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Abstract We introduce tensor products of ternary semimodules over ternary semifields and prove the

universal mapping property of the tensor products. Moreover, we introduce the exact sequences of ternary

semimodules and flat ternary semimodules. We later provide a condition for preserving the flatness of

ternary semimodules with tensor products of ternary semimodule homomorphisms.
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1. Introduction

The subject of a ternary algebra was started by D. H. Lehmer [1]. He studied some
concepts of ternary systems called triplexes, which obtained the generalization of abelian
groups. Afterward, Los [2] mentioned this algebraic structure studied by Banach and and
showed an example of a ternary semigroup which is not a semigroup. In 1971, W. G.
Lister [3] studied the abstract structure of a ternary ring which is a ternary product on
abelian groups. In 2003, R. Intarawong [4] studied and provided the universal mapping
property of tensor products of modules over semifields. T. K. Dutta and S. Kar [5] studied
a ternary semiring and gave some properties of ternary semifields. In addition, H. J. M.
Al-Thani [6] studied the flat semimodules which constructed by the exact sequences of
semimodules and tensor products of semimodule homormorphisms.

The universal mapping property in the branch of modules over rings gives that there
exists a unique group homomorphism from M ⌦

R

N to a module A which is composed
with a bilinear map M ⇥N ! M ⌦

R

N is a bilinear map M ⇥N ! A. The structure of
the ternary semimodules also leads us to derive the similar result.

The goal of this research is to investigate some properties of ternary semimodules over
ternary semifields. We also study the universal mapping property of tensor products of
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ternary semimodules and investigate some types of ternary semimodules defined by tensor
products of homomorphisms on ternary semimodules and exact sequences.

2. Preliminaries

The following familiar definitions and theorems from [7], [8] and [9] regarding the notion
of free abelian groups are needed to define tensor products of ternary semimodules over
ternary semifields.

A ternary semifield K is a system (K,+, ·) with a binary operation (+) and a ternary
operation (·) satisfying the following conditions for all u, v, w, s, t 2 K

(1) (K,+) is a commutative semigroup with identity 0,
(2) (u · v · w) · s · t = u · (v · w · s) · t = u · v · (w · s · t),
(3) (u+ v) · w · s = u · w · s+ v · w · s,
(4) u · (v + w) · s = u · v · s+ u · w · s, and
(5) u · v · (w + s) = u · v · w + a · v · s.
(6) u · v · w = v · u · w = w · v · u = u · w · v,
(7) 902K 8u, v 2 K, 0 + u = u and 0 · u · v = u · 0 · v = u · v · 0 = 0, and
(8) 8u2 K \ {0} 9v2K 8t2K, u · v · t = v · u · t = t · u · v = t · v · u = t.
(An element v is called an inverse of u. In addition, the inverse of u is unique
and u

�1 denotes the inverse of u.)

For convenience, let uvw denote u · v · w for all u, v, w 2 K.
Let (R,+, ·) be a commutative ring. For a nonempty set S of R, a subring S of R is

said to be a positive cone if S [ (�S) = R and S \ (�S) = {0}. �S is called a negative

cone of S.
It is clear that every negative cone of a cone S of R is a ternary semiring. For example,

Z�
0

is a natural example of ternary semiring. Moreover, Q�
0

and R�
0

become ternary
semifields.

A group F is a free abelian group if F is an abelian group, and for every nonzero
element g of F , there exist unique nonzero integers ↵

1

,↵

2

, ...,↵

n

and unique distinct
x

1

, x

2

, ..., x

n

in X ✓ F such that g = ↵

1

x

1

+ ↵

2

x

2

+ · · ·+ ↵

n

x

n

. We sometimes call X a
basis for F .

For a nonempty set X, let

FA(X) = {f : X ! Z | 9F ✓ X such that |F | < 1 and f(x) = 0 for all x 2 X \ F}.
Define + on FA(X) by for any f, g 2 FA(X),

(f + g)(x) = f(x) + g(x) for all x 2 X.

