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Abstract A skirted graph is a planar graph G which is a union of a rooted tree T" # P», where the
root a of T is a vertex of degree at least two and all other vertices, except the leaves, are of degree at
least three, and a path whose vertices are all leaves of T. A graph of order n is said to be pancyclic if
it contains a cycle of each length [ for 3 <1 < n. A graph of order n is almost pancyclic if it contains a
cycle of each length [ for 3 < I < n except possibly for a single even length. It is known that a skirted
graph of order n is almost pancyclic. Moreover, if a skirted graph G contains no cycle of even length m,
3 < m < n, then G contains a skirted subgraph of order 2m — 1 with specific types. In this paper, we are
interested in these skirted subgraphs and prove that the cartesian product between the skirted subgraphs

of each type and a path of arbitrary length is pancyclic.
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1. INTRODUCTION

We consider finite, undirected, simple and connected graphs G with the vertex set
V(G) and the edge set E(G). An (s,t)-path is a path in G from vertex s to vertex t,
denoted by P(s,t). Then, the path P(t, s) denotes the reversed path of P(s,t). A cycle
of G is a hamiltonian cycle if it contains all the vertices of G. A graph G is said to
be hamiltonian if it contains a hamiltonain cycle. A graph G of order n is said to be
pancyclic if it contains a cycle of each length [ for 3 <1 < n. A graph G of order n is
almost pancyclic [1] if it contains a cycle of each length [ for 3 <1 < n except possibly for
a single even length. We use the term m-almost pancyclic for an almost panyclic graph
without a cycle of even length m.

*Corresponding author. Published by The Mathematical Association of
Thailand. Copyright © 2022 by TJM. All rights reserved.
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Let G and H be two graphs. The cartesian product of G with H, denoted by GUH,
is defined as a graph with the vertex set V(G) x V(H) and an edge {(u1,v1), (uz,v2)}
presents in the product whenever u; = ug and vivy € F(H) or symmetrically v; = vy
and uijug € E(G). The path graph Py is a graph with k vertices, vy, va,vs,. .., vk, where
v; is adjacent to v; 41 for 1 < ¢ < k — 1. The prism over a graph G, denoted by GUP, is
defined as the cartesian product of a graph G with Py; that is, take two disjoint copies of
G and add a matching joining the corresponding vertices in the two copies. For n > 3,
we call a graph GOP,,, a generalized prism over a graph G.

Before giving a definition of a skirted graph, we introduce a definition of rooted trees
as follows.

A rooted tree is a tree T', T' # P5, where the root of T is a vertex of degree at least two
and all other vertices, except the leaves, are of degree at least three.

A skirted graph is a planar graph [2], denoted by G(a, ug, us). It is a union TU P of a
rooted tree T, where a is the root of T', and a path P = ugujuy - - - u, whose vertices are
all leaves of T'. A vertex of a skirted graph is called an outer vertez if it is on the path P
or a shortest (a,ug) or (a,u)-path.

In 1971, Bondy [3] posed a metaconjecture: almost any nontrivial condition on a graph
which implies that the graph is hamiltonian also implies that the graph is pancyclic
(There may be a simple family of exceptional graphs). There are a number of results that
correspond to this conjecture. For example: in 1960, Ore [1] proved that if G is a graph
of order n with d(u) + d(v) > n for each pair of non-adjacent vertices u,v in G, then G
is hamiltonian. After that, Bondy [5] showed that a graph G with the same condition as
in [1] is pancyclic or G is isomorphic to the complete bipartite graph which each partite
set contains n/2 vertices, K, /2 /2.

However, there exists a simple family of exceptional graphs such as skirted graphs
which are hamiltonian, but they are just almost pancyclic [1]. For any skirted graph
G(a,b,c), we denote the path P of length o by woujus---us, and the (a,c)-path of
length /3 and (a, b)-path of length v in T" by vovivs - - - v and wow ws - - - w., respectively.
Thus, vo = wo = a, up = w, = b, and u, = vg = ¢ (see Fig. 1).

FIGURE 1. Paths ugujus - - uq, (a,c)-path and (a,b)-path of G(a,b, c)
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For any skirted graph G(a,b,c) of order n, let a1, as,as,...,a, be the neighbours of
the root a. For 1 < i < r, each a; is the root of a skirted subgraph G; = G;(a;, b;,¢;).
Let «y, B;,v; and n; be the analogues for G; of «, 3, and n, respectively (see Fig. 2).

a1 ¢ by Q2 ¢ b, o e=o

FIGURE 2. A skirted graph G(a,b,c)

Lemma 1.1 (Bondy and Lovész [1]). Let G = G(a,b,c) be a skirted graph of order n.
Then, G contains:

(i) an (a,c)-path of each length | for o +~v <1 <n—1;

(i) a (b, c)-path of each lengthl for « <1 <n —1.

