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of relations. The purpose of this paper, we extend the concepts related to non-deterministic hypersub-
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1. INTRODUCTION

It is well-known that terms is one of powerful tools in the study of universal algebra for
classifying algebras into a collection, for example the class of semigroup is refer to algebras
of type (2) satisfying the associative law. In fact, both sides of the associative law can be
regarded as terms. In combinatoric, terms can be reformulated as a tree diagram, called a
semantic tree. Applying this idea, elementary and advance topics in theoretical computer
science are connected with terms. Basically, a collection of terms is called tree languages
which was introduced by Gécseg and Steinby in 1984, see [1]. It has various applications
in the study of non-deterministic transformations and automata theory. In particular,
Denecke and his groups are studied tree languages in several points of view, for instance
semigroups of tree languages and a mapping which takes any operation symbols to tree
laguages. For more information, see [2]. Current developments in tree laguages can be
found, for example, in [3-5].
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One of outstanding structures in mathematics is an algebraic system which was intro-
duced by Mal’cev, the Russian mathematician, in 1973 [6]. It is a nonempty set together
with a collection of operations and a collection of relations on this set. This system is one
of the basic mathematical concepts. Its general theory has been deeply developed. The
ordered group is an example, which is widely applied in many branches of mathematics.
The concept of formulas is first introduced by Mal’cev [6]. Denecke and Phusanga [7]
introduced the superposition of formulas R]!, and the concept of a hypersubstitution for
algebraic systems. They studied formulas over tree languages by applying the idea in
[8] to define formulas over tree languages. For more research direction in this area, see
[9-13]. Our first aim is to construct the many-sorted algebra as in the same situation of
P — Formclone(r, 7’), and then define the superposition operation ]A%% on the power set of
all n-ary formulas of type (7,7'), i.e., P (]-"(TJ/) (WT(Xn))) Furthermore, the canonical
concept of a non-deterministic hypersubstitution for algebraic systems is introduced.

2. PRELIMINARIES

First of all, we recall some essential concepts that we will use in this work. To
define to terms, the set of variables and the set of operation symbols are needed. Let
X, = {x1,...,2,} be a finite set of alphabets and its element called variables. While
the symbol X := {x1,...,%p,...}, we refer to an infinite set of variables. By (f;)ics, we
denote a set of operation symbols which each f; having the arity n;. The type 7 is refer
to the sequence of all arities of operation symbols. As a conseguence, an n-ary term of
type 7 is defined inductively as follows:

(i) The variables x1,...,x, are n-ary term of type 7.
(ii) If t1,...,t,, are n-ary terms of type 7, then f;(¢1,...,ty,) is an n-ary term of
type 7.

The symbols W, (X,) and W, (X) we mean the set of all n-ary terms of type 7 and
the set of all terms of type 7, respectively.

Now, we recall the concept of a superposition operation of terms. Let m,n > 1. The
superposition operation is a many-sorted mapping

Sh o W (Xp) X W (X)) = Wi(Xn)

defined by
(i) Sp(xj,ti,...,t,) :=t; if x; € X;, is a variable and ¢y, ...,t, € W-(X,).
(11) S,:ln(fz(sl, e 75ni),t17 ce ,tn) = fi(Sg@(Slatla ce ,tn), ey S;L@(Sni,tla ce ,tn))
if fi(s1,...,8n,) is a composite term.
Then the clone of all terms of type T can be defined by

cloner := ((WT(X"))HENJW (S;Z’L)m,neN*? (xi)iSnGNJr) .
In this case, the variables x1,x9,...,2, act as the nullary operations. It in accordance
with the identities (C1),(C2),(C3) (see [14]). For more detial concerned algebraic systems,
see [0, 15]. Let J be a nonempty indexed set and (7, ) e be a sequence of relation symbols.
Let 7/ := (n;), ey where n; is the arity of v; for every j € J. The pair (7,7’) is called the
type of an algebraic system.

Definition 2.1. [6] An algebraic system of type (7, 7’) is a triple consisting of a nonempty
set A together with a sequence (f{1);cs of n;-ary operations on A and a sequence (Wf)jej
of nj-ary relations on A, i.e., A:= (4, (f)icr, (vY)jes)-
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Next, we recall the definition of formulas of type (7, 7).