Then (FA(X),+) is an abelian group. For any x 2 X, define f

x

: X ! Z by

f

x

(y) =

⇢
1, if x = y,

0, otherwise.

Then f

x

2 FA(X) for all x 2 X. A group (FA(X),+) is a free abelian group on
{f

x

|x 2 X} (✓ FA(X)). We sometimes say instead that FA(X) is a free abelian group
on X.

Let K be a ternary semifield. A left K-ternary semimodule or left ternary semimodule

over K is an additive abelian group M together with a function from K ⇥K ⇥M into
M , defined by (k

1

, k

2

,m) 7! k

1

k

2

m called ternary scalar multiplication, which satisfies
the following conditions for all m,m

1

,m

2

2 M and k

1

, k

2

, k

3

, k

4

2 K,
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(1) k

1

k

2

(m
1

+m

2

) = k

1

k

2

m

1

+ k

1

k

2

m

2

,
(2) k

1

(k
2

+ k

3

)m = k

1

k

2

m+ k

1

k

3

m,
(3) (k

1

+ k

2

)k
3

m = k

1

k

3

m+ k

2

k

3

m,
(4) (k

1

k

2

k

3

)k
4

m = k

1

(k
2

k

3

k

4

)m = k

1

k

2

(k
3

k

4

m).

A right K-ternary semimodule or right ternary semimodule over K is defined similarly
via a function M ⇥K ⇥K into M and satisfies the obvious analogues of (1) - (4).

For convenience, we simply write
K

M [M
K

] as M is a left [right] ternary semimodule
over a ternary semifield K.

From now on, unless specified otherwise, “K-ternary semimodule
K

M [M
K

]” means
“left [right] K-ternary semimodule M”. Moreover, “K-ternary semimodule” means “left
K-ternary semimodule”.

Example 2.1. Let F [0, 1] = {f |f : [0, 1] ! Q�
0

} with the operations + and ·, defined by

(f + g)(x) = f(x) + g(x) and (↵ · � · f)(x) = ↵ · � · f(x) for all x 2 [0, 1],

where f, g 2 F [0, 1] and ↵,� 2 Q�
0

. Then F [0, 1] is a left Q�
0

-ternary semimodule.

Example 2.2. If n 2 N and M

1

, M

2

, . . . , M

n

are ternary semimodules over a ternary
semifield K, then M

1

⇥ M

2

⇥ · · · ⇥ M

n

is a ternary semimodules over K under usual
componentwise addition and scalar multiplication.

Let M be a left [right] ternary semimodule over a ternary semifield K. A left [right ]
ternary subsemimodule of M is a subset of M which is, itself, a left [right] ternary semi-
module over K with the addition and ternary scalar multiplication of M .

Let K and S be ternary semifields. An additive abelian group M is a (K,S)-ternary
bisemimodule if M is a left K-ternary semimodule and also a right S-ternary semimodule,
and k

1

k

2

(ms

1

s

2

) = (k
1

k

2

m)s
1

s

2

for all k
1

, k

2

2 K,m 2 M, and s

1

, s

2

2 S. We write

K

M

S

for a (K,S)-ternary bisemimodule M .

3. Universal Mapping Properties

For given ternary semimodules M and N over a ternary semifield K, it is known from
Example 2.2 that M ⇥ N is a ternary semimodule over K. To find another ternary
semimodule over K arising from M and N which is di↵erent from M ⇥ N , the tensor
product of M and N is the case. The notion of free abelian groups plays a major role for
constructing the tensor product of ternary semimodules over K.

Let M
K

and
K

N be ternary semimodules over a ternary semifield K. For each m 2 M

and n 2 N , a function f

(m,n)

: M ⇥N ! Z is defined by

f

(m,n)

(x, y) =

⇢
1, if (x, y) = (m,n),
0, otherwise

for all x 2 M

K

and y 2
K

N . Then f

(m,n)

2 FA(M ⇥ N) and FA(M ⇥ N) is a free
abelian group on a basis {f

(m,n)

| m 2 M, n 2 N}.

