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Abstract It is known that the minimum numbers of square to be deleted from the 4 X n chessboard so
that it has a closed knight’s tour is two. This article determines all positions of those two squares such
that after being deleted from the 4 x n chessboards, there exists a closed knight’s tour on the deleted
chessboard. The result solves Bi, Butler, DeGraaf and Doebel’s conjecture which appeared in Knight’s
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1. INTRODUCTION

Originally, the chessboard is an array of squares arranged in eight rows and eight
columns, each square colored black and white alternately. The extension of the chessboard
is the mxn chessboard which we denote it by CB(mxn). It is an array of squares arranged
in m rows and n columns, each square colored black and white alternately. We usually
label each square of the m x n chessboard by (4,7) in the matrix fashion. The interested
chess piece is the knight. It can move one square vertically or one square horizontally and
then two squares at 90 degrees angle. One classical problem is called a closed knight’s
tour (CKT) problem: Can a knight moves to visit every square on CB(m x n) and return
back to its starting position? Euler used to construct a CKT on CB(8 x 8) and several
other CKT on some other sizes of chessboard have been constructed, see [1] for details.
Until 1991, Schwenk [2] obtained suffcient and necessary conditions for CB(m x n) to
admit a CKT.
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Theorem 1.1. [2] CB(m x n) with m < n admits a CKT unless one or more of the
following conditions hold: (i) m and n are both odd or (i) m € {1,2,4} or (iii) m = 3
and n € {4,6,8}.

However, for those CB(m x n) which do not admit a CKT, one can notice that if we
ignore some squares of them, a CKT can be constructed on those deficient CB(m x n). In
2009, DeMaio and Hippchen [3] found T'(m,n), the minimum number of squares removal
from CB(m x n), so that a CKT on the deficient CB(m x n) exists but they did not
determine the exact position of each removal square. In particular, it is stated that (i)
for m,n > 3 are odd and (m,n) # (3,5), T(m,n) =1 and (ii) for n > 3, T'(4,n) = 2.

Consequently, in 2013, Miller and Farnsworth [1] determined the exact position of the
one square to be removed from CB(3 x n) where n # 5 so that a CKT exists. While, in
2015, Bi et al. [5] determined the exact position of the one square to be removed from
CB(m x n) where m,n > 3 are odd and (m,n) # (3,5) so that a CKT exists. In [5], they
also try to considered the exact positions of two squares be removed from CB(4 x n),
where n > 3. One useful proposition is stated here for ease of reference. The first part
was proved by [5] and the second part is from the fact that a knight’s move always moves
from black to white or white to black square.

Proposition 1.2. [5] If two squares in CB(4 x n) are deleted and a CKT exists for the
remaining board, then (i) neither square could come from the middle two rows and (ii)
these two squares have different color.

They also gave the following conjecture.

Conjecture 1 [5] Consider CB(4 x n) with n > 7. For any pair of squares, with one of
each parity of color and neither coming from the middle two rows, there is a CKT on
CB(4 x n) that avoids only these two squares.

Therefore, the aim of this article is to prove the Conjecture 1 in Section 4 and also
determine the exact pair of squares removal from CB(4 x n) for 3 < n < 6 in Section 2.
If A is a set of two squares of CB(4 x n), then CB(4 x n) — A is the deficient board after
deleting these two squares. Actually, each square (4, 7) of CB(m x n) can be regarded as
a vertex (i,7) and there is an edge connects between two vertices if there is a knight’s
move between these two squares. The graph consists of all vertices (¢, j) of CB(m x n)
and all edges constructed by every possible knight’s move is called the knight graph and it
is denoted by G(m x n). In addition, if A is a set of two vertices of G(m x n), then we use
G(m x n) — A to represent the knight graph after deleting these two vertices. Therefore,
the existence of a CKT on CB(4 x n) — A is simply the existence of a Hamiltonian cycle
on G(4 x n) — A. The fact about the existence of a Hamiltonian cycle and a Hamiltonian
path on a graph G that we use in this article are the following theorem.

Theorem 1.3. Let G = (V, E) be a graph, S be a proper subset of V and w(G — S) be
the number of components of G — S.

(a) If (G — S) > |S|, then G does not contain any Hamiltonian cycle.

(b) If w(G —S) > |S|+ 1, then G does not contain any Hamiltonian path.

