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Abstract In this article, we present a dictionary-based model order reduction approach applied to
the parametrized Burgers’ equation. This approach uses the support vector machine (SVM) to build a
classifier, which efficiently selects the most suitable local reduced-order basis in a dictionary for a given
parameter value. The dictionary of local reduced-order models is constructed by clustering the solution
manifold enabling the identification of reduced-order bases that are obtained from proper orthogonal
decomposition (POD). After a POD basis is chosen by the classifier, it is used in the construction of a
reduced-order model corresponding to the parameter value of interest. For the reduced-order modeling
task, the Galerkin projection is applied together with the selected POD basis to transform the full-order
model to a low-dimensional system. In addition, the discrete empirical interpolation method (DEIM)
is applied to further reduce computational complexity of the nonlinear term in Burger’s Equation. The
numerical experiments for the POD-DEIM reduced-order model assisted by SVM are shown to be efficient
in reducing both dimension and simulation time while maintaining accuracy for the parametrized Burgers’
equation. Our proposed method is also shown to be more accurate than the standard global basis approach

when the same reduced dimension is used.
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1. INTRODUCTION

Numerical simulations have become an essential tool in many applications. However,
such simulations are often time-consuming due to the large size and the complicated
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intrinsic structure of the corresponding systems that are used for describing these appli-
cations. Accelerating these complex simulations while retaining the accuracy therefore
becomes a major challenge in many computational research works.

Model order reduction techniques have been proposed by many researchers to reduce
simulation time. A commonly used approach is the projection-based technique. This
technique employs a low-dimensional basis that can give the best approximation to the
original solution space. There are several methods for constructing a reduced-order basis.
In particular, this work focuses on using a well-known technique so-called proper orthog-
onal decomposition (POD). Recently, researchers have applied POD in many fields. In
[1], the authors apply POD to predict in real-time steady-state capsule deformed shape.
POD is also used in the construction of model reduction of particle processes in fluid flow
described by Population Balance Equations (PBEs) as discussed in [2]. Moreover, the
authors of [3] demonstrated how to modify stochastic tail buffeting prediction methods
using POD. More details and applications of POD can be found in [1—8]. In this work,
we utilize POD in the construction of reduced-order model. POD basis is used with the
Galerkin projection to project the full-order model onto a low-dimensional subspace, which
can extremely reduce the size of the original problem. However, the effective dimension
reduction of POD-Galerkin approach is restricted to the linear part of the problem. To
overcome the complexity issue on nonlinearity, an additional nonlinear model reduction
method has to be applied to handle this problem.

In the case of nonlinear problem, several techniques have been introduced by many
researchers. In general setting, the discrete empirical interpolation method (DEIM) is an
efficient way to deal with nonlinearity. DEIM is employed to generate the selected inter-
polation indices that provide a nearly optimal subspace approximation to the nonlinear
term. As a result, the numerical complexity becomes proportional to a small number
of selected indices. DEIM procedure is used in conjunction with POD-Galerkin tech-
nique to further reduce the complexity of nonlinear term. The POD-DEIM approach
has been applied in various applications. In [9], M. Dehghan, M. Abbaszadeh introduced
a combination of POD-DEIM and meshless local RBF-DQ approach for prevention of
groundwater contamination. Furthermore, POD-DEIM reduced-order method for sto-
chastic Allen-Cahn equations with multiplicative noise is presented in [10]. The author
of [11] applied POD to project the original large-scale full chemical process model onto
a small system of a reduced model space, while DEIM is used to evaluate the nonlinear
functions at a small set of the interpolation points. More articles on POD-DEIM can be
found in [12-17].

Uncertainty quantification is another factor that would become practicable. In fact,
quantities of interest in numerical simulations also depend on the environment of the
problem and strongly influence simulation results. A common approach for this is to use
one single global basis for constructing a reduce order model. However, this approach
does not work well when uncertainties strongly affect the simulation results. Recently,
machine learning techniques have been integrated to improve the reduced-order model-
ing. In [18], this work shows a recurrent neural network (RNN) closure of parametric
POD-Galerkin reduced-order model. The parametric non-intrusive reduced order model
(P-NIROM) based on Gaussian process regression method is presented as described in [19].
Furthermore in [20], a new deep-learning-based reduced-order modeling (ROM) frame-
work is proposed for application in subsurface flow simulation. Most of these approaches
are generally specific to certain classes of problems. This work constructs a POD-DEIM



40 Thai J. Math. Special Issue: AMM 2021 /N. Sukuntee and S. Chaturantabut

reduced-order model that uses support vector machine (SVM) for the parametrized Burg-
ers’ equation, which is the standard test problem for general complex systems used in fluid
dynamics. We first build a dictionary of projection basis sets corresponding to different
parameter values. SVM is then employed to construct a classifier that assigns the best
suitable basis in the dictionary prior to construct the POD-DEIM reduced-order model.