Definition 2.2. [7] For a natual number n, an n-ary formula of type (7,7’) is defined by
the following way:
(i) The expression t; & t5 is an n-ary formula of type (7, 7’) where t1,t5 are n-ary
terms of type 7.
(ii) The expressiony; (t1,...,t,,) is an n-ary formula of type (7,7') where t1, ..., t,,
are n-ary terms of type 7 and «y; is an nj-ary relation symbol.
(iii) The expression —F is an n-ary formula of type (7,7’) where F is an n-ary
formula of type (1,77).
(iv) The expression F; V Fy is an n-ary formula of type (7,7’) where F; and F; are
n-ary formulas of type (7, 7).
(v) The expression 3z;(F) is an n-ary formula of type (7, 7’).

By F(r+) (Wr(X,)) we denote the set of all n-ary formulas of type (7,7’) and
]:(7',7") (WT(X)) = U ]:(7',7") (WT(Xn))
n>1

the set of all formulas of type (7, 77).
It is well known that the superposition operation on the sets of formulas

R:Ln : f(T,T/) (WT(X")) X (WT(Xm))n — ]:(7',7'/) (WT(XTTL))

is defined in the following way.

(i) R (t1 =~ ta,81,...,8,) is the formula S (t1,81,...,8n) = ST (t2,81,.-.,8n)
if t1 & ty is an n-ary formula of type (7,7) and s1,..., s, are m-ary formulas of
type (7,7').

(i) RZ, (v (t1,-- -1 tn,) . S1,- .., 8y) is the formula
i (SP(t1,815 -+, 8n) ooy SI (tnyy S15- -+, Sn)) i ;5 (tl, e ,tn].) is an n-ary for-
mula of type (7,7') and s1,...,s, are m-ary formulas of type (7, 7’).
iii) R (=F,s1,...,8y,) is the formula =R} (F, s1,...,Sy,) if 7F is an n-ary formula
m m Yy
of type (r,7') and s, ..., s, are m-ary formulas of type (7,7').
(iv) Rl (F1V F3,s1,...,58y) is the formula R}, (Fy,$1,...,8,) VR (F2,51,...,5n)
if Fy Vv Fy is an n-ary formula of type (7,7') and s1, ..., s, are m-ary formulas of
type (7, 7).
(v) Rl (Fzi(F),s1,...,8,) is the formula Jx; (R}, (F, s1,...,8,)) if 3z;(F) is an
n-ary formula of type (7,7’) and sq,..., s, are m-ary formulas of type (7, 7).
Next, we form the algebra
Formclone (T) 7-/) = ((WT<XTL) U -F(T,'r’) (W'r (X”)))nzl ) (RTan)m,nzla (xi)lﬁign,i,neN) .
This algebraic structure is called the clone of formulas of type (7,7").
In 2008, the concept of non-deterministic superposition of terms of type 7 was intro-

duced as a superposition of sets of terms of type 7 (of tree languages) as follows [3]. Let
P(W.(X,,)) be the power set of W.(X,,). Then the operations

Sn o P(Wa(X,)) X P(Wo (X)) — P(Wo (X))

for m,n € NT is defined as follows:
(i) If B = {x;} for 1 < j <mn, then S (B, B, ..., B,) := B;.
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(ii) If B = {fi(t1,...,tn,)} and assume that S” ({t;}, Bi,...,By) for 1 < j <mn
are already defined, then
S;LT (B7B17 SRR B'ﬂ) = {fi(rla s 7rni) | rj € S;Z ({tj}7Bl> R Bn)}

(iii) If B is an arbitrary non-singleton subset of W, (X,,) and B # (), then
St (B,Bi,...,By) =) Sp ({0}, By,..., B).

beB
If one of the sets B, By, ..., B, is empty, then S” (B, By,...,B,) = 0.
Then we consider the heterogeneous algebra

P — cloner := ((P(Wr(X0)))en+ 5 <§§1>m)neN+ ({2} 1<i<monent)

where P — cloner is called the power clone of type 7 [5]. The power clone of type 7

satisfies the following conditions:

(PC1) S2(B,S" (A1, Bi,...,By),...,S% (A, Bi,...,B,))

=S”Z}1(SP(B Ay,...,Ap),Bi,...,B,)

where Ay,..., A, € PW,(X,)),B1,...,B, € PW.(X,,)).