To prove the Conjecture 1, some special open knight’s tours (OKTs) on CB(4 x
n)—{(i,7)} for n > 5 are required. Actually the OKT is the Hamiltonian path on
G4 xn)—{(i,75)}. These OKTs are constructed in Section 3. Finally, conclusion and
discussion of our future works are given in Section 5.



66 Thai J. Math. Special Issue: AMM 2021 /W. Srichote et al.

2. CKTs oN CB(4 xn) — A WHERE 3 <n <6 AND |A| =2

For small n such that 3 < n < 6, we can only remove some pairs of different color in
the first and the fourth rows.

Lemma 2.1. There exists a CKT on CB(4 x 3) — A if and only if A ={(1,2),(4,2)}.
Proof. A CKT on CB(4 x 3) —{(1,2), (4,2)} is shown in Figure 1.
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FI1Gure 1. A CKT on CB(4 x 3) —{(1,2),(4,2)}

Conversely, there are 4 cases, namely

(i) Ae{{(1,1),(4,1)},{(1,3),(4,3)}},
(i) A€ {{(1,1),(4,3)},{(1,3), (4, 1)} },
(i) Ae{{(1,1),(1,2)},{(1,2),(1,3)},{(4,1),(4,2)},{(4,2), (4,3)}}, and
(iv) A#{(1,2),(4,2)} and is not in cases (i) - (iii).
Figure 2 from left to right represents each case (i) - (iii) scenario according to their
symmetry and also shows components of (G(4 x 3) — A) — S, where the shaded squares
are elements in A and the crossed squares are elements in S.

FIGURE 2. Components of (G(4 x 3) — A) — S in cases (i) - (iii)

It is clear from Theorem 1.3(a) that the CKT does not exist on CB(4 x 3) — A, where
A is in cases (i) - (iii) and Proposition 1.2 also implies that if A is in case (iv), then the
CKT does not exist on CB(4 x 3) — A. m

Lemma 2.2. There exists a CKT on CB(4 x 4) — A if and only if A € {{(1,1),(1,4)},
{(1L1D), (4D}, {(1,4), (4,4)}, {(4,1), (4, 4)}}.

Proof. According to the symmetry, a CKT on CB(4 x 4) — {(1,1),(1,4)} is shown in
Figure 3.
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FICURE 3. A CKT on CB(4 x 4) — {(1,1), (1,4)}
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If Aisnot in {{(1,1), (1,4)}, {(1,1), (4, 1)}, {(1,4), (4,4)}, {(4,1), (4,4)}}, then Propo-
sition 1.2 can be applied to conclude the nonexistence of CKTs on CB(4 x 4) — A.

If one of A is from the first row and another one is from the fourth row have the same
parity color, then Proposition 1.2 can be applied immediately.

If one of A is from either the second or the third column, then the rotation make this
square becomes on the middle two rows and the Proposition 1.2 can be applied. [

Lemma 2.3. There exists a CKT on CB(4 x 5) — A if and only if A € {{(1,1),(1,2)},
&1 4), i ?H}{ (4, 1), (4,2)}, {(4,4),(4,5)}, {(1, 1), (4, D)}, {(1,5),(4,5)}, {(1,1), (4,5)}

Proof. First, we consider 3 cases, namely

(1) Ae{{(1,1),(1,2)}, {(1,4),(1,5)}, {(4,1),(4,2)}, {(4,4), (4,5)}},

(i) A€ {{(1,1),(4, 1)} {(1,5),(4,5)}}, and
(iii) A€ {{(1,1),(4,5)}, {(1,5), (4, 1)}}.

A CKT on CB(4 x 5) — A, where A € {{(1,1),(1,2)}, {(1,1),(4,1)}, {(1,1), (4,5)}},

is shown in Figure 4. By its symmetry of each of Figure 4, a CKT on CB(4 x 5) — A is
obtained for each remaining A of each case, respectively.

FIGURE 4. CKTs on CB(4 x 5) — A

Conversely, there are 7 cases, namely

(i) Ae{{(1,2),(1,3)}, {(1,3),(1,4)}, {(4,2), (4,3)}, {(4,3), (4,4)}},

,,;;/—\

(ii) A= {(173)7( a3)}7
(iii) A e {{(1,1), (1,4}, {(1,2),(1,5)}, {(4,1),(4,4)}, {(4,2), (4,5)}},
(iv) A e {{(1,2),(4,4)}, {(1,4), (4,2)}},
(v) Ae{{(1,1),(4,3)}, {(1,3), (4, D}, {(1,3),(4,5)}, {(1,5), (4,3)}},
(vi) A€ {{(1,2),(4,2)}, {(174)7 (4,4)}}, and
(vii) Aisnotin {{(1,1),(1,2)}, {(1,4),(1,5)}, {(4,1),(4,2)}, {(4,4),(4,5)}, {(1, 1),
(4,1}, {(1,5),(4,5)}, {(1,1),(4,5)}, {(1,5),(4,1)}} and is not in cases (i) - (vi).