The article is arranged as follows. The problem formulation for the parametrized
Burgers’ equation is given in Section 2. In Section 3, we describe how to construct the
POD-DEIM reduced system in Subsection 3.1 and 3.2. In Section 3.3, dictionary-based
model order reduction via SVM is described and applied to the POD-DEIM reduced
system. Section 4, numerical experiments illustrate the efficiency of our methodology
as well as demonstrate the superiority of our approach over the standard global basis
approach for approximating solutions for the Burgers’ equations with various parameter
values. Finally, the conclusion is given in Section 5.

2. PROBLEM FORMULATION
Consider the Burgers’ equation [21] given by

ou ou 1 0%u

— — = 0,1 tel0,1 2.1

5 Tl T meaz tel0l tel0d] (2.1)
where Re is a Reynolds number. This PDE can be solved exactly to obtain the solution
given by

u(z,t) = 3L (2.2)
1+

2
1/% exp(Rezi7)

where v = exp(%£2). Note that (2.2) will be used to compute the initial and boundary
conditions. To construct the full-order model for (2.1), the first and second order central
difference schemes are applied on the space domain. By using n space grid points, the
PDE then becomes an n-dimension system of ODEs written by

d

@u(t) = 7o Bu(t) + b(t)

; (2.3)

—u(t). [Au(t) +a(t)

F(t,u(?))

where A, B € R"*" are coefficient matrices, a(t), b(t) : [0, 1] — R™ reflect the boundary
conditions and u(t) : [0,1] — R™ is the time-dependent solution vector. Finally, we apply
the first order forward difference scheme to (2.3) on the time domain. As a result, the
system can be solved to obtain the solution each time step. If we use m time steps, we will
have m time-dependent solution vectors (often called m snapshots) containing n features
denoted by

u(zy, tM)  u(xy, t@) u(zy, t™)
u(za, t(l)) u(xz,t@)) u(za, t(m))

U= . ) . = [ug, ug,...,u,] € R™*™.
u(zy, t(l)) u(xn,t@)) u(Ty, t(m))
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3. METHODOLOGY

Our objective is to economically and accurately predict a quantity of interest that
satisfies a PDE depending on an input parameter. Let consider our problem, where a
quantity of interest, i.e., a solution U depends on an input parameter, i.e., a Reynolds
number Re. More precisely, for a certain Reynolds number Re, a solution is given by

Ree P — U(Re) €U, (3.1)

where P is the the parameter space and U is the solution manifold. As the input parameter
Re € P is modified, the solution U(Re) evolves on a manifold U. In the following
subsections, let us introduce some useful concepts and show how to apply them to our
problem step-by-step.

3.1. PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) [20] is a method for constructing a low-
dimensional basis (often called POD basis) of a subspace in Hilbert space. Assume that
we want to find a basis of the space spanned by the solution U € R"*™ defined in (2.4).
Define U := span(U). To obtain POD basis of U, the SVD of U is computed and it can
be expressed as

U=VIwl, (3.2)

where V € R"*" "W € R™*" are matrices with orhonormal columns, called left and right
singular matrices of U, respectively, ¥ = diag(o1,09,...,0,) € R™*" where 01 > 09 >
-+ > 0, > 0 also known as singular values and r = rank(U). The k-dimensional POD
basis of U is the first k& < 7 columns of V denoted by V}, = [vi,va,...,vi] € R™¥F Tt
is well-known that the k-dimensional POD basis Vi, of U is the solution to the following
minimization problem

k

min Y [luy =Y (uf 6:)ill5, (3.3)