(PC2) Sﬁl({xz},Bl,...,B )= B; where Bi,...,Bn, € P(W,(Xm)).
B.

(PC?’) 5’2(3,{%1}, {wn})

3. SUPERPOSITION OF SET OF FORMULAS

First of all, we generalize the definition of superposition of sets of terms to tree lan-
guages of formulas. The superposition operations from single formulas to sets of formulas,
i.e. tree languages of formulas, are extended. Let P (F(, ) (W-(X,))) be the power set
of Fir+y (Wr(Xy)). Then the operation

R P (Frary (We(Xa))) X POWo (X)) — P (Firy (We(Xn)))
for m,n € NT and By,...,B, € P(W.(X,,)) is defined as follows:

(i) R%({S ~ty,Br,...,By) ={ri=ry|r € S” ({s}, B1,...,By) and
ro €S2, ({t},Bl,.. B}

0 5 (03 )} P 52)

{7 (vi,---,vn,) | v €S, ({tk},Bl,...,Bn) for all 1 <k < mn;}.

(i) Ry, ({=F}, Bi,...,Bn) = {-Q | Q € Ry, ({F}, B1,..., Bn)}.

(IV) R?HA({FI vV FQ}, Bl, .. B ) = {Ql \ QQ | Ql c R:Ln ({Fl},Bl, ey Bn) and
QQAGR?n ({FQ},Bl,...,Bn)}. A

(v) R}, ({Fzi(F},B1,...,Bpn) :={32,(Q) | Q € R, {F},B1,...,Bn)}.

(vi) If B is an arbitrary non-singleton subset of F(, ) (W-(X,)) and B # (), then
R (B,By,...,B,) = Ry, ({0}, By,..., By).

beB
If one of the sets B, B1,..., B, is empty, then RZL (B,By,...,B,) = 0.
We now provide a concrete example of computation with this power operation.

Example 3.1. For a binary operation symbol f and a binary relation symbol 7 of type
(1,7") = (2,2). Consider

" h P (Fa,2) (Wi2)(X3))) x P(W(2)(X4))? — P (Fa.2) (Wi2)(Xa)))-
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(1) RS ({1 ~ 23}, {za} {f (w2, 2a)} {23, f(24,21)})
={ri~ra|r € 5§ ({ar}, {wa}, {f (w2, 20)}, {23, f(24,21)}) and
ry € Si ({zs} {za}, {f(w2, )}, {23, f(2a,21)})}
={ri=ry|r €{rs} and ry € {x3, f(24,21)}}
={zy = x3, 24 & f(x4,21)}.
(i) B3 ({y(w2, 25)}, {wa}, {f (w2, 20)}, {3, f(wa,21)})
= {7(v1,02) | v1 € SF ({w2}, {wa}, {f (w2, 20)}, {3, f(w4,21)}) and
va € S ({3}, {wa}, {f (22, 20) }, {ws, f@a, 21)})}
{y(v1,v2) [v1 € {f(w2,24)} and v € {z3, f(74,71)}}
{7 (f (22, 24), 23), Y (f (w2, 4), [ (24, 21)) }-
i) RY({~(a1 ~ x3)} {wa), {f (w2, 24) } {@s, f (24, 21)})
{(-Q | Q € R} ({z1 ~ a3}, {za}, {f (22, 24)}, {3, f (24, 21)})}
j{( -Q |

Q€ {zs~asg, x4 ~ f(g,21)}}
(4 = x3), 2 (v4 = f(24,71))}
{(z1 = a3) V y(22,23)}, {wa}, {f (w2, wa) }, {23, f(@4,21)})
={Q1V Q2| Q1 € R ({z1 ~ 3}, {za}, {f (w2, 74)}, {3, f(24,21)}) and
Q2 € R} ({v(w2,23)}, {ma}, { f(22,20)}, {23, f(za,21)})}
= {Ql V Qg ‘ Ql S {1‘4 T3, Ty R f(x4,;1:1)} and
Q2 € {y(f(z2,24),23),7(f (22, 24), f(24,21))} }
= {(z4 = 23) V (V(f(w2,24),23)), (xa = x3) V (7(f(22,24), [(74,71))), (24
f(za,21)) V (7 (f (22, 24),23)), (w4 = 24, 21)) V (V(f (22, 4), f(24,21)))}-

Next, we form the algebra

P — Formclone(r, 7') := ((P(WT(XH)))nEI\H , (P (]:(TJ/) (WT(Xn))))

(55) e (). e (Edhsizimnere).