Figure 5 from left to right of the first and the second rows represents each case (i) - (vi)
scenario according to their symmetry and also shows components of (G(4 x 5) — A) — S,
where the shaded squares are elements in A and the crossed squares are elements in S.
It is clear from Theorem 1.3(a) that the CKT does not exist on CB(4 x 5) — A, where A
is in cases (i) - (vi).

In the case (vii), either one of A is from the middle two rows or the two squares of A

are the same parity color. Then, Proposition 1.2 also implies the nonexistence of CKTs
on CB(4 x 5) — A.
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F1GURE 5. Components of (G(4 x 5) — A) — S in cases (i) - (vi)

Lemma 2.4. There exists a CKT on CB(4 x 6) — A if and only if A € {{(1,1),(4,1)},
{(1,6),(4,6)}, {(1,1),(1,2)}, {(1,5), (1,6)}, {(4,1), (4,2)}, {(4,5), (4,6)}, {(1,2), (4,2)},
{(1,5),(4,5)}, {(1,1),(1,6)}, {(4,1), (4,6)}, {(1,2), (1,5)}, {(4,2), (4,5)}, {(1, 1), (4,5)},
{(1,2),(4,6)}, {(1,5), (4, 1)}, {(1,6), (4,2)}}.

Proof. First, we consider 6 cases, namely

() Ae{{(1,1), (41D}, {(1,6),(4,6)}},

(i) Ae{{(1,1),(1,2)}, {(1,5),(1,6)}, {(4,1),(4,2)}, {(4,5), (4,6)} },
(i) Ae{{(1,2),(4,2)}, {(1,5),(4,5)}},

(iv) A€ {{(1.1), (L6}, {(4.1), (4,6)}},

(v) Ae{{(1,2),(1,5)}, {(4,2),(4,5)}}, and

(vi) A€ {{(1,1),(4,5)}, {(1,2),(4,6)}, {(1,5), (4, 1)}, {(1,6), (4,2)} }.

A CKT on CB(4 x 6) — A, where A € {{(1,1),(4,1)}, {(1,1),(1,2)}, {(1,2),(4,2)},
{(1,1),(1,6)}, {(1,2),(1,5)}, {(1,1),(4,5)}}, is shown in Figure 6. By its symmetry of
each of Figure 6, a CKT on CB(4 x 6) — A is obtained for each remaining A of each case,
respectively.
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FIGURE 6. CKTs on CB(4 x 6) —

Conversely, there are 7 cases, namely

(i) Ae{{(1,1),(4,3)},{(1,3), (4, 1)}, {(1,4),(4,6)}, {(1,6),(4,4)}},
(i) Ae{{(1,2),(4,4)}, {(1,3),(4,5)}, {(1,4),(4,2)}, {(1,5), (4,3)}},
(i) A€ {{(1,1),(1,4)}, {(1,3),(1,6)}, {(4,1),(4,4)}, {(4,3), (4,6)}},
(iv) Ae{{(1,3),(4,3)}, {(1,4), (4,4)}},

(v) Ae{{(1,2),(1,3)}, {(1,4),(1,5)}, {(4,2), (4,3)}, {(4,4),(4,5)}}
(vi) A€ {{(1,3),(1,4)}, {(4,3), (4,4)}}, and
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(vii) Ais not in {{(1,1), (4, 1)}, {(1,6), (4,6)}, {(1,1), (1, 2)}, {(1,5), (1,6)}, {(4, 1),
(4,2)}, {(4,5), (4,6)}, {(1,2), (4,2)}, {(1,5), (4,5)}, {(1, 1), (1,6)}, {(4, 1), (4,6)},
{(1,2),(1,5)}, {(4,2), (4,5)}, {(1, 1), (4,5)}, {(1,2), (4,6)}, {(1,5), (4, 1)}, {(1,6),

(4,2)}} and is not in cases (i) - ( i).