Remark 1.2. Following from Lemma 1.1, we obtain that

1. Lemma 1.1(i) gives an (a, b)-path of each length ¢ for a«+ 8 < ¢ < n—1 by the
symmetry of G(a, b, c).

2. To track down the path from each skirted subgraph of G(a,b,c), a (b, c)-path
of length n — 2 (without the root vertex a) can be obtained by Lemma 1.1(ii).

Meanwhile, for the prism over a graph G, there are some hamiltonian and pancyclicity
results. For example: Paulraja [0] proved in 1993 that if G is a 3-connected 3-regular
graph, then the prism GOP, is hamiltonian. In 2001, Wayne [7] showed that if G is a
3-connected 3-regular graph that contains a triangle, then the prism GUP; is pancyclic.

The following section provides our preliminary results on hamiltonicity and pancyclicity
as well as the motivation of our main results.

2. PRELIMINARY RESULTS AND MOTIVATION

For a skirted graph G = G(a,b,c) and P,, = vov1vg - - - vp—1, we denote the vertices of
GOP, shortly by u¥) = (u,v;) where u € V(G), v; € V(P,) for 0 <i <n — 1.

The following theorem is an immediate observation about the existence of a hamiltonian
cycle over the generalized prism over any skirted graphs.

Theorem 2.1. The generalized prism over any skirted graphs is hamiltonian.
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Proof. Let G = G(a,b,c) be a skirted graph of order m and P, be a path of order
n. We show that GLIP, is hamiltonian by finding a cycle of length mn in GOP,. Let
ai,as,as,...,a,. be the neighbours of the rooted a in G. To show that GLIP, contains a
cycle of length mn, we give the following paths and then link together with edges joining
each copy of G.

- The first and the last copies of G contain paths P(a(®,¢(®) and P(a(»=1), c(»=1),
respectively, of length m — 1 by Lemma 1.1(i) (see Figs. 3(a) and 3(c)). Also, a path
P(a™=1 b("=1) of the last copy of G exists by the symmetry of G in Remark 1.2.

- The remaining n — 2 copies of G' contain a path P(b(®), c(®)) of length m — 2 (without
the root vertex a(i)) for 1 <14 <n — 2, which exists by Remark 1.2.

- The path P(a™ 1 a(®) = ¢(»=Vg(n=2)q(=3) ... 40) is a path of GOP, from the
last copy to the first copy of G.

Now, we link each path by edge x; = bb(+1) when i is odd and edge y; = ¢+
when i is even. The cycle of length mn is

Pa®, ¢y P(e™ 62y PP, P )yy -+ 2y o PO oDy P(a(m7D) | (0)
when n is odd or

when n is even.
This completes the proof. [

By linking paths P(a(?), ¢(®) and P(a?, cM) of length m—1 of the first and the second
copies of G and edges ¢(¢M) and a(®aM)| GOP, also contains a hamiltonian cycle.

A

Cp bl &1 1,2 Co b,' Cp

(a) (b)

FIGURE 3. (a) (a,c)-path, (b) (b, c¢)-path and (c) (a,b)-path
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The next result is a preliminary result for a skirted graph of order 7.

Theorem 2.2. Let G = G(a,b,c) be a skirted graph of order T such that G contains no
cycle of length 4. Then, GOP,, is pancyclic for n > 2.

Proof. Let G = G(a,b,c) be a skirted graph of order 7 such that G contains no cycle of
length 4 (see Fig. 4). We show that the generalized prism over G is pancyclic by using
the mathematical induction on the order of P,,. It is easy to see that GLIP, contains a
cycle of each length [ for 3 <! < 14. Thus, GOP;, is pancyclic.

ay 2]

b=b c by Cp=cC

FIGURE 4. A skirted graph of order 7 containing no cycle of length 4

For n = 3, since GLP, is a subgraph of GLP; and GUP; is pancyclic, GLIP; contains
a cycle of each length [ for 3 <[ < 14. Tt suffices to show that GLIPs contains a cycle of
each length [ for 15 <[ < 21. Two steps are shown. The first one is finding a cycle of
each length [ for 17 <[ < 21 and the second one is finding cycles of lengths 15 and 16.