Definition 3.1. Let M

K

and
K

N be ternary semimodules over a ternary semifield K

and let F be the free abelian group on M ⇥N , that is F = FA(M ⇥N). Let L be the
subgroup of F generated by elements of the following forms:

(1) f

(m+m̃,n)

� f

(m,n)

� f

(m̃,n)

,
(2) f

(m,n+ñ)

� f

(m,n)

� f

(m,ñ)

,
(3) f

(m↵�,n)

� f

(m,↵�n)
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where ↵,� 2 K, m, m̃ 2 M and n, ñ 2 N . We call F/L the tensor product of M and
N , and denoted by M ⌦

K

N .

Recall that F = FA(M ⇥N) and F/L = {f +L | f 2 F}. For any m 2 M and n 2 N ,
we write m ⌦ n for f

(m,n)

+ L. The following property can be derived directly from the
definition.

Let M
K

and
K

N be ternary semimodules over a ternary semifield K. Then m↵�⌦n =
m⌦ ↵�n and m⌦ 0 = 0⌦ n = 0⌦ 0 = 0 for all ↵,� 2 K, m 2 M and n 2 N .

Let M

K

and
K

N be ternary semimodules over a ternary semifield K and A is an
additive abelian group. A middle linear map (over K) from M ⇥ N to A is a function
⌧ : M ⇥N ! A such that for all m, m̃ 2 M , n, ñ 2 N , and ↵,� 2 K,

(1) ⌧(m+ m̃, n) = ⌧(m,n) + ⌧(m̃, n),
(2) ⌧(m,n+ ñ) = ⌧(m,n) + ⌧(m, ñ) and
(3) ⌧(m↵�, n) = ⌧(m,↵�n).

Let M

K

and
K

N be ternary semimodules over a ternary semifield K. The map µ :
M ⇥ N ! M ⌦

K

N defined by µ(m,n) = m ⌦ n is called the canonical middle linear

map. The function ⇡ : FA(M ⇥ N) ! FA(M ⇥ N)/L defined by ⇡(x) = x + L for all
x 2 FA(M ⇥N) is an epimorphism of groups, which called the canonical projection.

By making use of Theorem 5.6 [9, p. 43], we get the following theorem.

Theorem 3.2. Let M

K

and

K

N be ternary semimodules over a ternary semifield K and

µ : M ⇥ N ! M ⌦
K

N be the canonical middle linear map. For any additive abelian

group U over K and any middle linear map  : M ⇥ N ! U , there exists a unique

group homomorphism

e
 : M ⌦

K

N ! U such that  = e
 � µ, i.e., the following diagram

commutes.

M ⇥N M ⌦
K

N

U

µ

 9! e 

Proof. Let (U,+) be an abelian group. By Theorem 1.1 [9, p. 71], there exists a unique

group homomorphism b
 : FA(M ⇥N) ! U such that  = b

 � '.
Let L be the subgroup defined in Definition 3.1. Then L is a subgroup of ker b because

 is a middle linear map and  = b
 � '.

Let ⇡ : FA(M ⇥ N) ! FA(M ⇥ N)/L be the canonical projection. Since L is a

subgroup of ker b
 , by Theorem 5.6 [9, p. 43], there exists a unique group homomorphism

b
 : FA(M ⇥ N)/L ! U such that b

 = e
 � ⇡. Now we obtain a group homomorphism

e
 : M ⌦

K

N ! U . Next, we will consider the diagram

M ⇥N FA(M ⇥N) M ⌦
K

N

U

'

 

⇡

b
 

e
 

For each m 2 M and n 2 N , the canonical middle linear map µ : M ⇥ N ! M ⌦
K

N

satisfies µ(m,n) = m⌦ n = '(m,n) + L = ⇡('(m,n)) = ⇡ � '(m,n). That is, µ = ⇡ � '.
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Hence, e �µ = e
 � (⇡ �') = ( e �⇡)�' = b

 �' =  . Last, let ⇢ : M⌦
K

N ! U be a group
homomorphism such that  = ⇢ � µ and let ✓ = ⇢ � ⇡. Consider the following diagram.