Figure 7 from left to right of the first and the second rows represents each case (i) - (vi)
scenario according to their symmetry and also shows components of (G(4 x 6) — A) — 5,
where the shaded squares are elements in A and the crossed squares are elements in S.
It is clear from Theorem 1.3(a) that the CKT does not exist on CB(4 x 6) — A, where A
is in cases (i) - (vi).

In the case (vii), either one of A is from the middle two rows or the two squares of A
are the same parity color. Then, Proposition 1.2 also implies the nonexistence of CKTs
on CB(4 x 6) — A. L]
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FIGURE 7. Components of (G(4 x 6) — A) — S in cases (i) - (vi)

3. EXISTENCE OF SOME SPECIAL OKTs oN CB(4 x n) — {(i,7)} WHERE
n>0>5

The following lemmas give necessary and sufficient conditions on the existence of special
OKTs on CB(4 x n) — {(4,7)} where n > 5 and (i, ) is a square on CB(4 x n). These
OKTs will be used to prove our main result. First, we consider the case where n > 5 and
n is odd.

Lemma 3.1. Let n > 5 and n is odd. Then,

(a) CB(4xn)—{(i,5)} contains an OKT from (2,n) to (4,n) if and only if (i =1
and i+ 7 is even) or (i=4 and i + j is even).

(b) CB(4xn)—{(i,7)} contains an OKT from (1,n) to (3,n) if and only if (i =1
and i+ 7 is odd) or (i =4 and i+ j is odd).

(¢c) CB(4xmn)—{(i,7)} contains an OKT from (1,1) to (3,1) if and only if (i =1
and i+ 7 is odd) or (i =4 and i+ j is odd).

(d) CB(4xn)—{(i,7)} contains an OKT from (2,1) to (4,1) if and only if (i =1
and i+ j is even) or (i =4 and i + j is even).

Proof. Let n > 5 and n is odd. We consider CB(4 x n) — {(¢,7)} where (i, j) is a square
on CB(4 x n).

(a) Assume that (¢ =1 and i + j is even) or (i =4 and ¢ + j is even). Let n = a + 4k
where k € NU {0} and a € {5,7}. We prove by the mathematical induction on k.

First, for k = 0, we construct the required OKTs from (2,a) to (4,a) on CB(4 x a) —
{(4,7)} as shown in Figures 8 and 9.
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FIGURE 8. The required OKTs on CB(4 x 5) — {(4,5)} where (i =1 and
i+jiseven) or (¢ =4 and i + j is even)
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FIGURE 9. The required OKTs on CB(4 x 7) — {(4, )} where (i = 1 and
i+jiseven) or (i =4 and i + j is even)

Next, let & > 0 be an integer. Assume that CB(4 x (a + 4k)) — {(i,7)} contains an
OKT from (2,a+4k) to (4,a+4k). Consider two cases of CB(4 x (a+4(k+1)))—{(,4)}-
Case 1: 1 < j < a+ 4k. We separate CB(4 x (a + 4(k + 1))) — {(4,4)} into two sub-
boards, CB(4 x (a+4k))—{(i,7)} and CB(4 x 4) as shown in Figure 10 with (¢, j) = (1,1).

a+ 4k 4

FIGURE 10. CB(4 x (a +4(k+1))) — {(1,1)} with two sub-boards

By the induction hypothesis, the sub-board CB(4 x (a + 4k)) — {(4,j)} contains an
OKT from (2,a+4k) to (4,a+4k). For the sub-board CB(4 x 4), we construct two paths
Py from (2,1) to (4,4) and P, from (4,1) to (2,4) as shown in Figure 11.
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FIGURE 11. Two paths P; and P, on CB(4 x 4)

Then, we construct the required OKT on CB(4 x (a +4(k+1))) — {(¢,7)} by joining
(2,a + 4k) and (4,a + 4k) of the OKT on the sub-board CB(4 x (a + 4k)) — {(i,7)} to
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(4,1) of P, and (2,1) of Py on the sub-board CB(4 x 4), respectively, as shown in Figure
12 with (i, 5) = (1,1).
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FIGURE 12. The required OKT from (2,a+4(k+1)) to (4,a+4(k+1))
on CB(4 x (a+4(k+1))) — {(1,1)}

Case 2: a+4k+1<j<a+4(k+1). We separate CB(4 x (a +4(k+1))) —{(z,7)}
into two sub-boards, CB(4 x 4) and CB(4 x (a + 4k)) — {(i,7)} as shown in Figure 13
with (¢,7) = (1,a +4(k + 1)).