The following theorem is a primary result that describes properties of P—Formclone(r, 7).

A
=
<
=
j=uft
)

neN+’

Theorem 3.2. The algebra P — Formclone(T, ') satisfies the equations (PFC1), (PFC3)
where

(PFC1) R, (Rg;(G,Al,...,AP),Bl,...,Bn)

=Ry (G,R;g (Ay,Bi,...,By),....R". (Al,Bl,...,Bn))
where G € P (Fr 71y (Wr(X,))), A1, ..., Ay € PW,(X,)) and By, ..., B, € P(W,(Xy)).
(PFC3) R (G {a1},....{zn}) = G where G € P (F(rrr) (Wr(Xn))).
Proof. (PFC1): Let G € P (F(7 (W;(Xy))). If G is empty, then the proof is clearly

true. If G is non-empty, then we can prove by the definition of a formula G of tree
languages.

(i) If G = {s ~ t}, then

R (ﬁﬁ({szt},Al,...,Ap),Bl,...,Bn)

=R ({r1 =7y |7 €82 ({s},Ay,...,A,) and

T9 ESZ ({t},Al,...,Ap)},Bl,...,Bn)

={ry~ry|rs€8n (Sg; ({s},Al,...,Ap),Bl,...,Bn) and

ri€ S, (S2({th Ao Ay) B By )}
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= {ry~ry |13 €8P ({s},S:,g(Al,Bl,...,Bn),...,S;(AP,Bl,...,Bn))and
ry €SP ({t},S;;(Al,Bl,...,Bn),...,Sg(Ap,Bl,...,Bn))}

= ({szt},fm(Al,Bl,...,Bn),...,E;(Ap,Bl,...,Bn)).

(ii) If G = {~;(ts, ..., tn,)}, then

R (Rg ({yj(tl,...,tnj)},Al,...,Ap),Bl,...,Bn)

_ An ({yj(vl,...,%) |op €S2 ({tr}, Ay,..., Ay) forall 1 <k Snj},Bl,...,Bn>

= {7, un,) Lk € 82 (S8 ({66}, Ar, o A4) B, B

for all 1 <k < nj;}

= {7 (1, tm,) | ug € S ({tk},ﬁg(Al,Bl,...,Bn),...,Sg(Ap,Bl,...,Bn))}
:Rﬁ ({’YJ(tla n])} RTL (AlaBla"'aB )7' Rn (A;INBla"'aBn))

(iii) If G = {~F} and assume that (PFC1) satisfied for {F'}, then
o (Rg({ﬂF},Al,...,Ap),Bl,...,Bn)
- ({ﬂQ|Q€}?$L({F},A1,..., ), B, .. ,Bn>
:{ﬁM|MeRg<Rg({F},A1,..., Bi,....Bn)}
:{ﬂM|MGR’,;({F},RQL(Al,Bl,...,B) ,Rg(Ap,Bl,...,Bn))}
(by (i),(it))

— 5 ({=F}, Ry (A, Bus.o Ba), o R (Ay, Br, . B) )
(iv) If G = {F} V F>} and assume that {F;} satisfies (PFC1); i € {1,2}, then
o (Rg {FV B}, Ay, .. A ,Bl,...,Bn)

:R% ({Ql \/QZ ‘ QJ € R’IZL ({Fj}vAlvap)a.] = 172}aBlv"'7Bn>

- {Ml VMQ | Mj € anbz (p'“?rjl ({Fj}7A17'-'7Ap)7B17"‘7Bn> 7.7 = 172}

= {MyV M, | M, € Rp ({Fj},R;(Al,BI,...,Bn),...,Ryn(Ap,Bl,...,Bn));
j=12}

= & ({F v B}, Ry (Ay, By Ba), o R (A, Bas . By))
(v) If G = {3z;(F)} and assume that a set {F'} satisfies (PFC1), then

R, (B ((32i(F)}, Av, o A4y) By, By

= i, ({(324(Q) | Q € R ({F}, A, A4,)}, By, .. By
— {3a;(M) | M € R™, (z%g({F},Al,..., By,... ,Bn)

= (3z:(M) | M e ke ({F},Rg(Al,Bl,...,B )....,R" (Ap,By,..., By ))}

(by (1),(ii))