M ⇥N FA(M ⇥N) M ⌦
K

N

U

'

 

⇡

✓

b
 

⇢

e
 

We have that ✓ � ' = (⇢ � ⇡) � ' = ⇢ � (⇡ � ') = ⇢ � µ =  . So ✓ = b
 because of the

uniqueness of b
 . Moreover, ⇢ � ⇡ = ✓ = b

 = e
 � ⇡. By the uniqueness of e

 , we obtain
that ⇢ = e

 .

Let M
K

,
K

N , and
K

U be ternary semimodules over a ternary semifield K. A bilinear

map over K from M ⇥N to U is a function T : M ⇥N ! U such that for all m, m̃ 2 M ,
n, ñ 2 N and ↵,� 2 K,

(1) T (m+ m̃, n) = T (m,n) + T (m̃, n),
(2) T (m,n+ ñ) = T (m,n) + T (m, ñ), and
(3) T (m↵�, n) = ↵�T (m,n) = T (m,↵�n).

The map µ : M ⇥ N ! M ⌦
K

N given by µ(m,n) = m ⌦ n is called the canonical

bilinear map (over a ternary semifield K).
By Theorem 3.2, the following result is derived.

Corollary 3.3. Let

K

M

K

,

K

N and

K

U be ternary semimodules over a ternary semi-

field K and µ : M ⇥N ! M⌦
K

N the canonical bilinear map. For any bilinear map

 :M⇥N!U , there exists a unique K-ternary semimodule homomorphism

e
 :M⌦

K

N!
U such that  = e

 � µ, i.e., the following diagram commutes.

M ⇥N M ⌦
K

N

U

µ

 9! e 

Example 3.4. We will apply Corollary 3.3 to show that Q�
0

⌦Q�
0
F [0, 1] ⇠= F [0, 1].

Let µ : Q�
0

⇥F [0, 1] ! Q�
0

⌦Q�
0
F [0, 1] be a canonical bilinear map. That is, µ(a, f) =

a⌦ f for all a 2 Q�
0

and f 2 F [0, 1].
Define  : Q�

0

⇥ F [0, 1] ! F [0, 1] by  (a, f) = (�1)af where a 2 Q�
0

and f 2 F [0, 1].
We can show that  is a bilinear map.

By the universal mapping property, there exists a unique ternary homomorphism e
 :

Q�
0

⌦Q�
0
F [0, 1] ! F [0, 1] such that  = e

 � µ. That is, e
 (a⌦ f) = e

 (µ (a, f)) =

 (a, f) = (�1)af for all a 2 Q�
0

and f 2 F [0, 1].

We will show that e
 is an isomorphism. Let f 2 F [0, 1]. We have �1 ⌦ f 2 Q�

0

⌦Q�
0

F [0, 1] and e
 (�1⌦ f) = (�1)(�1)f = f . So e

 is surjective.

Next, we will show that ker e = {0}. Let a ⌦ f 2 Q�
0

⌦Q�
0
F [0, 1]. Consider a ⌦

f = (�1)(�1)a ⌦ f = �1 ⌦ (�1)af . Since F [0, 1] is a left Q�
0

-ternary semimodule,
a⌦ f = �1⌦ g for some g 2 F [0, 1].
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Let �1 ⌦ g 2 ker e . Then e
 (�1 ⌦ g) = 0. Thus g = (�1)(�1)g = 0, i.e., a ⌦ f =

�1⌦ 0 = 0. Hence, ker e = {0}, so e
 is injective. Consequently, e

 is an isomorphism.

By Theorem 3.2, the following results about the tensor products of two ternary semi-
module homomorphism are derived.

Proposition 3.5. Let M

K

, M

0
K

,

K

N , and

K

N

0
be ternary semimodules over a ternary

semifield K. If f : M ! M

0
and g : N ! N

0
are right and left K-ternary semimodule

homomorphisms, respectively, then there exists a unique group homomorphism h from

M ⌦
K

N into M

0 ⌦
K

N

0
such that for all m 2 M and n 2 N , h(m⌦ n) = f(m)⌦ g(n).