4 a+4k

FIGURE 13. CB(4 x (a+4(k+1))) — {(1,a + 4(k + 1))} with two sub-boards

For the sub-board CB(4 x 4), we construct two paths P/ from (1,4) to (2,4) and P}
from (3,4) to (4,4) as shown in Figure 14.
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FIGURE 14. Two paths P; and Pj on CB(4 x 4)

By the induction hypothesis, the sub-board CB(4 x (a + 4k)) — {(4,)} contains an
OKT from (2,a + 4k) to (4,a + 4k). Since (1,1) and (4, 1) have degree 2 in G(4 x (a +
4k)) —{(,5)}, (1,1) = (3,2) and (2,2) — (4,1) are two edges of the OKT.

Then, we construct the required OKT by the following two steps:

(i) delete (1,1) —(3,2) and (2,2) — (4, 1) of the OKT on the sub-board CB(4 x
(a+4k)) — {0, 5)};
(ii) join (1,4) and (2,4) of P| to (2,2) and (4,1) of the OKT on the sub-board
CB(4 x (a+ 4k)) — {(i,7)}, respectively and join (3,4) and (4,4) of Pj to (1,1)
and (3,2) of the OKT on the sub-board CB(4 x (a + 4k)) — {(4, j)}, respectively.
The required OKT is shown in Figure 15 with (¢,j) = (1,a + 4(k + 1)).
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FIGURE 15. The required OKT on CB(4 x (a +4(k+1))) — {(1,4(k + 1))}

Hence, by the mathematical induction, if (i = 1 and ¢ + j is even) or (i =4 and i + j
is even), then there exist an OKT on CB(4 x n) — {(4,7)} from (2,n) to (4,n).

Conversely, assume that (i # 1 or ¢ + j is odd) and (¢ # 4 or ¢ + j is odd) and
CB(4 x n) —{(i,7)} contains an OKT from (2,n) to (4,n). Let (i,) be the black square
when ¢ + j is even and the white square when ¢ + j is odd.

If (i,5) = (2,n) or (4,j) = (4,n), then it contradicts with our assumption about the
existence of the OKT from (2,n) to (4,n).

If i + j is odd and (¢,7) ¢ {(2,n), (4,n)}, then the number of black squares is greater
than the number of white squares on CB(4 x n) — {(i,7)}. Since CB(4 x n) — {(4,7)}
contains an OKT from (2,n) to (4,n), (2,n) and (4,n) must be black. However, 2 + n
and 4 + n are odd, then (2,n) and (4,n) are white, a contradiction.

For (i = 2 and ¢ + j is even) or (i = 3 and i + j is even), let G; = G(4 x n) —
{(i,7)}. Consider G} = G1 — {(2,n)}. Let S = {(2,s),(3,t) | s iseven, 2 < s <n —
I,tis odd and 1 < ¢ <n} —{(i,5)}. Then, w(G} —S)=n+1>n=|S|+ 1, see Figure
16 for the case (i,7) = (3,1) and n = 9. By Theorem 1.3(b), we have a contradiction.

N N N AL 7

VA TN TN

FIGURE 16. Components of G} — S where (i,j) = (3,1) and n =9

(b) The required OKT can be obtained by horizontally flipping the OKT of CB(4 x
n) —{(i,5)} in (a).

(¢) The required OKT can be obtained by rotating 180 degrees of the OKT of CB(4 x
n) —{(i,5)} in (a).

(d) The required OKT can be obtained by rotating 180 degrees of the OKT of CB(4 x
n) —{(4,5)} in (b). =

Next, we give the existence of the special OKT on CB(4 x n) — {(4,j)} for n > 6 and
n is even.

Lemma 3.2. Letn > 6 and n is even. Then,
(a) CB(4xn)—{(i,7)} contains an OKT from (2,n) to (4,n) if and only if (i =1
and i+ j is odd) or (i =4 and i + j is odd).
(b) CB(4xn)—A{(i,7)} contains an OKT from (1,n) to (3,n) if and only if (i =1
i+7j is even) or (i=4 and i+ j is even).



Closed Knight’s Tours on 4 x n Chessboards with Two Squares Removed 73

Proof. Let n > 6 and n is even. We consider CB(4 x n) — {(i, )} where (7, ) is a square
on CB(4 x n).

(a) Assume that (i =1 and i+ j is odd) or (i = 4 and i + j is odd). Let n = a + 4k
where k € NU {0} and a € {6,8}. We prove by the mathematical induction on k.