— 5 (Ba(F)}, B (As, B, B, RE(Ay B Ba)).

vi is an arbitrary non-singleton subset o ot +(X5)) an , then
It G b 1 bset of Frrry (Wr(X dG #0, th

R (J%g(G,Al,...,Ap),Bl,...,Bn)
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=R (U Rg({b},Al,...,Ap),Bl,...,Bn)

beG
- | &y (Rg; ({b},Al,...,Ap),Bl,...,Bn)
beG
=& ({b},R;g (Ay,Bi,...,Bp),..., R (Ap,Bl,...,Bn)) (by (i),(ii))
beG

— Rr (G,fm(Al,Bl,...,Bn),...,Rg(Ap,Bl,...,Bn)).

(PFC3): Let G € P (F(;.) (W;(Xy))). If G is empty, then the proof is clearly true. If
G is non-empty, then we can prove by the definition of a formula G of tree languages.
(i) If G = {s ~ t}, then
R, (s~ th i} () A
={ri~ry|r €S ({sh{z1},... . {an}) and rp € ST, ({t},{z1}, ... {zn})}
={ri=ry|r €{s},rs € {t}}
={s~t}.
(i) If G = {yj(t1,...,tn,)}, then
R ({vi(t1, -5t} {xl}, )
= {v;(v1,... ,vnj) |vi € Sy ({te}, {1}, ..., {xn}) forall 1 <k <n;}
={vj(v1,...,vn;) | v € {ty} for all 1 <k <ny;}
= {’Yj(tla ceny tn})}
(iii) If G = {—F}, then A
Ry, ({-Fh ) {en}) = {-Q | Q € Ry, {F}{z} . {zn})}
={-Q | Qe {F}}
={-F}.
(IV) IfG= {Fl V FQ}, then .
my ({Fyv B )z }) = {@1V Q2 | Q5 € RY, ({Fi L {z}, - {zn})s

={Q1V Q2| Q; € {F;};j=1,2}
={F1V Fy}.
(v) If G = {3z;(F)}, then
Ry, ({3 (F) L {2} - {zn}) = {3240(Q) | Q € Ry, ({F} {aa .. {zn})}
={32:(Q) | Q e {F'}}

= {3z (F)}
(vi) If G is an arbitrary non-singleton subset of F(, .y (W;(X})) and G # 0, then
R (G, {x1}, ..., {zn}) = U Ry ({b},{z1},... . {zn}) = G. m

beG

4. NON-DETERMINISTIC HYPERSUBSTITUTIONS FOR ALGEBRAIC SYSTEMS

Non-deterministic hypersubstitutions map operation symbols to sets of terms and were
considered in [8]. First, we will introduce the concept of a non-deterministic hypersubsti-
tution for algebraic systems.

Definition 4.1. Any mapping

o {filieT}U{vy|j €T — P(Wr(Xp))UP (Frry (Wr(Xn)))
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which maps operation symbols to tree languages and maps relational symbols to set of
formulas and preserves arities, is called a non-deterministic hypersubstitution for alge-
braic systems of type (7,7’) (for short, nd-hypersubstitution for algebraic systems). Let
Hyp™(7,7") be the collection of all nd-hypersubstitutions for algebraic systems of type

(1, 7).
We define the extension of an nd-hypersubstitution ¢ for algebraic systems
6" P(Wr (X)) UP (Frrry Wi(X,))) — PW (X)) U P (Firry Wr(X0)))
by the following definition.

Definition 4.2. Let 0 € Hyp"¢(r,7'). Then we define 6™ as following:
(i) 6m¢[0] := 0.

(i) 6™ [{xg}] := {xx} for every variable z; € X,.
(iii) For t = fi(t1,...,tn;) € W (X,,) we let

G filtr, s tn )Y o= S (0™ (i), 67 [, 67 [{Ea,})

if we inductively assume that 6" [{t;}], 1 < j < n; are already defined.

(iv) 6" [B] := U{6"[{t}] | t € B} if B is an arbitrary non-singleton subset of
W.(X,) and B # 0

(v) 6" [{s~t}]:={umv|uecs"[{s}],ve s [{t}]}.