Step 1 : To show that GOP; contains cycles of such lengths, we give the following
paths and then link them together with edges joining each copy of G.

- The first copy and the last copy of G' contain paths P(a(?),¢(®) and P(a(®, ),
respectively, of each length [ for 5 <1 < 6 by Lemma 1.1(i). Also, for the last copy of G,
a path P(a®,b(?)) of each length [ for 5 < I < 6 exists by the symmetry of G in Remark
1.2.

- The middle copy of G contains a path P(b(l),c(l)) of each length [ for 3 <1 <5
(without the root vertex a(!)), which exists by Remark 1.2.

- The path P(a(z), a(o)) =a@aMa0 of length 2 is a path of GOP;s from the last copy
to the first copy of G.

Now, we link each path (maybe of different sizes) by edge z; = bMp32) and yo = @),
The cycle of length [ for 17 <[ < 21 is

P(a9, )y P(c®, 6z PP, 0@ P(a?, a).

Step 2 : To show that GLIP5 contains cycles of length 15 and 16, we refer to the cycle of
length 17 from Step 1 where P(a(?),c(®) and P(b(?),a(?)) have length 5 and P(b1), (1)
has length 3. In this case, let P(a(®, () = a<0>a§°)b<0>c§°)b§°)c<0> and P(b?,a?) =
b PP 6@ Then, removing vertex b© (respectively 5@ and ¢2)) make the
cycle of length 17 to the cycle of length 16 (respectively the cycle of length 15).
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Therefore, GLIP3 is pancyclic.

For n > 4, suppose that GOIP, _; is pancyclic, i.e., GLP,_1 contains a cycle of each
length [ for 3 <1 < 7(n—1). We shall find a cycle of each length [ for 7(n—1)+1 <1< 7n
in GOP,,.

To show that GOP, contains cycles of such lengths, we give the following paths and
then link them together with edges joining each copy of G.

- The first copy and the last copy of G contain paths P(a(?),¢(?)) and P(a(*=1), c(»=1),
respectively, of each length [ for 5 <1 < 6 by Lemma 1.1(i). Also, for the last copy of
G a path P(a™=1 (1) of each length [ for 5 <[ < 6 exists by the symmetry of G in
Remark 1.2.

- The remaining n — 2 copies of G contain a path P(b(®, c()) of each length [ for
3 <1 <5 (without the root vertex a(i)) for 1 <14 <n — 2, which exists by Remark 1.2.

- The path P(a("V,a®) = a(»~Va("=2g(=3) ... 4O) of length n — 1 is a path of
GOP, from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge x; = bDp(+1) when 7 is odd
and edge y; = ¢t when 4 is even. The cycle of length [ for 5n+2 <1 < 7n is

Pa®, ¢y P(e™, 6Nz, PP, P )yy - - 2y o PO oY P(am7D) | 6()
when n is odd or
P(a?, c)yo P> 6y PP, @)y -+ - o P(¢" D 0 D) P(a™V)  a(?)

when n is even.

Since 5n +2 < 7(n — 1) + 1 for n > 4, GOP, contains a cycle of each length [ for
Tm—1)+1<1<Tn.

Therefore, GOP,, is pancyclic. [

Bondy and Lovész [1] showed in 1985 that a skirted graph of order n contains cycles
of each length [ for 3 < [ < n, except, possibly, for one even value of . Moreover, if it
contains no cycle of even length m, where 3 < m < n, then it contains a subgraph which
is also a skirted graph of order 2m — 1 of type I, IT or 11T (see Fig. 5).

Type | Type Il Type Il

FI1GURE 5. A skirted graph of order 2m — 1 of type I, IT and III
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Note that, the types I and III contain a = m—1,8 =2 and v = 2, whilea =m—1,5 =
m/2 and v = m/2 for the type II.

This motivates us to wonder that for a skirted graph of order 2m — 1 of type I, IT or
IIT which are m-almost pancyclic, does the generalized prism over this specific type of
a skirted graph turn into pancyclic for n > 27 From Fig. 5, a, 8 and v of the types I
and IIT are the same, while another type has different values of 8 and ~. Thus, to study
pancyclicity of generalized prisms over these three types of graphs, we separate it into
two sections. In Section 3, we prove the pancyclicity results for the generalized prism
over skirted graphs of type I or III by using Lemma 1.1 and the mathematical induction
on the order of a path P,. In Section 4, by using the similar idea, we can also prove the
pancyclicity for the generalized prism over skirted graphs of type II. Finally, conclusion
and discussion about the possibly future research are given in Section 5.