For k = 0, we construct the required OKTs from (2,a) to (4,a) on CB(4 x a) —{(4,7)}
as shown in Figures 17 and 18.
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FIGURE 17. The required OKTs on CB(4 x 6) — {(i,7)} where (i =1
and i+ j is odd) or (¢ =4 and i + j is odd)
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F1GURE 18. The required OKTs on CB(4 x 8) — {(¢,7)} where (i = 1
and i+ j is odd) or (i =4 and i + j is odd)

Next, let £ > 0 be an integer. Assume that CB(4 x (a + 4k)) — {(i,7)} contains an
OKT from (2, a+4k) to (4, a+4k). Consider two cases of CB(4 x (a+4(k+1)))—{(4,7)}.
Case 1: 1 < j < a+ 4k. We separate CB(4 x (a +4(k +1))) — {(¢,7)} into two sub-
boards, CB(4 x (a+4k))—{(i,7)} and CB(4 x 4) as shown in Figure 19 with (7, 7) = (1, 2).

a + 4k 4

FIGURE 19. CB(4 x (a +4(k+1))) — {(1,2)} with two sub-boards
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By the induction hypothesis, the sub-board CB(4 X (a + 4k)) — {(4,4)} contains an
OKT from (2,a + 4k) to (4,a + 4k). Then, as shown in Figure 20 for (i,7) = (1,2), we
construct the required OKT by joining (2,a + 4k) and (4,a + 4k) of the OKT on the
sub-board CB(4 x (a + 4k)) — {(¢,5)} to (4,1) of P and (2,1) of P; on the sub-board
CB(4 x 4) (Figure 11), respectively.
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a + 4k
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F1GURE 20. The required OKT from (2,a+4(k+1)) to (4,a+4(k+1))
on CB(4 x (a+4(k+1))) —{(1,2)}

Case 2: a+4k+1<j<a+4(k+1). We separate CB(4 x (a +4(k+1))) — {(i,7)}
into two sub-boards, CB(4 x 4) and CB(4 x (a + 4k)) — {(i,7)} as shown in Figure 21
with (4,7) = (1,a + 4(k + 1)).

4 a+ 4k

FIGURE 21. CB(4 x (a +4(k+1))) — {(1,a+ 4(k + 1))} with two sub-boards

By the induction hypothesis, the sub-board CB(4 x (a + 4k)) — {(4,)} contains an
OKT from (2,a + 4k) to (4,a + 4k). Since (1,1) and (4, 1) have degree 2 in G(4 x (a +
4k)) —{(,5)}, (1,1) = (3,2) and (2,2) — (4,1) are two edges of the OKT.

Then, we construct the required OKT by the following two steps:

(i) delete (1,1) — (3,2) and (2,2) — (4,1) of the OKT on the sub-board CB(4 x
(a +4k)) = (4, 7);

(ii) by using P; and Pj on CB(4 x 4) shown in Figure 14, we join (1,4) and
(2,4) of P| on the sub-board CB(4 x 4) to (2,2) and (4,1) of the sub-board
CB(4 x (a+4k))—{(4,7)}, respectively and join (3,4) and (4,4) of P} on the sub-
board CB(4 x 4) to (1,1) and (3,2) of the sub-board CB(4 x (a + 4k)) — {(i,5)},
respectively.

The required OKT is shown in Figure 22.

4 a+ 4k
SEAAL A
I Gl
.@ Q N '/\,
VN T

F1GURE 22. The required OKT on CB(4 x (a +4(k+1))) — {(1,4(k+ 1))}
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Hence, by the mathematical induction, if (i = 1 and i+ j is odd) or (i = 4 and i 4 j
is odd), then there exist an OKT on CB(4 x n) — {(¢,)} from (2,n) to (4,n).

Conversely, assume that (i # 1 or i + j is even) and (i # 4 or ¢ + j is even) and
CB(4 x n) — {(4,4)} contains an OKT from (2,n) to (4,n).

Let (i,7) be the black square when i + j is even and the white square when ¢ 4 j is
odd.

If (i,5) = (2,n) or (i,5) = (4,n), then it contradicts with our assumption about the
existence of the OKT from (2,n) to (4,n).

If i+ j is even and (7, ) € {(2,n), (4,n)}, then the number of black squares is less than
the number of white squares on CB(4 x n) — {(7,4)}. Since CB(4 x n) — {(4,4)} contains
an OKT from (2,n) to (4,n), (2,n) and (4,n) must be white. Since 2+ n and 4 4+ n are
even, (2,n) and (4,n) are black, a contradiction.