Nk
oz i3 i=1

satisfying constrains qﬁ?@ = 0,5, where d;; is the Kronecker delta funciton. Therefore, it
can be used to approximate the snapshots as the following form
u(t) =~ Vyz(t), (3.4)

where z(t) : [0,1] — R* is the reduced representation of u(t). The minimum error of
approximating the snapshots U by the k-dimensional POD basis Vy, is given by

m k T
Dol = (uivivilz= > ol (3.5)
j=1 i=1 i=k+1
To construct the reduced-order model, we substitute (3.4) into (2.3). It yields that
INalt) = —|BVia(t) +b(t)| - F(t, Via(t)) (5.6)
dt kZ - Re kZ y VEkZ ) .
d 1
ngz(t) = = BVyz(t) +b(t)| — F(t, Viz(t)). (3.7)
e
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By pre-multiplying both sides of (3.7) by V} (often called Galerkin projection), the
orthogonality condition of Vi, (VIV}, = Ij) gives us that

d 1

—z(t) = — | VIBVy,z(t) + Vib(t) | — VIF(t, Viz(t)). (3.8)
dt Re N—— N—— N—————
B b(t) £(t,Viz(t))

Hence, the full-order model as in (2.3) with very large size n is reduced to be (3.8) of size
k.

However, the dimensionality reduction of POD-Galerkin approach does not cover the
nonlinear term in (3.8). Particularly, to compute

£(t, Viz(t)) := XEF(t,sz(t)), (3.9)
kxn nx1

it is required to perform the multiplication depending on n which is still costly. Therefore,
we employ another efficient technique to overcome the complexity that occurs on the
nonlinear term as discussed in Subsection 3.2.

3.2. DISCRETE EMPIRICAL INTERPOLATION METHOD

Discrete empirical interpolation method (DEIM) [22] is an approach to reduce the
complexity for evaluating the nonlinear term. To illustrate this issue, we consider again
the nonlinear part in (3.9), i.e.,

F(t,Viz(t)) == Viz(t). * lAsz(t) +a(t)|. (3.10)

Let {fi,fs,...,f,} C R™ be the set of nonlinear snapshots, where f; = F(t;,u(t;))
for all j = 1,2,...,m. Note that nonlinear snapshots f; are computed and collected
from (2.3) simultaneously with snapshots u;. Define F := [f;,f5,...,f,,] € R"™*"™ with
ry = rank(F) and suppose that F := span(F). We first apply the SVD on F, i.e.,
F = VEWT. Similarly, we utilize the POD basis of dimension | < 7y of F denoted by
V, to approximate the nonlinear term as well. This follows that

F(t, Viz(t)) = Vic(t), (3.11)

where c(t) : [0, 1] — R' is the reduced representation of f(¢, V4z(t)). The DEIM procedure
is started here to select [ rows of (3.11). Let P be a matrix used in the interpolation defined
as

P=le,,ep,. - €] € R™L (3.12)

where e,,, = [0,...,0,1,0,...,0]7 is the p;-th column of the identity matrix I,, € R"*™.
By pre-multiplying both sides of (3.11) by PT| the selection of components in the nonlinear
term is made as follows

PTF(t,V,z(t)) ~ PTV, c(t). (3.13)
N——
Ix1

Assume that PTV; is invertible. Then c(t) can be determined uniquely as

c(t) = (PTV))"'PTF(t, Viz(t)). (3.14)
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Note that the matrix PV, is always nonsingular which the clarification can be found in
[23]. As a result, (3.11) becomes

F(t, Viz(t)) = Vi (PTV)T'PTF(t, Viz(t)). (3.15)

The interpolation indices g1, @2, ..., o are generated by the DEIM algorithm shown in
Algorithm 1. The interpolation matrix P is provided to reduce the complexity in the

Algorithm 1 DEIM

1 Input : | < p, V =[vq,V,...,V,] € R"*P
2: procedure

3 [lpl, p1] = max{|v1]}
4: V= [‘_’1]7 P = [egol]v @A = [@1]
5: fori=2:pdo
T - T
6: C = ( )_1P \_’7,
7: r=v; —Vc
s lolopi) = max{lrl} A
9 Ve [V,Pe[P eyl ¢« g]

10: end for
11: end procedure
12: Qutput : P=P(:;,1:1) e R"* = 5(1:1) = [p1, 02, .., 017 € R

nonlinear term. By substituting (3.15) into (3.8), this follows that the reduced-order
model is completely independent of the full computation as shown below

d o > 1 T~ T~xr \—1 T
zEz(t)l]—%; B z(t) +b(t) V. Vi (P V)T P F(t,Viz(t)). (3.16)
EXE px1  kx1 kxl Ix1 Ix1