3. PANCYCLICITY OF GENERALIZED PRISMS OVER SKIRTED GRAPHS OF
TYPE I OR III

We already know that a skirted graph G = G(a, b, ¢) of type I or III of order 2m — 1 is
an m-almost pancyclic, i.e., G contains a cycle of each length [ for 3 <1 < 2m — 1 except
for a cycle of even length m. Since G is a subgraph of GLIP,, GOP, contains such cycles
of length [ for 3 <1 < 2m — 1 except possibly | = m. To show that GLJP; is pancyclic,
we first show that GOP, contains a cycle of length m.

Lemma 3.1. Let G = G(a,b,c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6 and G is of type I or IIl. Then, GOP, contains a cycle of each
length 1 where | is an even integer ranging from 4 to 2m + 6.

Proof. Since G is of type I or III, it contains m + 3 consecutive outer vertices, called
UQ, U, U2, - - . , Um+2, Tespectively. We define a sequence of m + 2 cycles on GOP; as
follows.

HONOMOMENO

MOMOMON 1>u<1>u<1>u2 ),

100 4O, (D (D, D, 1), ©0)

0 0 0 0 1 1 1 1 0
0, D OO Dl ol O

The length of each cycle in the sequence increases as an arithmetic sequence with the
common difference 2. Then, the last cycle

57312“(0) u(o)ugz) u(O)u(O)u(l)u(l) ugrlL) SLUSLQUW?LQ

of this sequence has length 2m + 6. Since the first cycle u(o)u(o)u(l)u(l)u(o) is a cycle of

length 4, the lengths of the cycles are even integers ranging from 4 to 2m + 6. (]

By Lemma 3.1, we can see that if G is a skirted graph of order 2m — 1, where m > 6 is
an even integer and G is of type I or III, then GOIP, contains a cycle of length m. Next,
we need the following lemma to show that the generalized prism over a skirted graph of
order 2m — 1 of type I or III is pancyclic.

Lemma 3.2. Let G = G(a,b,c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6, and G is of type I or III. Then, GOP, is pancyclic.
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Proof. By the result of Bondy and Lovdsz in [1] that G is an m-almost pancyclic and
Lemma 3.1, GOP; contains a cycle of each length [ for 3 <1 < 2m — 1. It suffices to show
that the prism over G contains a cycle of each length [ for 2m <1 < 4m — 2.

For 0 < i < 1, the ith copy of G contains a path P(b"), ¢()) of length I for m — 1 <
I <2m — 2, by Lemma 1.1(ii). We link each path P(b(), (") (maybe of different sizes)
for 0 < i < 1 together with edges bb(") and ¢, The cycle of each length [ for
2m <1< 4m —21is P(b9, )0 P p1)p1p0),

Therefore, GOP;, is pancyclic. m

By using Lemma 3.2 as a basic step, we can use the mathematical induction to establish
the following result.

Theorem 3.3. Let G = G(a,b, c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6, and of type I or III. Then, GOP, is pancyclic for n > 2.

Proof. We prove by the mathematical induction on the order of P,. The basic step is
already done in Lemma 3.2 for n = 2. For n > 3, suppose that GLIP,,_; is pancyclic, i.e.,
GOP,,_; contains a cycle of each length [ for 3 <1 < (n —1)(2m — 1). We shall find a
cycle of each length [ for (n —1)(2m —1)+1 <1 <n(2m —1).

To show that GUP, contains cycles of such length, we give the following paths and
then link them together with edges joining each copy of G.

- The first copy and the last copy of G contain paths P(a(?), ¢(®) and P(a("=), c(»=1),
respectively, of each length [ for m + 1 <1 < 2m — 2 by Lemma 1.1(i). Also, for the last
copy of G a path P(a"=V,b("=1) of each length I for m + 1 <1 < 2m — 2 exists by the
symmetry of G in Remark 1.2.

- The remaining n — 2 copies of G contain a path P(b(®, c()) of each length I for
m—1 <1 < 2m — 3 (without the root vertex a(i)) for 1 < i < n — 2, which exists by
Remark 1.2.