For (i = 2 and i 4+ j is odd) or ( = 3 and i + j is odd), let G; = G(4 x n) —
{(i,7)}. Comsider G§ = G1 — {(2,n)}. Let S = {(2,5),(3,¢) | s isodd, 1 < s < n—
1,tiseven and 2 <t <n} —{(i,5)}. Then, w(G} —S)=n+1>n=|5|+1, see Figure
23 for the case (i,7) = (2,1) and n = 10. By Theorem 1.3(b), we have a contradiction.

AN SE AN E AN AN e
/@ . 6@ 6@ /76 il

SOSETSERN TS

F1GURE 23. Components of G} — S where (i,7) = (2,1) and n = 10

(b) The required OKT can be obtained by horizontally flipping the OKT of CB(4 x
n) —{(i,5)} in (a). .

4. CKTs oN CB(4 x n) — A WHERE n > 7 AND |A| =2

By mainly using the mathematical induction and using special OKTs constructed in
Section 3 in some cases, we can prove our main result which is the Conjecture 1 as follows.

Theorem 4.1. Consider CB(4 x n) with n > 7. For any pair of squares, with one of
each parity of color and neither coming from the middle two rows, there is a CKT on the
board that avoids only these two squares.

Proof. Let n > 7 and
Su = {2 9), (5 w)} | (2,2 € {1,4},1 < y,w < 1, (2,9) # (2,w)) and ((z-+y is odd and
z 4w is even) or (z +y is even and z + w is odd))}.

Now, we consider CB(4 x n) — A with n > 7 and A € S,,. Let n = a + 3k where
a€{7,8,9} and k € NU{0}. We prove by mathematical induction on k.

First, for k = 0, we construct the CKTs on CB(4 x a) — A for some A € S, as shown
in Figures 24, 25 and 26. Note that actually the CKTs on CB(4 x a) — A for all A € S,
can be obtained from the diagrams represented in Figures 24, 25 and 26 according to its
Symmetry.
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FIGURE 24. CKTs on CB(4 x 7) — A for some A € Sy
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FIGURE 26. CKTs on CB(4 x 9) — A for some A € Sy
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a+ 3k 3

FIGURE 27. CB(4 x (a +3(k+1))) — {(1,1),(4,1)} with two sub-boards

Since A € Sg43k, by the induction hypothesis, the sub-board CB(4 x (a + 3k)) — A
contains a CKT. For the sub-board CB(4 x 3), we construct two cycles C; and Cy as
shown in Figure 28.
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FIGURE 28. Two cycles C; and C3 on CB(4 x 3)

Since (1,a + 3k) and (4, a + 3k) have degree 2 in G(4 x (a + 3k)) — A, (1,a + 3k) —
(3,a+3k—1) and (2,a+3k —1) — (4, a+ 3k) are two edges of the CKT on the sub-board
CB(4 x (a+ 3k)) — A.

Then, we construct the required CKT by

(i) delete (1,a+3k)—(3,a+3k—1) and (2,a+ 3k — 1) — (4,a + 3k) of the CKT
on the sub-board CB(4 x (a+ 3k)) — A and delete (1,1) —(3,2) and (2,2) — (4,1)
of C7 and Cy on the sub-board CB(4 x 3), respectively;

(ii) join (1,a + 3k) and (3,a + 3k — 1) of the CKT on the sub-board CB(4 x (a +
3k))—Ato (2,2) and (4,1) of Cy on the sub-board CB(4 x 3), respectively and join
(2,a+ 3k —1) and (4,a+ 3k) of the CKT on the sub-board CB(4 x (a4 3k)) — A
to (1,1) and (3,2) of C; on the sub-board CB(4 x 3), respectively.

The constructed CKT is shown in Figure 29 with A = {(1,1),(4,1)}.
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FIGURE 29. A CKT on CB(4 x (a+3(k+1))) —{(1,1),(4,1)}

Case 2: a+3k—1<y,w<a+3k+1).

The required CKT can be obtained by rotating 180 degrees of the suitable CKT on
CB(4 x (a+3(k+1))) — Ain Case 1.

Case 3: x+yisodd, z+wiseven, 1 <y<5Sanda+3k—1<w<a+3(k+1).