Note that (3.16) is often called the POD-DEIM reduced-order model. This equation is
used to update the reduced representation z; := z(t;) for all j = 1,2,...,m. The original
solution is approximated by projecting the reduced representation back to the original
solution space, i.e.,

u; ~ VkZ]', j = ].,2,. .o, (317)

Define FPEM (¢ u(t)) := V(PTV;)"'PTF(t,u(t)). An error bound between the nonlin-
ear function F and its DEIM approximation FPEIM ig given [23] by

[F — FPEM ], < C(L, = VIVI)F|2, (3.18)

where C = [|[(PTV;)7!||2. More details on error analysis of DEIM and its extension can
be found in [24, 25]

In general, the resulting POD-DEIM reduced-order model is not designed to approxi-
mate entirely the solution manifold U for the parameter space of Re. In the next subsec-
tion, we will introduce how to handle this problem.
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3.3. DICTIONARY-BASED MODEL ORDER REDUCTION USING SVM

As we have discussed in Subsection 3.2, it is quite challenging to build a single global
reduced-order model that covers entirely the whole part of solution manifold U. However,
U is not generally embedded in a low-dimensional vector space, using a single global
reduced-order model would result inaccurate simulation. This leads us some ideas to split
U into K parts and construct a dictionary of K local reduced-order models. Before giving
a result of dictionary-based model order reduction, let us introduce some useful concepts.

Definition 3.1. The Grassmann manifold (Grassmannian) Gr(k,U) is the set whose
points are k-dimensional subspaces in U.

Definition 3.2. The doubly-infinite Grassmannian Gr (oo, c0) is the Grassmannian that
models subspaces of all dimension regardless of ambient space.

Consider the doubly-infinite Grassmannian Gr(co,00). Let U*, U’ € Gr(oo,o0) be two
subspaces with dimensions a and b, respectively. One can define a distance in Gr (oo, 00)

[26] by

2 min(a,b) 1/2
dGr(oo,oo) (uarub) = <1|a - b‘ + Z a?) ) (319)
i=1
where a; = cos™1(;) are the principal angles obtained by the SVD of VI'V, with V,
and V), being orthogonal matrices whose columns form orthonormal bases of ¢ and U®,
respectively, and &;’s are singular values of VI'V,. In order to compute (3.19), we utilize
the POD method in Subsection 3.1 to generate orthonormal bases for any subspaces. Note
that (3.19) is called the Grassmann metric. To separate the solution manifold U into K
clusters, we first generate N training samples of Reynolds number denoted by {Res}Y ;.
Define snapshots corresponding to an input Res, U(Res) := U® = [uj, u3,...,u ] with
rs = rank(U®). We apply the POD method to obtain the ks-dimensional POD basis V7§
of U* := span(U?®). Since the dimension of POD basis can be variously considered, we
define a criterion for selecting an unbiased choice of k4 as follows

I(e) = M (3.20)
2oil104(s)

where ks, = argmin{e : I(e) > ~}, v € [0,1] and 0;(s)’s are singular values of U®. We

often called (3.20) as the retained energy, which is the ratio of the information captured

by the subspace spanned by ks-dimensional POD basis. For a fixed 7y, the Grassmann

metric is computed for all pairs of Reynolds numbers, resulting in a dissimilarity matrix
defined as

8 = [055] = [der(oo.00) U U )] € RNV (3.21)

where V; and Vz/, are POD bases for U* and U*', respectively. For the clustering task,
the K-medoids clustering algorithm is applied together with the distance information in
(3.21) and can be summarized as follows.

1. K training samples in the dataset are chosen randomly to be initial medoids.
2. Each point of the dataset is assigned to the cluster corresponding to its closest
medoid.

3. For each cluster, a new medoid is updated by finding the best point that
minimizes the sum of distances to all point in the cluster.
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4. The last two steps are repeated until convergence.