(vi) 6" [{j(tr, - tn,)}] == Ry’ (0™ (;), 6™ [{t1}], ..., 67 [{tn,}])
if we inductively assume that 6™¢ [{¢;}], 1 < j < n; are already defined.
(vii) 67! [{-F}] := {-Q | Q € 6" [{F}]}.
i) 6" [{F1V )] = {Q1V Q2| Q1 € 6" [{F}], Q2 € 6" [{F2}]}.
(ix) & [{3%( )} = {37:(Q) | Q € 6™ [{F}]}-
(x) o™ [B] U 574 [{b}] if B is an arbitrary non-singleton subset of
Firry (Wr(Xy)) and B # 0.

beB
Next, we give an example of an nd-hypersubstitution for algebraic systems.

(vi

~nd

Example 4.3. For a ternary operation symbol f and a ternary relation symbol v of
type (7,7') = (3,3). Let o : {f} U {y} — P(W(3)(X3)) UP (Fz3) (W(5)(X3))) where
a"(f) = {f(z1, 22, 22), f(22,23,23)} and
o"(y) = {x1 = x3, ~(y(z1,73,71) V (23 ~ 2))}. Then we have
6" [{f (a3, 23,21) = 23}]
={urv|ue ?an [{f(z3,73,21)}] and v € 6" [{x3}]}
={u~v|ue " (f), 6" [{z3}],6" [{x3}],6""[{21}]) and v € {w3}}
={umv|ueS({f(z1,22 22), f(w2,23,23)}, {3}, {23}, {1}) and v € {w3}}
={u~v|ue{S{f(z1,22,22)}, {23}, {xs}, {z1}) U
S*({f (w2, 23, 23)}, {ws}, {ws}, {z1})} and v € {w3}}
={u~v|ue{f(rs,x3 x3), f(x3,21,21)} and v € {x3}
= {f(ll?3, 1'3,.’133) ~ I3, f(.’)]3, xl,xl) ~ .’173}.
We can prove that those extensions are endomorphisms of P — Formclone(r, 7’).
Theorem 4.4. Let o™ € Hyp"?(r,7"). Then the following assertions hold:

(1) gnd [5*:,3 (A,Bi,....B )} Sn (679 [A], 6" [By],...,6™[B,]),
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(2) ond [Rg (G, B, ..., )} Rr (67 [G), 6™ [By],..., 6™ [B,])
where A € P(W-(X,,), B1,...,B, € P(W(Xy,) and G € P (Fr 71y (Wr(X,,))).
Proof. (1) For any A € P(W,(X,,). The equation

5" [S;,g (A,B,... 7Bn)} Sm (6™ [A], 6™ [By], ..., 6™ [B,])
was proved in [3].

(2) For any m,n € NT, for any By,...,B, € P(W-(X,,) and G € P (F(;.) (W;(X5))).
We can prove by the definition of a formula G of tree languages.

(i) If G = {s =~ t}, then
gnd [R" ({s ~ 1}, Bl,...,Bn)}

[{m ~ 1y |1 € S™ ({s), By, ..., By) and m € S™ ({t}, By, . ..,Bn)}]
u~wv|ue s [S” ({s}, Bl,...,Bn)} and v € "¢ [S};; ({t},Bl,...,Bn)}}
A| we St (6" {s}], 6" B, ..., 6" [B,))

S (6" {8}, 6™ B], ..., 6" B]) }

{33 ~y | o€ o"{s}] and y € 6"[{t}]}, 6" B1],..., 6" By)
oi{s ~ t}], A”d[Bl] ,6"[B,]) .

fG={yts,.. . tn;)}s then

R ({7;(t1,- - tn,)} Bry oy B )}

md (v, ., Uny) | o € 57 ({ts}, Bl,...,Bn);lgkgnj}}

I
— Q>

Il
—~

uU~v
Ve

z(
z(

q>\_/||
a ’_‘:U>:U>Q"

_4n [
— R ( nd [S” ({t:), Bl,...,Bn)] .. gnd [S‘;’T({tnj},Bl,...,Bn)D
=R (o(y ) "( Mt} 6" B, ... 6™ [By]) -,
(6" {tn, 3], 6™ By, ..., 6™ [B]))
~ it (Rm( (), 6" ({1}, ., e n]}])ﬁ”d[Bl],...,&“d[Bn])
=Ry, (6™ [{;(tr, - - tn,)}, 6™ By, ..., 6™ (By)) .
(iii) If G = {~F}, then
gnd [}?ﬂm ({~F},By,..., Bn)}
= gnd [ -Q| Qe R, ({F}, Bl,...,Bn)H
{ M|Me A”d[RZ;({F},Bl,...,Bn)]}
= {0 | M e Ry, (MHFY, B, 6 B)) |
= Ry, (6"[{~F}],6"(B),...,6"[By)).
(iv) If G = {Fy V F»}, then
&nd[ m({FlvFQ},Bl,...,Bn)}

