappings in CAT(0) spaces. Results: We
prove convergence theorems fixed points of Suzuki-square-a-nonexpansive mappings in
CAT(0) spaces.
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(1) Let (X,d) be a metric space and C' be nonempty subset. Then S : C — C
said to be a Suzuki-square-a-nonexpansive mapping (or Suzuki-a-noexpansive
mapping), if & < 1 such that

1d(z, Sz) < d(z,y) = d*(Sz, Sy) < ad?*(Sz,y) + ad?(z, Sy) + (1 — 2a)d*(z, y)

for all z,y € C
(2) Let C be a nonempty closed convex subset of a complete CAT(0) space (X, d).
Suppose that S;,5; : C — C are Suzuki-square-a-nonexpansive mappings and
F(S1) N F(S2) be a the set of all common fixed points of two nonexpansive map-
pings Sq and Sy of C. Assume there exists p € F/(S1) N F(S2). Suppose that {z,}
is defined by iteration, for any initial point x € C, we define the iterates {z, } by
Tn4+1 = 'Ynslyn S¥) (1 - ’Yn)xn (3 1)
Yn = BnS2xn © (1 = Br)an n €N, '

where {8,} and {v,} are in (0,1) and d(x,, S1yn) < 2d(zn,y,) for all n € N.
Then

lim d(S1zp,z,) = lim d(Sazy,z,) = 0.
n—o00 n—o0

(3) Let C be a nonempty closed convex subset of a complete CAT(0) space (X, d).
Suppose that S1,S5 : C' — C are Suzuki-square-a-nonexpansive mappings. As-
sume C satisfies Opial’s condition and the sequence defined be the iteration, for
any initial point x € C, we define the iterates 2.4. If F'(S7) NF(S2) # 0 then then
{z,} A-converges to a unique common fixed point of S; and Ss.

(4) Let C be a nonempty closed convex subset of a complete CAT(0) space (X, d).
Suppose that S7,S5; : C — C be Suzuki-square-a-nonexpansive mappings. As-
sume C satisfies Opial’s condition and the sequence defined be the iteration
24 . If F(S1) N F(S2) # 0 then {x,} converges strongly to a common fixed
point of S; and Sy if and only if liminf,_, d(x,, F(S1) N F(S2)) = 0, where
d(z, F(S1) N F(S2)) := inf{d(z,p)|p € F(S1) N F(S2)}.
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