After the clustering process is done, we have a disjoint union U = Ule U, satisfying
Uy # 0 for all £ =1,2,..., K. Also, we have a set of medoids {U(Re;) := U} ,. Note
that using the Grassmann metric implies that two inputs leading to solutions lying in
nearby subspaces are then considered to be similar. More precisely, Res; and Rey are
designated as the label ¢ if both U* and U*" are in the same part of solution manifold Uy.
The clustering results are provided to construct a classifier C(U)k : P — {1,2,...,K}.
The classifier C'(U)g is trained in a supervised fashion from pairs of (Res,f) € (P x
{1,2,...,K}), where ¢ is the label of cluster containing Reg satisfying

(= argmin (dg,(co,o00) (L{S,Z/N{b)), (3.22)

be{l,2,....K}

where U¢ = span(fﬂ), ¢ =1,2,..., K. For the training process, it is done through
classification process using linear support vector machine (SVM). Therefore, we utilize
the classifier C'(U)k as an automatic data labelling by transferring an unseen sample to
the best suitable cluster. This implies that

Re S5, 1 = u(t) ~ Vig(t), (3.23)
where U = V/SW* and k can be arbitrarily chosen based on criterion (3.20). Note
that using smaller k& reduces computational time but this gives a trade-off in accuracy.
Similarly, the classifier for selecting a POD basis for nonlinear term in the DEIM approx-
imation is built in the same way. For any given input Reynolds number, this procedure is
performed to select the best appropriate POD basis for solution snapshots and nonlinear
snapshots in their dictionaries. The resulting POD bases are then used in the construction
of the POD-DEIM reduced-order model as described before in Subsection 3.1 and 3.2.

Numerical results of dictionary-based model order reduction via POD-DEIM with SVM
is demonstrated and discussed in the next section.

4. NUMERICAL RESULTS

In this section, we perform our methodology on the Burgers’ equation as defined in
(2.1). The results are shown for Reynolds number value which were not within training
set. The model is set up as follows.

Full-order model (FOM) : n = 400, m = 4000,

Training samples : N = 500, where Re € [100,2000],

Clusters : K, = 6 (snapshots), Ky = 10 (nonlinear snapshots),
Retained energy (3.20): v = 0.95.

In our proposed approach, the followings are the steps that have to be performed during
the offline process.

e Solving N = 500 training samples for the Burgers’ equation (2.1) and collecting
{U° 135, (P2

e Computing dissimilarity matrices 4, d; € R?09%59 for both snapshots and
nonlinear snapshots via Grassmann metric (3.19).

e Clustering the dataset into K, = 6 and Ky = 10 clusters via K-medoids
clustering algorithm, resulting in Table 1 and 2, and recording their medoid POD
bases into dictionaries.

e Training classifiers C(U)g, and C(F)g, via Linear SVM in MATLAB.
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TABLE 1. K-medoids clustering result using K,, = 6 for snapshots.

Class label (£,) Medoid Reynolds number (Rey,)

1 1326
384
1423
600
970
1843

STk W N

TABLE 2. K-medoids clustering result using Ky = 10 for nonlinear snap-

shots.
Class label (¢¢) Medoid Reynolds number (Reg, )

1 418

2 245

3 1354

4 902

5 1273

6 1448

7 1105

8 1658

9 1843
10 594

[FOM] n = 400, Re = 300 [ROM] k = 20, | = 20, Re = 300 Absolute error between FOM and ROM .10

CPU time = 0.2607 CPU time = 0.1485 4000

3500
3000
2500
2000

u(x,t)

1500
1000

-0
FENEEE R

100 200 300 400
()

FIGURE 1. Re = 300 is considered. Re = 300 CWs, tu= 2(384).

POD-DEIM reduced-order model is constructed using k& = [ = 20.

As illustrated in Figures 1, 2, 3 and 4, we show the results for different 4 values of
Reynolds number Re = 300, 700, 1400, 1900. For the reduced-order model, the dimensions
of POD bases for both linear (k) and nonlinear (I) terms are simply chosen to be the same
(k =1) for each case. The CPU time for full-order models (n = 400) take approximately
0.26s~0.3s while the CPU time for POD-DEIM reduced-order models take around 0.15s
depending on the number of POD bases used. For a fixed k = [ = 40, the average
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[FOM] n = 400, Re = 700 [ROM] k = 30, | = 30, Re = 700 ain Absolute error between FOM and ROM 108

CPU time = 0.2711 CPU time = 0.1498
3500
3000
0.4 2500 15
4 0. 2000
0 1500 1
02 ] 1000 05

()

c)s 4y, =4(600)