6" {QuV Q2| Q) € By ({F)). Br.vo Bo) 1 = 1,2)]
= {MyV My | M; € 67 [R; ({Fj},Bl,...,Bn)} i=1,2)
= {MyV My | M; € Ry, (6"[{F},67(B), ..., 67 [By]) 15 = 1,2}
=R (6"[{F V F2}],6™[By],...,6™(B,]).
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(v) If G = {3x;(F)}, then
5" | Ry, ({(3wi(F)}, B, By
= 6" [{32.(Q) | Q € Ry, ({F}, By..... B}
= (Fz:(M) | M € 67 [Rn ({FY, Bl,...,Bn)}}
= {3z,(M) | M € Ry, (6"[{F}],6"[B1],...,6"
= Ry, (6" [{3xi(F)}],6"[By], ..., 6" [Bn]) .
(vi) If A is an arbitrary non—smgleton subset of F; -y (Wr(X,)) and A # 0, then

U &p ({a}, By, ..., B)

1[Bn])}

6" | Ry, (A, By, Ba)| = 67

U Lo [ )3 8] )
acA
= Ry, (674[A],6™4[B),...,6™[By,)). .

We define a binary operation on the set Hyp(7,7’) of all non-deterministic hypersub-
stitutions for algebraic systems of type (7,7'),

ona : Hyp"(7,7") x Hyp"!(7,7") — Hyp"*(1,7')
by U{’d Ond 02d = U{ld gd.
An important property of this product o,4 is the fact that the extension of a product
of two nd-hypersubstitutions is equal to the usual composition of the extensions of these

both nd-hypersubstitutions (as in the usual case). Then we have
Lemma 4.5. For any o7, 03¢ € Hyp"d(7,7'), (07¢ 0pq 03%) = 679 0 657

Proof. For any G € P(W-(X,)). The equation (07?04 059)[G] = 674 0 65¢[G] was
proved in [8]. We will show that

(o1 ona 03) [G] = 57 0 63 G

for any G € P (F(r) (Wr(X5))).
(i) If G = {s ~ t}, then
(01 ona 05%) [{s = £}]
— v | ue (079 0q 39) {s})] and v € (074 0 o34) (1))}
={urv|ues A"d 0 65[{s}] and v € (3?‘1 05§d[{t}}}
={u=uv|u€ds} (agd[{s}]) and v € 67 ( "d[{t}])}
ot [{z~y |z eos?{s} andy € A”d[{t}]}}
a7 [A”d[{s ~ t}]]
=010y [{s~t}].
(il) If G ={vt1,... nj)}, then
(J{id Ond U;d)A [{’y] (tl, coestng )}]
= {?g" (o7 ona 037) (;), (o1 ond 03 DUt -, (019 ona 059) {tn,}])

— R (617 00) (1), (670 65 [{t}. ... (67 065 [{tn, )
= & (o7 [039(3)] o1 (63({t1}]) - 67 (55 {tn, 1))
= &7 R (o307, 65 {0 ), 5 {1 }1)]
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=67 [657 [{;(trs - tn;)}]]
= (g?doa2 ) [{'yj(tl,...,tnj)}] .
(iii) If G = {—~F}, then
(O'{Ld Ond 0 ) [{ﬁF}] = {_'Q | Qe (01 Ond 0y )T{F}]}
—{ﬁQ|Q€(01 o5®) [{F}}
={-Q| Qe st a3 {F}]]}
I&?d [{-M | M e &Sd[{F}]}]
= o7 [”d[{F}H
= (6740 65%) [{F}].
(iv) f G = {F1VF2} then
(07 0na 058" {F1V F2}] ={Q1V Q2 | Q; € (07% ong 05%)1F}] ;5 =1,2}
={@1v@Q2Q; € (o1 002)[ i1 7=1.2}
{Qi1V Q2] Q; €51 [65F]] ;j=1,2}
G [{My v My | Mj € 63 [Fj] 1 =1,2}]
O_nd [ nd[{Fl \/F2}”
(o’?d o O' ) [{F1 vV FQH .