- The path P(a("™V, a®) = ("~ Va("=2)q(=3) ... 4O of length n — 1 is a path of
GOP, from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge z; = b@b(*1) when i is odd
and edge y; = ¢+ when i is even. The cycle of length I for mn4+n+2 <1 < n(2m—1)
is

Pa®, c)yo P(cM 62y PP, Pyg - - - o P(BY oD P (a1 ()
when n is odd or
P(a?, c)yo P(cM 6z (6P, @)y - - - oo P(c" Y, 0" D) P(amV)  0(?)

when n is even.
We can conclude that GOP, is pancyclic if mn+n+2 < (n—1)(2m — 1) + 1, that is,
n > 2m/(m — 2). Since 3 > 2m/(m — 2) for all m > 6, n > 2m/(m — 2) for all n > 3.
Therefore, GOP,, is pancyclic. [

4. PANCYCLICITY OF GENERALIZED PRISMS OVER SKIRTED GRAPHS OF
TYPE II
We already know that a skirted graph G = G(a, b, ¢) of type 1T of order 2m — 1 is an

m-~almost pancyclic, i.e., G contains a cycle of each length [ for 3 <1 < 2m — 1 except
for a cycle of even length m. Since G is subgraph of GOP,, GUP, contains such cycles
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of length [ for 3 <1 < 2m — 1 except possibly [ = m. To show that GOP; is pancyclic,
we first show that GO P, contains a cycle of length m.

Lemma 4.1. Let G = G(a,b,c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6 and G is of type II. Then, GUP, contains a cycle of each length
[ where | is an even integer ranging from 4 to 4m — 2.

Proof. Since G is of type 11, it contains 2m — 1 consecutive outer vertices, called ug, uy, us,
.y Uam—2, respectively. We define a sequence of 2m — 2 cycles on GO P, as follows.

HOMONONCMOS

O O MO OO

UgO)UéO ugo)u(()o)uol)ugl u(l)u l)uéo N

0 0 0 0 0) (0) (1 1 1 (a 0
uén)z 2“57% 3“577)1 4“&% 5" “( )U( )U( )U R (n)m 4Uén)z 3“27% 2“&% 2-

The length of each cycle in the sequence increases as an arithmetic sequence with the
common difference 2. Then, the last cycle

0 0 0 0 0) (0) (1 1 1 ( 0
ug’rr)l ngn)z 3“577)1 4ugn)1 5° U( )u( )u( )U .. () 4“577)1 3“217)1 QUgn)z 2

of this sequence has length 4m — 2. Since the first cycle u(o)u(o)u(l)u(l)u(o) is a cycle of

length 4, the lengths of the cycles are even integers ranging from 4 to 4m — 2. [

By Lemma 4.1, we can see that if G is a skirted graph of order 2m — 1, where m > 6
is an even integer and G is of type II, then GOP, contains a cycle of length m. Next,
we need the following lemmas to show that the generalized prism over a skirted graph of
order 2m — 1 of type II is pancyclic.

Lemma 4.2. Let G = G(a,b,c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6, and G is of type II. Then, GOP, is pancyclic.

Proof. By the result of Bondy and Lovdsz in [1] that G is an m-almost pancyclic and
Lemma 4.1, GOP, contains a cycle of each length [, 3 <1 < 2m — 1. It suffices to show
that the prism over G contains a cycle of each length [ for 2m <1 < 4m — 2.

For 0 < i < 1, the ith copy of G contains a path P(b(¥),c()) of length I for m — 1 <
I < 2m — 2, by Lemma 1.1(ii). We link each path P(b®), ¢(?) (maybe of different sizes)
for 0 < i < 1 together with edges b®b(") and ¢(®¢cM. The cycle of each length I for
2m <1< 4m —2is P(b(0, ()0 P (e p1)p1p0),

Therefore, GOP;, is pancyclic. [

Lemma 4.3. Let G = G(a,b,c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6 and G is of type II. Then, GUPs3 is pancyclic.

Proof. By Lemma 4.2, GLOP; contains a cycle of each length [ for 3 <1 < 4m — 2. It
suffices to show that GO Ps contains a cycle of each length [ for 4m —1 <[ < 6m—3. Two
steps are shown. The first one is finding a cycle of each length [ for 4m+1 <7 <6m —3
and the second one is finding cycles of length 4m — 1 and 4m.

Step 1 : To show that GOPs contains cycles of such length, we give the following paths
and then link them together with edges joining each copy of G.
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- The first copy of G contains a path P(a(?),c®), of each length I for (3m — 2)/2 <
I < 2m — 2 by Lemma 1.1(i). Also, for the last copy of G, a path P(a(®, b®) of each
length [ for (3m — 2)/2 <1 < 2m — 2 exists by the symmetry of G in Remark 1.2.