C(F)10 Ef :310(594).
POD-DEIM reduced-order model is constructed using k& = [ = 30.

u(x,t)
R

FIGURE 2. Re = 700 is considered. Re = 700

[FOM] n = 400, Re = 1400 [ROM] k = 40, | = 40, Re = 1400
CPU time = 0.2743 CPU time = 0.1519 i Absolute error between FOM and ROM . 10°

3500 4
3000
0.4 3
= 2500
% 02
E 2000
0 2
1500
\\\\x\‘ o, o0 i
05 T~ — g5
§ 00

cw)s Ly = 3(1423)

C(F)o Lf=3(1354)
POD-DEIM reduced-order model is constructed using k = = 40.

FIGURE 3. Re = 1400 is considered. Re = 1400

[FOM] n = 400, Re = 1900 [ROM] k = 60, | = 60, Re = 1900 i Ahsolute error between FOM and ROM 102

CPU time = 0.2888 CPU time = 0.1536 3.5
3500 s
3000 25
: 2500
p = 2
2 0. 2000
3 15
1500
, -0 1000 i
) - Ty 05
t

()

FIGURE 4. Re = 1900 is considered. Re = 1900 — ° b = 6(1843).
c(F)o Ly =9(1843)

POD-DEIM reduced-order model is constructed using k = [ = 60.

CPU times for POD-DEIM reduced-order model are compared to the full-order models
for different Reynolds numbers illustrated as in Table 3. Particularly, higher Reynolds
number needs more number of POD bases to preserve the accuracy. This means that the
part of solution manifold corresponding to large Reynolds number is embedded in the

high-dimensional vector space.
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[FOM] n = 400, Re = 900 [ROM] k = 30, | = 30, Re = 900 4Uﬁgsolute error between FOM and ROM 108
6

CPU time = 0.2708 CPU time = 0.1474
3500
5
3000
04 2500 4
L o 2000 3
E
2 1500 2
-0.: 1000
- 1
) : 100 200 300 400
(c)
-o- k=10
- o k=20
Rl :‘% —————— D R T . ° k =30
§ 10° t‘*\ =o' k=40
.~
L St ----- - o --=-=-=-- o-----=-- e------- o [ k=50
SSgrooooo g -- k=60
SeesssggszZsiifISSSii855555558 [ok=T70
10-2 L L L L | |
10 20 30 40 50 60 70
|
(d)

FIGURE 5. Re = 900 is considered. Re = 900 — ¢ b= 5(970).

C(F)io Ly =4(902)
POD-DEIM reduced-order model is constructed using k = [ = 30 (Top).
Error defined in (4.1) is plotted for fixed values k = 10,20,...,70 with
different values I = 10,20,...,70 (Bottom).

TABLE 3. Comparing the average CPU time between FOM (n = 400)
and ROM (k = [ = 40) for different Reynolds number values.

Avg. CPU time
Re | FOM ROM

300 | 0.2853s 0.1571s
700 | 0.2817s 0.1486s
900 | 0.2762s 0.1488s
1200 | 0.2795s 0.1616s
1400 | 0.2767s  0.1528s
1700 | 0.2839s 0.1527s
1900 | 0.2816s 0.1483s

We define an error between the full-order solution and the POD-DEIM approximation
as

m
Error =Y [lu; — Vizj2, (4.1)

k=1
where u; is the numerical solution from the full-order system at time t¢; and z; is the

numerical solution from a reduced-order system at time t;.

As shown in Figure 5, using k = | = 30 is identified as a good compromise for Re = 900
since the Error defined in (4.1) is of order O(10~2) and there is roughly no further decay
for k,1 > 30. Similarly, Figure 6 and Figure 7 indicate that £k =1 =40 and k =1 = 50
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[FOM] n = 400, Re = 1200 [ROM] k = 40, | = 40, Re = 1200

Absolute error between FOM and ROM 102
CPU time = 0.2790 CPU time = 0.1595 4000

3500
3000
2500 6

8

2000

u(x,t)

4

1500
1000

2

100 200 300 400

-0 k=10
- -o- k=20
5555\ —————— O - == === O - === ==~ O === - O m - - - ° k=30
§ 0 ?:‘»\ -0- k=40
I 10 §.{\\‘e ——————— 0 - == === o--=-=-=-=- e------- o | k=50
\\\\3 _______ & - - - k =60
SRNSSIigIiirisfsirisi§issisiig ok=10
102 . \ I I I |
10 20 30 40 50 60 70

(d)

c)s Ly =1(1326)
C(F)e Ly =5(1273)°
POD-DEIM reduced-order model is constructed using k = [ = 40 (Top).
Error defined in (4.1) is plotted for fixed values k = 10,20,...,70 with
different values I = 10,20,...,70 (Bottom).