(v) If G = {3x;(F)}, then

(079 ona 059) " [{F2:(F)}] = {32:(Q) | Q € (07 ona 037) [F1}

= {3 Q) [ Q (01 OU"d) [F1}

{32:(Q) | Q € 67 [65°[F]]}
U?d [{3%( )| Q€63 [ I}]
14 (5 [{32:(F)}]]
(U’fd 0 63?) [{Fi(F)}].-
(vi) If A is an arbitrary non-singleton subset of F(; ;) (W-(X,)) and A # (), then

(079 0na 03)[A] = | (07" ona 03) [{a}]

a€A

= U (6770 63%) [{a}]

acA

= {J a1 (65" [{a}]

acA

=674 [U fr’;d[{a}]]

acA

= opd [65” lU [{a}]H
acA

= (6740 0657) [4]. L]

Let o7 be the nd- hyperbubstltutlon for algebraic systems which is defined by o7(f;) :=
{fi(@1,...,zn,)} for all i € I and o(v;) = {vj(x1,...,@n,)} forall j € J. Then we
have:

Lemma 4.6. For any G € P(W-(X,,)) U P (F(r ) (W-(X,))). Then 674[G] = G.

Proof. For any G € P(W,(X,)). The equation 6¢[G] = G was proved in [3]. We will
show that 674[G] = G for any G € P (F(;.) (Wr(X,))).
() If G = {s~t}, then
Wl{s ~ )] ={umvluesi[{s}] and v € &7/ [{t}]}
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={urv|ue{s}andve {t}}
= {s=~t}.
(ii) If G = {v;j(t1,..-,tn,)}, then
it e} = R (o3 (), 63 {1}, 67 [{tn, )
=Ry’ (vi({z1}, -z, ), {1} {tn, })
= {’yj(tl, e 7tnj)}-
(iii) If G = {—~F}, then
W{-FY ={-Q| Q e i [{F}]} ={-Q | Q € {F}} = {~F}.
( ) IfG {Fl\/Fg} then
RV R} ={Q1V Q2| Q1 € 67/ [{F1}] and Q2 € 6{[{F2}]}
={Q1VQ2|Q1€ {Fl} and @ € {F>}}
={FV Fy}.
(v) If G = {3z;(F)}, then
oL [{Fri(F)}] = {37:(Q) | Q € 673 {F}]} = {F:(Q) | Q € {F}} = {Fmi(F)}-
(vi) If A is an arbitrary non—smgleton subset of F; -y (W-(X,)) and A # (), then
orilAl = |J oilla)] = Jla} = A =

a€A acA

Hence the nd-hypersubstitution o7 is the 1dent1ty element in Hyp™?(7, 7') with respect
to 0,4. Consequently, we can show that Hyp"d(r,7') forms a monoid.

Theorem 4.7. Hyp"d(r,7') = (Hyp”d(T, 7'); ond,afdd) is a monoid.

Proof. By Lemma 4.5 and the fact that the usaul composition o is associative, it can
be shown that o,4 is an associative binary operation on Hyp"?(r,7'). In fact, for any

ond ond ond ¢ Hypd(r,7'), we have

(07 00 5) g 73 = (07 0, 53%) o
— (And nd) nd
6_117,(1 (Jgd ° o_gd)
=01 opng (Uzdond Ugd)~
Let 0™ € Hyp"*(r,7'). Then ( fdd ona o" ) (fz) =0 [ ”d(fz)] = o™(f;) and
(Jnd nd Uzd) fl — O_nd [O’ ]

[ («’vlw +2n;)}]

ﬁ ( : "d [{z1}], . & N, 1)
= o'" (
Also (074 ona 0™?) (7;) = 674" [0 (v;)] = Und(V ) and
o™ opq apfl) () = 6" [opi (75)]
=o" d[{ AT TR .’L'n])}]

n (0" (y5), 6" {aa}, -, 67 {wn, })
= :LLI( (])7{$1}7 {x" )

I
—~
2
~—

Thus we have 74! is an identity element. Therefore Hyp"(r,7") = (Hyp"*(7,7'); onag, o)
is a monoid. n
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