We separate CB(4 x (a+3(k+1))) — {(z,y), (z,w)} into two sub-boards, CB(4 x (a +
3k —2)) — (z,y) and CB(4 x 5) — (z,w) as shown in Figure 30 with (z,y) = (1,2) and
(z,w) = (4,a + 3(k +1)).
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a+3k—2 5

FIGURE 30. CB(4 x (a+3(k+1))) —{(1,2),(4,a+3(k+ 1))} with two
sub-boards

Case 3.1: (kis even and a € {7,9}) or (k is odd and a = 8).

In this case, we have a + 3k — 2 > 5 is odd. Since = + y is odd, by Lemma 3.1(b),
the sub-board CB(4 x (a + 3k — 2)) — {(x,y)} contains an OKT from (1,a + 3k — 2) to
(3,a+3k—2).

If we regard (z,w) as the square of CB(4 x (a+3(k+1))), then z+w is even. However,
if we regard (z,w) as the square of the sub-board CB(4 x 5), then z + w is odd. By
Lemma 3.1(c), the sub-board CB(4 x 5) — {(z,w)} contains an OKT from (1,1) to (3,1).

Then, as shown in Figure 31 with (z,y) = (1,2) and (z,w) = (4,a + 3(k + 1)), we
construct the required CKT on CB(4 x (a+3(k+1))) — {(x,y), (2, w)} by joining (1,a +
3k —2) and (3,a + 3k — 2) of the OKT on the sub-board CB(4 x (a + 3k — 2)) — {(z,y)}
to (3,1) and (1,1) of the OKT on the sub-board CB(4 x 5) — {(z,w)}, respectively.
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FIGURE 31. The required CKT on CB(4 x (a+3(k+1)))—{(1,2), (4,a+
3(k+1))}

Case 3.2: (kis odd and a € {7,9}) or (k is even and a = 8).

In this case, we have a + 3k — 2 > 6 is even. Since = + y is odd, by Lemma 3.2(a),
the sub-board CB(4 x (a + 3k — 2)) — {(z,y)} contains an OKT from (2,a + 3k — 2) to
(4,a+ 3k —2).

If we regard (z, w) as the square of CB(4 x (a+3(k+1))), then z+w is even. Similarly,
if we regard (z, w) as the square of the sub-board CB(4 x 5), then z+w is even. By Lemma
3.1(d), the sub-board CB(4 x 5) — {(z,w)} contains an OKT from (2,1) to (4,1).

Then, as shown in Figure 32 with (z,y) = (1,2) and (2,w) = (1,a + 3(k + 1)), we
construct the required CKT on CB(4 x (a+3(k+1))) — {(z,y), (z,w)} by joining (2,a +
3k —2) and (4,a + 3k — 2) of the OKT on the sub-board CB(4 x (a + 3k —2)) — {(z,y)}
to (4,1) and (2,1) of the OKT on the sub-board CB(4 x 5) — {(z,w)}, respectively.
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FIGURE 32. The required CKT on CB(4 x (a+3(k+1)))—{(1,2),(1,a+
3(k+1))}
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Case 4: x+yiseven, z+wisodd, 1 <y<banda+3k—-1<w<a+3(k+1).

The required CKT can be obtained by horizontally or vertically flipping of the suitable
CKT on CB(4 x (a+3(k+1))) — A in Case 3.

Hence, in every cases, CB(4 x (a+3(k+1))) — A contains a CKT for all A € S, 3(;41)-
Thus, by the mathematical induction, we obtain the CKT on CB(4xn)—A forall A € S,,.
]

5. CONCLUSION AND DISCUSSION

The main result of this paper is to find all positions of 2 squares on CB(4 x n) so
that after deleting these squares, then there exists a CKT on the deficient board. This
result for n > 7 proves the Conjecture 1. However, this CKT is constructed using the
legal knight’s move. In 2005, Chia and Ong [0] defined the generalized knight’s move or
(a,b)-knight’s move for which the knight moves a squares vertically or horizontally and
then b squares at 90 degrees angle. Especially, they gave the existence of a CKT using
the (2,3)-knight’s move on some CB(m x n). After that, there are some researchers [7]
studied the nonexistence of CKTs using the (a,b)-knight’s move on some CB(m X n).
Therefore, as a future research, if we consider some CB(m x n) for which a CKT from the
generalized knight’s move does not exist, then we can investigate the minimum numbers
of square to be removed and a CKT from the generalized knight’s move exists on the
deficient board as well as the exact positions of these squares to be removed.
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