FIGURE 6. Re = 1200 is considered. Re = 1200

[FOM] n = 400, Re = 1700 [ROM] k = 50, | = 50, Re = 1700

Absolute error between FOM and ROM 102
CPU time = 0.2848 CPU time = 0.1542 4000

3500 8
3000

0.4 2500 6
2000

u(x,t)

4

1500

1000
1 500

100 200 300 400

()

-o- k=10
o o k=20
YERAR e P @=mmmcan T P, ° k =30
§1& %:\‘ —or'le=40
b= &~
w St ---- -~ L o------- &- - o |7 k=50
SSgrrooiia g - k = 60
TeeRES @IZsiiSSSSSiS8i5555558 o k=70
102 | i { I | i
10 20 30 40 50 60 70

(d)

c)s Ly =6(1843)
C(F)o ly =8(1658)
POD-DEIM reduced-order model is constructed using k = [ = 50 (Top).
Error defined in (4.1) is plotted for fixed values k = 10,20, ...,70 with
different values I = 10,20,...,70 (Bottom).

FIGURE 7. Re = 1700 is considered. Re = 1700
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Reynolds number = 900 Reynolds number = 1200 Reynolds number = 1700
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FIGURE 8. Plotting the CPU time for Re = 900 (Figure 8a), 1200 (Figure
8b), 1700 (Figure 8c) corresponding to fixed values k = 10, 30,...,190
with different values [ = 10, 30, ..., 190.

provide the most suitable dimension for Re = 1200 and Re = 1700, respectively. The CPU
time for respective cases are also plotted as displayed in Figure 8. Obviously, the CPU
times have tendency to be increasing when we use higher number of k£ and [. Although
we could increase the number of POD bases k& and [ as much as we want, we strongly
recommend to select the dimensions k and [ that give errors proportional to truncation
error arising from numerical schemes to avoid unnecessary increase in simulation time.

To illustrate the advantage of using the proposed method over the standard approach
that uses the global basis, we consider the case of Reynolds number Re = 300. The
global bases for both POD and DEIM approximation are constructed from equally-spaced
Reynolds numbers Re = 100, 200, ...,2000. We compare the approximate solution for
Burgers’ equation with Re = 300 by using reduced systems constructed from the global
basis approach (shown in Figure 9b) and our proposed approach (shown in Figure 1b)
with the same reduced dimensions k& = [ = 20. Notice that, even if the CPU time
usage for these two approaches are equivalent, the global basis approach gives unstable
approximate solution with larger error than our proposed approach, as shown in Figure
9c and Figure 1c, respectively. In summary, the numerical experiments in Figures 1 and 9
demonstrate that the global reduced-order basis may not be good enough to approximate
the entire solution manifold and using local reduced-order basis to approximate each part
of solution manifold can improve the accuracy.

[FOM] n = 400, Re = 300 [Global ROM] k = 20, | = 20, Re = 300 40f)\gsulute error between FOM and ROM

CPU time = 0.2607 CPU time = 0.0921
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(b) ()

FiGURE 9. Re = 300 is considered. POD-DEIM reduced-order model
is constructed by global POD bases from both snapshots and nonlinear
snapshots using k = [ = 20, respectively.
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5. CONCLUSION

In this work, the concept of dictionary-based model order reduction via POD-DEIM
together with SVM is applied to the parametrized Burgers’ equation. The dictionary of
local reduced-order models is constructed by clustering the solution manifold where the
distance is measured in doubly-infinite Grassmann manifold. Once the clusters have been
defined, SVM is then employed to create an automatic data labelling by transferring input
parameter to select the most appropriate reduced-order basis in dictionary to be used in
the construction of POD-DEIM reduced-order model. The numerical experiments on the
parametrized Burgers’ equation demonstrate desirable results in terms of accuracy and
speed. Our methodology is also shown to provide more accurate approximations than
those obtained from reduced-order model using a single global basis.
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