The unique group homomorphism h in Proposition 3.5 is denoted by f⌦g : M⌦
K

N !
M

0⌦
K

N

0.

Theorem 3.6. Let K and S be ternary semifields, and

S

M

K

,

S

M

0
K

,

K

N ,

K

N

0
be ternary

semimodules as indicated. If f : M ! M

0
is a right K-ternary semimodule homomor-

phism and g : N ! N

0
is a left K-ternary semimodule homomorphism, then f ⌦ g is a

left S-ternary semimodule homomorphism.

Proposition 3.7. Let K be a ternary semifield, and M

K

, M

0
K

, M

00
K

,

K

N ,

K

N

0
and

K

N

00

be ternary semimodules. If f : M ! M

0
and f

0 : M 0 ! M

00
are right K-ternary semi-

module homomorphisms, g : N ! N

0
and g

0 : N 0 ! N

00
are left K-ternary semimodule

homomorphisms then

(f 0 ⌦ g

0) � (f ⌦ g) = (f 0 � f)⌦ (g0 � g) : M⌦
K

N ! M

00⌦
K

N

00

is a group homomorphism. If f and g are right and left K-ternary semimodule isomor-

phisms, respectively, then f ⌦ g is a group isomorphism and (f ⌦ g)�1 = f

�1 ⌦ g

�1

is

also a group isomorphism.

4. Exact Sequences

For the last section, we investigate short exact sequences of ternary semimodules and
flat ternary semimodules. By the way, we follow the definitions of short exact sequence
and flat semimodules from [6] and [10] but we change the semimodules to the ternary
semimodules.

Theorem 4.1. Let K be a ternary semifield, M be a left K-ternary semimodule and

{V
i

| i 2 I} be a family of right K-ternary semimodules. If each V

i

for all i 2 I is M -flat

then the direct sum V

i

is M -flat.

Proof. Let id
M

be the identity function on a K-ternary semimodule M . Consider the
following diagram

V

i

⌦
K

N

⇣M

i2I

V

i

⌘
⌦

K

N

V

i

⌦
K

M

M

i2I

(V
i

⌦
K

M)
⇣M

i2I

V

i

⌘
⌦

K

M

idVi⌦idN id

L

i2I
Vi

⌦idN

◆i

⇡i

 

�1

 

(⇤)
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where ⇡
i

:
M

i2I

(V
i

⌦
K

M) ! V

i

⌦
K

M given by ⇡
i

({v
i

⌦m}) = v

i

⌦m for all i 2 I and

◆

i

: V
i

⌦
K

M !
M

i2I

(V
i

⌦
K

M) given by ◆
i

(v
i

⌦m) = {v
j

⌦m} where

v

j

⌦m =

⇢
v

i

⌦m if i = j,

0 if i 6= j

for all i, j 2 I. There exists a group isomorphism  :
⇣M

i2I

V

i

⌘
⌦

K

M !
M

i2I

(V
i

⌦
K

M)

such that  ({v
i

}⌦m) = {v
i

⌦m}.
Assume that V

i

is M -flat for each i 2 I. Then

0 = (id
Vi ⌦ id

N

) (v
i

⌦ n) = id
Vi (vi)⌦ id

N

(n) = v

i

⌦m

for some m 2 M . By diagram (⇤), we have that

0 =  

�1 (◆
i

(v
i

⌦m)) =  

�1 ({v
i

⌦m}) = {v
i

}⌦m.

So
⇣
idL

i2I
Vi

⌦ id
N

⌘
({v

i

}⌦ n) = idL
i2I

Vi
({v

i

})⌦ id
N

(n) = {v
i

}⌦m = 0.

That is, ker
⇣
idL

i2I
Vi

⌦ id
N

⌘
= 0. Hence,

M

i2I

V

i

is M -flat.
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