- The middle copy of G contains a path P(b™),c(M)) of each length [ for m —1 <1 <
2m — 3 (without the root vertex a(!), which exists by Remark 1.2.

- The path P(a®,a(®) = a®aMa(® of length 2 is a path of GOPs from the last copy
to the first copy of G.

Now, we link each path (maybe of different sizes) by edges z; = b2 and gy =
¢ The cycle of length I for 4m +1 <1< 6m — 3 is

P(a9, )y P(cM 62y PP, 0P P(a?, a).

Step 2 : To show that GOPs contains cycles of lengths 4m — 1 and 4m, we modify
the cycle of length (4m 4 1) from Step 1, where P(a(®),c(®) and P(b),a(?) have length
(3m —2)/2 and P(c™V), b)) has length m — 1. In this case, let P(a(?),c(®)) be the path
containing all consecutive outer vertices from a(®) to ¢(°) passing through 5(?). Also, let
P(b®,a?) be the path containing all consecutive outer vertices from b to a(? passing
through ¢(?. Then, removing vertex b(©) (respectively b(©) and 0(2)) make the cycle of
length 4m + 1 to the cycle of length 4m (respectively the cycle of length 4m — 1).

Therefore, GOP;5 is pancyclic. [

We see that, in the proof of Lemma 4.3, the cartesian product of G over a path of
order 3, we have to consider the special case as shown in Step 2. However, there is no
special case when we show that GIP, is pancyclic for n > 4.

By using Lemmas 4.2 and 4.3 as a basic step, we can use the mathematical induction
to establish the following result.

Theorem 4.4. Let G = G(a, b, c) be a skirted graph of order 2m — 1, where m is an even
integer such that m > 6 and G is of type II. Then, GOP, is pancyclic for n > 2.

Proof. We prove by the mathematical induction on the order of P,. The basic step is
already done in Lemmas 4.2 and 4.3 for n = 2,3. For n > 4, suppose that GOP,,_1 is
pancyclic, i.e., GOP, _1 contains a cycle of each length [ for 3 <! < (n—1)(2m —1). We
shall find a cycle of each length [ for (n —1)(2m — 1) +1 <[ <n(2m —1).

To show that GOP, contains cycles of such lengths, we give the following paths and
then link them together with edges joining each copy of G.

- The first copy and the last copy of G contain paths P(a(?),c(?)) and P(a("=1), c(»=1),
respectively, of each length [ for (3m — 2)/2 <1 < 2m — 2 by Lemma 1.1(i). Also, for
the last copy of G' a path P(a("=1,b(*=1) of each length I for (3m —2)/2 <1< 2m — 2
exists by the symmetry of G in Remark 1.2.

- The remaining n — 2 copies of G contain a path P(b(®), ¢()) of each length I for
m—1 <1 < 2m — 3 (without the root vertex a(i)) for 1 < i < n — 2, which exists by
Remark 1.2.

- The path P(a("V,a®) = a(»~Va("=2q(=3) ... 4O) of length n — 1 is a path of
GOP, from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge x; = bDp(i+1) when 7 is odd
and edge y; = ¢V when i is even. The cycle of length | for mn+m+n—2 <1<
n(2m —1) is

P(a®, c©)yo P>V, 6z POP), Pyg - - - o P(0D gD P (a1 ()
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when n is odd or
P(a'?, c)yo P> 62 POP, Py - - - o P(¢" D 0 D) P(a*V) a0

when n is even.

We can conclude that GOP, is pancyclic if mn+m+n—2 < (n—1)(2m—1)+1, that
is, n > (3m—4)/(m—2). Since 4 > (3m—4)/(m—2) forall m > 6, n > (3m—4)/(m—2)
for all n > 4.

Therefore, GOP,, is pancyclic. m

5. CONCLUSION AND DISCUSSION

In this paper, we can prove that the generalized prism over the m-almost pancyclic
graph, namely, skirted graphs of type I, II and III, is pancyclic. Moreover, since the
cartesian product of a graph over a path P, is a subgraph of the cartesian product of the
graph over a cycle C,, and the cartesian product of the graph over a complete graph K,
the results of this paper can be concluded in the similar way when P, is replaced by C,,
or K,, for n > 3. However, the technique that we use migth not be directly applied to any
skirted graphs other than these 3 types since we do not know the exact configuration of
their vertices and edges. Thus, our future research is to develop a technique to overcome
this difficulty.
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